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Abstract. In measurement science and engineering, the method of compensation plays a decisive role and is
widely used in practical applications, in particular for sensors and measurement systems, where high accuracy
is required. However, a general theoretical system description of this method with particular respect to figures
of merit in sensor technology does not exist yet. Nevertheless, this is important for a real understanding of the
system’s structure and its properties and would facilitate prospective sensor design. Within this work, we pro-
vide a general system-based description and comparison of both the compensation and the deflection method.
Based on a general sensor model and selected transfer functions, which cover most sensor types, important
sensor properties like static deviations in sensitivity, long-term dififfcgs, response time, output signal char-
acteristics as well as nonlinearities and hysteresis are studied in a systematic fashion for both measurement
methods. In the case of a compensation method, the core sensor element is part of a controlled closed-loop
system, leading to ffierent system properties compared to an open-loop sensor operated in deflection method.
The influence of linear standard controllers, which are widely used in industrial measurement and control sys-
tems, is studied with respect to the sensor properties. In the conclusions we will summarize which controller
type is appropriate for the attainment of a specifically targeted sensor behavior.

1 Introduction ods (SO/IEC Guide 992007. Nowadays, most sensors use
the deflection method where the sensor output signal is
direct measure of the input signal. This method comprise

“The history of science is the history of measureme@&t  the lowest demand in terms of system complexity, but on th

tell, 1893. Even though claimed by a psychologistin the late other hand the sensor output signal is directly determined b

19th century, the Valldlty of this statement in the fields of sci- the sensor propertieS, |eading to a pre_determined’ but ofte

ence and engineering is unchallenged. Measurement technghsuicient sensor performance for specific applications.
ogy has explosively developed, and is stillimmensely grow- A different method known in measurement technology
ing, with an almost unmanageable diversity of complex sen+s the method of compensation. Possibly the most promi

sors and measurement systems. Despite this variety and ifrent example is the mechanical beam balafiyee( 2001,

cessant new developments, the improvement of existing sery. 302), where the beam angle is altered by the additiop

sor ConceptS has always been of hlgh interest. In almost everygf a Samp|e We|ght into one tray and Subsequenﬂy restored
field of sensors, improvements regarding accuracy, repeatayy adding of the same weight to the other tray, resulting if
bility, drift and hysteresis compensation, error proneness, reg palanced null-deflection state of the beam. The countef-
sponse time and many more are highly desirable, regardlesgeight can be determined more precisely than the beam ah-
of the specific sensor principle. Usually, the sensor properyle, which leads to an overall higher measurement precision
ties of a specific sensor depend on the transducer principlesompared to the deflection method. In general, the compen-

the sensor material properties and the measurand. In generalation method can be applied to a wide range of sensor,
sensors can be operated usinffetent measurement meth-
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6 V. Schulz et al.. Compensation method in sensor technology

2005, AFMs (in constant force modeBbushan 2005,

Z 0= 0 As=0 broadband lambda probeBdsch GmbH 2010, hot-wire
§§ E WlAS g “FcoumeF'FW anemometers (in constant temperature operatibimger-
28 3 Frowy 2 [actuator son and Freymuth1996 Tavoularis 2005, MEMS-based
2o = E accelerometergghe and Oh1996 Stuart-Watson and Tap-
g = son 2004, continous non-invasive blood pressure monitor-

ing (Fortina et al. 2006, or even in hydrogel-based sen-
(b) sors very recentlySchulz et al. 2011) (see Sect2). De-
spite the potential benefits of the compensation method in

ation of (a) the deflection method ar{tl) the compensation method. current and future measurement technology, surprisingly, no

The spring represents an arbitrary transducer, whereas the mass g{aneral the'oretlcal descrlptlop of the propertle§ of a sensor
the weight generally represents the input signal. operated with the compensation method is available. In par-

ticular, theoretical considerations concerning the properties
of such sensors with respect to particular requirements in
sensor technology like high sensitivity, fast response time,
robustness against long-term instabilities of the core sensor
element (seays in Fig. 6) do not exist to our knowledge.
Mostly, books on measurement science just refer to the com-
X9 X, pensation method very briefly without any theoretical as-
H pects or mathematical formulations at alVébster 1999
Dyer, 2002, Klaassen2002 Bakshi and Baksh2009 Pro-
fos and Pfeiferl994 Hoffmann 2007 Lerch 2011) or even

Figure 1. Simplified schematic illustration of the principle of oper-

Table 1. Elementary comparison between deflection method and
compensation method in measurement.

Deflection method Compensation method

System model X~ G, =X,

Input Measuranc Measurand; . . . .
(e.g. forceF) ignore it (Gosh 2009 Niebuhr and Lindner2002. How-
ever, some authors have shown system-based calculations for
Output signalX, compensation quantit¥ a specific application. In the work of Kraudérause 2004
(e.g. output voltage)  (e. g. force) 2005, a comparison between the deflection and the compen-

sation method specifically applied to a precision balance is
accomplished. IrKiencke and Ege2008, a system-based
approach considering selected aspects of the compensation
method is outlined briefly. Moreover, the cited references ap-
peared in German and are thus not accessible to an interna-
almost irrespective of the sensor principle. However, the aptional readership. Hence, a systematic general system-based
plicability of this method implies the existence of an actu- description with particular respect to important sensor trans-
ator unit (Fig.1) which is able to physically generate the ferfunctions, sensor behavior, and sensor properties for prac-
compensation quantity. In this method, the actual sensor outtical applications cannot be found in the current literature.

put signal is measured, subtracted from a reference value, This paper aims at a theoretical description of the com-
and the dfiference is fed back to the sensor input via a con-pensation method in sensor technology. A system-based ap-
troller/actuator unit, until the dierence between output sig- proach is used to describe both the deflection and the com-
nal and reference value reaches zero. Thus, the static sepensation method. The goal of this study is a general un-
sor output signal remains constant for changes in the inputlerstanding of the system behavior of a closed-loop sen-
signal. Nevertheless, the “force” provided by the actuatorsor and to draw specific conclusions for system design
needed to maintain this balanced state is directly related t@nd properties toward realization of high sensitivity, sup-
the input signal. Compared to the deflection method, which ispression of static systematic deviations, fast response, in-
an open-loop configuration, a sensor operated with the comdependence of interfering and long-term drifteets like
pensation method is a closed-loop system. This leads to difmaterial driffrelaxation and aging. The influence of three
ferent system properties solely due to the feedback structurdifferent linear standard controller-types, i.e. Proportional
as outlined in Tabld.. Furthermore, because of the perpet- (P), Proportional-Integral (Pl), and Proportional-Integral-
uation of the balanced “undeflected” state, the sensor propPerivative (PID), on the system behavior is studied. Con-
erties negligibly contribute to the overall system behavior, clusions are drawn regarding which controller type should
leading to smaller measurement uncertainties and hence toe applied for realizing specific sensor properties. The sys-
better measurement results. Additionally, the properties otem analysis is carried out in the frequency domain, but is
the feedback loop can be set and tuned systematically. This isansformed back to the time domain at certain points for
the reason why the compensation method is used in particuldsetter understanding, illustration, and interpretation. At first,
in technical applications with high-precision requirements ora general sensor model is introduced, antedént transfer
expanded operation fields, like precision balandémiise functions, which mainly cover the transfer characteristics of
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current sensors, are proposed. The modified system structure, LLILL]/.L
which results from the feedback for compensation, is shown T x
and the resulting transfer functions are calculated. These +V,
transfer functions are systematically analyzed with respect A

position
sensor

to certain sensor properties mentioned above. The resultin m (XEI
sensor output signal of the compensated sensor is shown in | 7%7 N v
0

dependence on the controller parameters.

2 Compensation method in current sensor ng measuring
applications signal V,
In this section, a very brief review of the use of the compen- Ry

sation method in selected current sensor applications shall be
given. Mainly, this section is to show that the compensation
method can be applied to a broad range of sensor principles.
Therefore, selected sensor principles frofedent fields of  rigure 2. Basic principle of an electrodynamic precision balance
application are introduced, and the advantages due to coMiccording tokrause(2005 andStefinescy(2011).

pensation are briefly presented. However, a detailed review

or extended description of the respective measurement prin-

ciples are beyond the scope of this work. cantilever leads to a shift of the spot position on the deteg
tor. Thus, the detector signal is a direct measure of the cat
tilever deflection. Due to the “optical lever”, even small de-
flections can be detected reliably. In constant force mode
This balance principle is exceedingly widely used and is ap-the detector signal is compared to a reference signal an
plied to measurement problems requiring very high preci-fed to a controller. The provided controller signal, which
sion. The basic working principle is schematically shown in leads to a z-movement of the piezo stageis exactly as-
Fig. 2. If a massmis applied to the tray, the beam deflects. sessed such that the cantilever deflection is balanced a
This deflectionx; is detected by an optical position sensor. the force acting on the cantilever remains constant in th
The coil current . generates the fordé. at the lever and is  steady state. The controller signal is thus a direct estimate
adjusted by the electronic controller in such a way that thethe surface structure. PI- or PID-controllers are widely use
deflectionx; in the steady state is zero. Hence, the voltagein the feedback loopAbramovitch et al. 2007). However,
Vu at the resistoRy is proportional to the coil current, and  also other controller types like Proportional-Double-Integral
thus, to the applied mass The coil current can be setup far (PIl) or Proportional-Double-Integral-Derivative (P1ID) con-
more precisely than the beam deflection can be measuredollers have been reportedigramovitch et al.2009.
Therefore, weights can be determined with high precision. Since the relation between the force acting on the can
Furthermore, the beam is quasi-undeflected during the entilever and the tip-sample-distance is highly non-linear, thg
tire measuring process. A mechanical deficient orfiedént  closed-loop configuration enables a reliable detection of th
beam is stabilized by the electronic feedback. Consequentlysample surface properties. However, the scan speed is limite
the mechanical properties of the beam will negligibffeat by the dynamics of the feedback loop.
the measurement proce§téfinescu2017).

2.1 Electrodynamic precision balance

2.3 Hot wire anemometer in constant-temperature mode
2.2 Atomic force microscope in constant force mode (CTA)

The atomic force microscope (AFM) ranks among the mostHot wire anemometers are indispensable instruments in flo

versatile methods for the imaging of nanoscale structures inmetrology. They are able to measure flow velocity and ver

micrg/nano electronics or molecular biology, nanomanipula-locity profiles in liquids and gases. Here, the resistaRge
tion, and nanoassemblBlushan2005. Basically, a sharp of a wire probe is changed by the temperature change (he
tip on a flexible cantilever is brought into close proximity dissipationQ of the wire) caused by a liquid or gas flady

to the sample surface, as schematically illustrated in &ig. as illustrated in Fig4. Basically, the dissipated thermal en-
The resulting interaction between the tip and the sample surergy is a measure of flow velocity. In constant temperaturg
face causes a deflectiahof the cantilever. This deflection mode, the wire probe is part of a Wheatstone bridge circui
is detected by measuring the reflection of a laser sfiatfo  with constant current supply. Assuming a balanced bridge
the backside of the cantilever using a four quadrant photaat a certain condition, a flow of liquid or gas with a certain
detector. For an undeflected cantilever, ideally, the spot isvelocity consequently leads to a heat transfer from the wir
detected in the center of the detector. A movement of theprobe. This results in a temperature decrease, consequen
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Figure 3. _Basic_principle of an atomic force microscope in a closed- sign (Robert Bosch GmbH, 1994). This broadband configu-
loop configuration (constant force mode). ration is schematically shown in Figa. Here, a sandwich
structure comprising a sensing cell, which is identical to the
Nernst-cell in the conventional design, dfdsion gap, and

a pumping cell are part of a closed-loop control circuit. The
exhaust gas is inserted to théfdsion gap via a porousftiu-
sion channel, leading to a certain oxygen content inside the
aqiffusion gap and consequently to a certaéivalue. The out-

ut voltageV, of the sensing cell directly depends on this
-value and is compared to the preset reference vokage

he latter is chosen in such a way that it correspondstd

(= 450mV). Assumingl > 1 (lean mixture, excess air) in the
diffusion gap leads t¥, < V\¢; and hence to a voltage dif-
ference at the input of the amplifier. This voltagéelience
1results in an output curremg. This pumping current pumps
excess oxygen ions out of thefdision gap for compensation

actuator

z y Figure 4. Basic principle of a hot wire anemometer in constant
temperature mode (CTA).

in an increase in resistivitgR,,, and therefore, in an unbal-
anced state of the bridge circuidV, # 0). The diference
voltageAV, is amplified by a servo amplifier. The resulting
output currentis of the amplifier is fed back to the bridge
circuit. This current again induces a temperature increase
the wire probe such that the bridge balance is restored anfl
the wire probe remains at constant temperature at the stea
state. In this closed-loop configuration, the amplifier output
Ia is a function of the dissipated heat from the sensor wire
and indirectly of the flow velocityKingerson and Freymuth
1996.

A high gain servo amplifier enables the measurement o
rapid flow velocity fluctuations. The cutfofrequency of

an anemometer in constant temperature mode can be abo[ﬁ maintain a constant #inel ratio of1=1. Ford <1 (rich

three orders of magnitude higher compared to Conventiona][lmxmre’ lack Qf a'F) in the dfusion gap, the pumping cqrrenF
constant current anemometerayoularis 2005. Due to the as an opposite sign and causes pumping of oxygen ions into

constant wire probe temperature, tiéeet of the thermal in- the difusion gap. Thus, an initially imbalanced oxygen con-

ertia of the wire is greatly minimized compared to an Open_c_entratlon is compensated and thealue inside the diu-
loop system. sion gap remains constant at the steady state. The magnitude

and the sign of the pumping current are a measure of
With this closed-loop configuration, a broattrange
2.4 Broadband lambda probe 0.7 < A < co can be detected, whereasindicates the oxy-

Lambda probes are widely used for oxygen detection and ar@&N concentration of pure air of 21 % (see Fig). This en-

mainly employed for the measurement of thefagl ratio ables expanded areas of application apart from its standard

1 in combustion engines in automotive industry, pioneered!S€ 80sch GmbK2010.

by Robert Bosch GmbH in the early 1970s. Conventional

'a”.‘bda probes use a galvanic Nernst-cell, composeq of 4 General sensor model with deflection method

solid electrolyte as oxygen conductor between two platinum

electrodes. This cell provides an electrical output voltdge 5 1 sansor model

related to the excess oxygen in the exhaust gas. However,

with this configuration only a detection of about 1 is pos-  To keep generality, we regard the sensor as a single-input

sible. Well above and below this value, the change in thesingle-output (SISO) system with inpgtand outputx,. The

output voltage is only marginal; the transfer characteristicstransfer behavior is described by the impulse respajgse

shows a two-step behavior, as shown in Eig. with X, (t) = gs* X (t), irrespective of any specific sensor prin-
Broadband lambda probes — as the name suggests — caiple, as shown in Figs. Here,x; is the measurand and can

operate in a broad-range compared to the conventional de- be any physical, chemical or biological quantity, whergeas

J. Sens. Sens. Syst., 1, 5-27, 2012 www.j-sens-sens-syst.net/1/5/2012/
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POty Py gy (O~ 9 fx(t) XS~ G, }-X(s)
T

ﬁUS/On

[ r— platin electrode xo(t) =g x xi(l‘) )(O(s) = GS X(S)

diffusion gap (a) (b)

Figure 6. System model of a sensdg) in the time domain(b) in
the frequency domain.

Here,ag, ... , a, andby, ... , by are constant cdicients
which are explicitly determined by the sensor properties
However, in consideration of real sensor systems, basical
three instrument types, which mainly cover the transfer chat
acteristics of most sensors, can be classified according
their dynamic response as: (I) first-order systems JPT
(I) second-order systems (BT and (lll) differentiating
(a) second-order systems (RD). Thus, Eq. {) can be simpli-
fied for these three cases. The resulting input—output rela
Vil rich mixture ean mixture 2 tions in the time domain are given in Tal@eHowever, to ob-
(lack of air) (excess of air) . o . A A
1 tain the output characteristics for a given input signal, the de
scription in the time domain requires the solution of the dif-
ferential equations. This may result in complicated solution
le>0 algorithms, especially for more complex systems in closed
loop configuration later on. Moreover, the quantitative inter
pretation of the solution and the extraction of practical con

reference —
air

A“‘

ref 0

cal expressions. Therefore, the sensor transfer characterist
0.8 09 10 v T2 07101316192225 is transformed from the time domain to the frequency do

-

Py main, which enables a powerful method for theoretical syst

tem description $hinners 1998. Thus, the sensor can be
(b) (c) completely described by its transfer function

Figure 5. (a) Schematic illustration of the core section of a broad- Xo(s)
band lambda probe including the feedback control circuit, accord-Gs(S) = X( )
ing to NGK (2012 (for the sake of simplicity, the heater neces-
sary to heat up the probe to the optimal working temperature is not
shown in this illustration); general illustration of the transfer char- Here, £ is the Laplace operator, arsthe complex variable.
acteristics of a conventionéb) and a broadband lambda profm The sensor transfer functions according to E?).for the
according tdBosch GmbH2010. three basic sensor types are given in Tahl@he general
sensor cofficients in the input—output relations are substi-
tuted by the static sensitivitil and the characteristic time
is assumed to be an electrical output signal (voltage or curconstantd, Ty, T», and T3 of the respective system.
rent) according to the general sensor definition, amithe From Table2 it is apparent that the sensor can be basically
convolution operator. Furthermore, we assume the sensor tgescribed by a quasi-static part and a time-dependent d
be a linear time-invariant (LTI) system. The linear dynamic namic part as illustrated in the general sensor model inFig.
input—output relation of the sensor in the time domain can beThe sensor model comprises the influence of the measura
completely described by an ordinary lineaffeiential equa-  X; (measurement channel) and an interference quahfity-

Lig(t)) = f ge(t)e et @

tion of ordern (n > m; n,me N) with constant cofficients in  terference channel). The static sensor behavior can vary fro
the following form: ideal linear behavioK due to the existence of non-linearities,
. iy, which are apparent in most sensor applications. Both the lin
and >r<10 +an_1d X +ald_xo +agX, = ear partk and the non_—linear parlt d?rectly depend on the
dt dt ) dt measurand;. The static sensitivity is also changed by the
d™x; dm-1x: dx: ; : ; : i
by Xi +By Xi +---+b1—x' +boX. ) mf[erf'erlng quantltyZ,' e.g. temperature in many sensor ap
atm dtm-1 t plications. When no input signal is applie¥ & 0), only the

WWW.j-sens-sens-syst.net/1/5/2012/ J. Sens. Sens. Syst., 1, 5-27, 2012
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10 V.S

Table 2. Sensor classification and assignment of the respective input—output relations and resulting transfer functions as well as common

examples for the respective sensor types.

chulz et al.: Compensation method in sensor technology

Sensor type Input—output relation Sensor transfer function Examples
Xo(t) = s X%i(t) Gs(9) = Xo(8)/Xi(9)
I:  First-order system (P{J Xo = % Carg X K- S5 Temperature sensors
od (Fraden2010
. by .
Il:  Second-order system (B %o = 22 - m X K- m Velocity sensors,
% a2 " @ accelerometers
(Fraden2010
. _r by 4 . .
Ill:  Differentiating second- Xo=ap" ﬁ X K- T§SZS+TT325+1 Plezoelec_tnc sensors
order system (PzFD) % a2 3 & (Gautschi2002),
pyroelectric sensors
(Budzier and Gerlact2010
Quasi-static Dynamic and
AXof = Z - . (5)

interference channel

measurement channel

Figure 7. General sensor model with measurafénd sensor out-
put X, sub-divided in a quasi-static and a dynamic part and com-
prising a measurement and an interference chaKnietrinsic ideal
sensitivity,G(s) normalized sensor transfer functian, sensitivity
codiicient, Z interference quantity altering the ideal sensitivity,
non-linearities in the transfer characteristigs; sensor ffset, o,
offset codicient.

static sensorfiisetx,s is measured as output signal. The sen-
sor dfset is independent of the input signal, and thus, doe
not contain information from the measurand. However, th
offset is superimposed I&; and hence, changed by the inter-
ference quantity. In most sensoxg is primarily altered due

to temperature changes. The static sensitivity, tfiged and

the influence of the interference quantity are additively su-

perimposed, and together with the dynamic sensor part, genS

erating the sensor output sigri§. Note that the order of the
static and dynamic sensor part is arbitrary and could be als
changed. The sensor behavior can be expressed in a gene
sensor model as

Xo = [(K + AK) - Xi + (Xoft + AXorr)] - G(S), )
with
AK = f+Z-as (4)

J. Sens. Sens. Syst., 1, 5-27, 2012
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It has to be pointed out that the influence of noise is ne-
glected in this model. Based on this sensor model, ffece

of the compensation method applied to such a sensor regard-
ing the influence of non-linearities, the interference quantity
and static sensitivity changes on the sensor output signal are
of interest (see Sect).

3.2 Quasi-static sensor behavior

For the description of the quasi-static sensor behavior, we as-
sume that all dynamic processes are terminated and that the
system is in an equilibrium stat&(s) = 1 for s— 0). Hence,
from Fig. 7 and Eg. 8) it becomes clear that the static sen-
sor output signal is basically determined by two parts. One
is the static sensorfiset Xor = (Xoff + AXofr) = (Xoff + Z + o),
which is determined by the intrinsic sensdfset X, and

the interference quantitg, but independent of the input sig-
nal X;. The other part is the sensor sensitivity, which is usu-
lly altered by non-linearities and the interference quantity
as a function of the input signal. According to E®),(

the resulting sensitivity can be expressed as the superposi-
tion of an ideal constant sensitivitg and a deviatiomK

asK = (K + AK). Here, again two cases have to be consid-
ered: (i) a time-independent sensitivity chang& (= con-
stant) and (i) a time-dependent sensitivity change (drift)
(AK = AK(s)). For a time-independent sensitivity change,

6he interference quantity is constant over time. If one consid-

ﬁ{ls small time-independent deviatiohk from the ideal be-
avior, the impact of relative systematic deviatisis on the
static sensor output signal can be calculated using a Taylor-
series and expressed as a systematic static devigtibas

AK
AK ==

AK,
(defl _ AX5™*
K

° Xo

1%

=% 9K (6)
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Figure 8. Mechanical analog and resulting transfer function of a Figure 9. Normalized sensor output signgj/K (interrupted lines)
sensor with(a) ideal linear time-independent sensitivity(no drifty ~ for a unit step input (solid line) when considering a time-dependen
and(b) time-dependent sensitivity change due to viscoelastic mate S€NSOr sensitivity (drift) with dierent drift rates.

rial properties (drift);c mechanical stresg, mechanical straink

Young’s modulus of the elastic springyiscosity of the dashpot. . . i ) )
additional stipulations, i.e. the knowledge of the drift rate and

the establishment of a constant measurement time.
and is equal to the relative sensitivity change. For a time-dependent sensitivity change, the ideal sensitivit]
The second case of a time-dependent sensor sensitivitK has to be replaced bi(s) from Eq. 7). Thus, the rela-
(drift) is apparent in many sensor applications and resultgive deviation of the output signal for a drifffacted sensor
from time-dependent variations of the interference signal. Inaccording to Eq.§) becomes
this paper, this phenomenon is described by a simple model
— known from mechanical sensors — which demonstrates theges AX5KA _(1 0\ AK
basic idea but keeps simplicity at the same time. The modefd =~ x, ~ ( 5)?'
originates from a simple spring-dashpot arrangement con- ) . ) "
nected in series (Maxwell-model), as illustrated in Fig. For both tlmg-erenQent and time-independent sgnatn_nt
This mechanical model represents relaxatifieas in spring c_hanges'AK, it is obvious that th_e sensor output signal is
elements under load due to viscoelastic material propertiesdirectly influenced by these deviations. For temporal drift
The resulting transfer function is used to describe linear driftefects, the relative d‘?"'_"ﬂ_'o*’geﬂ(s) of the sensor output is
effects irrespectively of any specific sensor principle. time-dependent. For infinite measurement times, the devig

In the frequency domairk can generally be described as ~ tion reaches infinity. On the other hand, for= 0 Eq. ©)
becomes Eq.f).

©)

~ S+6

R(9=K- 22, (7)
S 3.3 Response time

whereé is a variable drift rate. Although we consider the

static sensor behavior in this section, the phenomenon ofduation {) describes the time-dependence of the quasi

drift is a dynamic process occurring in the quasi-static partStatic sensor parameté and hence characterizes the un-

of the sensor model. Therefore, we can illustrate the time-vanted long-term behavior of changing sensor properties

dependent sensitivity by calculating the sensor response du#hereasG(s) describes the dynamic short-term behavior.

to a step change of the input signélin the time domain, Usually,_ a response time as short as pqssible is (_Jlesired. A
which leads to quoted in Table, sensors can be classified by their transfe

1 functionG(s). In general, the dynamic behavior of a sensor
Xo(t) = L‘l{K(s) . 5} = K(1+6t). (8) depends on the location of the roots of the numerator polynd

mial (zeros) and the denominator polynomial (poles) in thg
The normalized step respongg/K for the model in Eq.&) complex Gauss-plane. In particular, the sensor response tin
for different drift ratess is shown in Fig.9. For a constant is determined by the dominant pole that is placed closest t
input signal, the static sensor output signal should ideally behe imaginary axis. The poles and zeros are preset by th
constant. However, due to the drift phenomenon, the outpusensor cofficients @g, a3, az, bp, by) and consequently by
signal increases with time. Thus, an explicit correlation be-the intrinsic sensor properties. Therefore, the operation of
tween the input and the output signal is not possible withoutsensor in deflection mode (open-loop configuration) leads t

WWww.j-sens-sens-syst.net/1/5/2012/ J. Sens. Sens. Syst., 1, 5-27, 2012
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16 16 Sensor
4 P 4 X X’ X X
14 . s 1,4 N i y ° . ref
T ] F X0 6 <Dt
1,2 : e 1,2
v 1,0 I_T/}_ - — = —= ] 1,0
! T e . 1 Controller
~ O . - . B =
— 08+ 7 0,8 :;_
NG iy 7 ‘ G.(s)
X 0,6 | ,1 0,6 )(C
0,4 I ! ,l —--- |: 1% order system, T = 1s 0.4
' ;/ﬁ' ; - 11:2" order system, T,=1s, T,/T, =05 | Figure 11. Closed-loop compensation circuit where the sensor out-
0,2 447 —-- I:2" order system, T=1s, T/T, =3 |2 put signalX, is fed back to the sensor input via an amplifier and
-/ = = I:2"order system, T,= 1, T,/T, =2 a controllerF is a transfer element transforming an arbitrary input
0,0 0.0 oo . ;
' ; ‘ ‘ ‘ ; ‘ i ‘ ' uantity in a quantity which can be actually compensated.
0 1 2 3 4 5 6 7 8 9 10 quantity in a quantity y comp

t/s

that the input signak/ of the feedback structure is not nec-
essarily the measuring quanti¥. If a direct compensation

of X; is not possible, because the desired quantity cannot be
generated by an existing device or the generation is too com-
plicated, an equivalent quanti¥/, which is correlated t;

a defined dynamic response that cannot be modified. Typica®SX; = F - Xi and which is accessible for compensation must
parameters are exemplarily illustrated in Fig. the compensation method to a certain sensor. The correlation

betweenX; and X/ can be a simple factor (e.g. the gravity of
_ _ Earth connecting mass and force in a balance) or rather com-
4 General sensor model with compensation method plex (e.g. broadband lambda-probe or closed-loop hydrogel-
based sensors$s¢hulz et al. 2011), depending on the spe-
cific sensor. In any case, the overall system behavior of the

Sensors using the compensation method exhibit a closedcompensation circuit is independentfof Therefore, to keep
loop feedback structure where the deflection is brought bactsimplicity without loosing generality, we assurfe= 1 and

to zero by a compensation force. This causes a force equithus,X/ = Xj andG; = Gs for all further considerations.

librium and keeps the deflection of the sensor — occasionally !nitially, the input signalX; causes the sensor output signal
with a small remnant control deviation — at zero. The de- %o Xo is amplified toV - X,, the preset reference valdey is
flection can no longer be the measurement signal because fubtracted from it and fed back to the controller that gener-
amounts more or less to zero. The sensor signal being prcates the compensation quantify. Hence X; counteracts the
portional to the measurand is now the compensation force op€Nsor input signal. Assuming ideal compensation, the sensor
an electrical quantity creating this compensation force. ThenputX —Xc is balanced during the whole measuring process
resulting compensation circuit must at least contain the senln such a way thadX and hence/ - X, — Xret becomes zero

sor itself, an amplifier, and the controjlactuator unit. Other ~ at the steady state. Hence, the sensor opuémains con-
components (e.g./B converter, filter) may be necessary, but stant, independent of changes of the input signal. However,
do not alter the general system behavior and are thus nehe “force” X, which is necessary to compensate changes of
glected in this study. Because we act on the assumption ofh€ input signal, depends on the input signal. Theref¥ge,

an electrical sensor output signal, amplification with a high-is @ measure of the input sign& and thus the output sig-
gain amplifier is assumed. For the sake of simplicity, we as-hal of the “force”-compensated sensor. The resulting transfer
sume the amplifier, actuator, and controller to be much fastefunction of the compensation circuit can then be written as
than the sensor itself. This \{vould be particularly the case for, X(9) V-Ge(9) - Ge(9) &(9)
e.g. mechanical and chemical sensors. Hence, we can co¢omy(S) = = = —,
sider the actuator and the controller as one block placed in Xi(9)  1+V-Gs(9)-Ce(9)  1+G(9)
the feedback path. For other sensor types, where this simyith

plifying assumption does not hold, the closed-loop sensor

model with only one block in the feedback path is never- G(S) =V - Gs(s) - Ge(s) (11)
theless applicable. In this case, the dominant time constan(,}md expressed in a more general form as
of the feedback block is a combination of the time constants
of the actuator and the controller parameters, respectively, Neomp(S)  CmS™+... +C1S+ Gy
The sensor with compensation is illustrated in Rif. Note Geomp($) = Dcomp(9) - OnS + ...+ dys+do’

Figure 10. Normalized sensor output signads/K for the diferent
sensor types and flierent sensor parameters (interrupted lines) for
a unit step input (solid line).

4.1 System model

(10)

12)
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Table 3. Transfer functions of basic linear standard controller types
(Datta et al. 2000).

Transfer function
GE(9) = ko
GP(9)=ke+ 4
GEP(9 =ke+ L +ko- s

Controller type

P-controller
Pl-controller

PID-controller

where both numeratoNcomp and denominatoDeomp are
composed of polynomials. From EdLQ) one can see that
for Geomp # 0, the compensation quanti¥; can be used as a
direct measure of the measuring quanity Because of the
feedback loop, a transfer function in the foBy(1+G) arises
(cp. Tablel), which exibits a completely ffierent structure
compared to the simple open-loop transfer function. More-
over, the system properties can now be tuned and adjust
in certain limits via the amplifier gain and the parameters of
Gc. Thus,Geomp Can be regarded as a variably tunable trans-
fer function.

The controller is assumed to be a standard linear P-, PI-
or PID- controller, respectively. In principle, a specific con-

troller could be designed for the task of compensation. How-

ever, practically, the predominant majority of all control tasks
are realized by standard controllerdgjoli, 2006. There-
fore, we focus on those standard controllers. The transfe
functions of the three controller types are listed in Tahle
Here,kp is the P-factork, the I-factor, andkp the D-factor,
with

ke

T and kp = keTp,

k (13)

whereT, and Tp are the integral time and theftéirential
time of the controller, respectively. We assuiig k;, and

ed

13

stated in Eq. 12). This transfer function is asymptotically
stable if and only if

— GeompiS proper, i.e. the degrerof the numeratoNomp
is smaller or equal to the degreeof the denominator
Dcomp (M < n, see Eql2), and

— if all poles ofG¢omp are placed in the complex left open
half-plane (LOH).

The first stability condition can be easily evaluated by a sim

ple look at the respective closed-loop transfer function (Taf

ble 4). The second stability condition can be verified by a
stability criterion (e.g. Routh criterionShinners 1998 as
used within this work) applied to the denominator polyno-
mial Dcomp(S). Here, the necessary condition is that allftiee
cientsd, of the denominator have the same sign (Stodola con
dition: Stodola 1894 Hurwitz, 1895 (e.g.dm, ..., dp > 0).
The suficient condition results from the employed stability
criterion and has to be evaluated subsequently. If the nume
ator degree amounts to< 2, the Stodola condition is also
suficient. For that simplified case, no stability criterion has|
to be used in addition.

' Beside the fundamental necessity for system stability, w
additionally claim a minimum-phase system. Thus, all zero
of Geomp have to be located in the complex left half-plane,

Fion (second criterion above) as for the poles is valid, ex
cept that the cd@icientsc, of the numerator can be equal to
zero as well €y, ..., ¢p > 0). A closed-loop transfer func-

tion exhibiting nonminimum-phase zeros (zeros in the ope
right half plane) will show initial overshoot or undershoot,
i.e. the step response initially shows an inverse respons
spending part of its time going in the “wrong” direction until

it changes its direction towards the steady state. This kind g
step response exhibits nonmonotonic behavior. This invers

response exists if the transfer function has at least one ze

including the imaginary axis. In this case, the same critef

ko to be constant. The application of the controller transferin the right half-plane. Depending on the number of zeros i
functionsGc(s) from Table3 and the sensor transfer func- the right half-plane, the inverse response can become qui
tions Gs(s) from Table2 to Eq. (L0) leads to the closed-loop complex and can exhibit more direction reversals and zerg
transfer functions of the three sensor types. The resultingrossings (time-dependent signal passes through the val
transfer functions of the ffierent sensor—controller combi- of zero) Hoagg and Bernstejr2007 Stewart and Davisqn

nations are listed in Tablé whereK* =K -V. In the fol- ~ 2006. This behavior is inadequate for sensor application
lowing, K*-kp is termed as feedback factor. However, the because the steady state should be reached as fast as pg

=

D

=)

SSi-

most important requirement for a technical use of a closedble and a monotone step response is aspired. Therefore, the

loop system is the system stability, i.e. a bounded input signatontroller parameters have to be chosen in such a manner th
leads to a bounded output signal (BIBO-stabilitgh{nners the asymptotically stable closed-loop transfer function show,
1998. Stability has to be guaranteed for all operating condi- minimum-phase behavior at the same time. From T4bte
tions. This necessitates the analysis of the closed-loop trangs apparent that the first stability criterion is fulfilled for all
fer functions to determine the parameter range in which therransfer functions. For real sensoks;> 0, V > 0, andT > 0
system is stable. can be assumed without limitation. Using these assumption
first the range of the control parameters which guarante
BIBO-stability is calculated by utilization of the second sta-
bility criterion. Subsequently, the parameter range to assul
Stability analysis is easily accessible in the frequency domaira minimum-phase behavior is calculated. The calculated re
by analysis of the closed-loop transfer functi®gm(S), as  sults are separately listed in Tallleand finally the resulting

4.2 Stability requirements

Www.j-sens-sens-syst.net/1/5/2012/ J. Sens. Sens. Syst., 1, 5-27, 2012
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Table 4. Closed-loop transfer functiorfs,m(s) for all sensor-controller combinations considerd;= K - V.

Geome() P Pl PID
I: PT K*kp K* (kpstki) K* (kp S2-+kps+k;)
' 1 ST+(K*kp+1) LT+(1+K*kp)s+K k) (T+K*kp)S2+(1+K*kp)s+K*k
I: PT K*kp K* (kpstk)) K* (kp S2+kpstk))
) 2 T2+ TpsH(1+K kp) T2+ TP +(1+K kp)s+K K T2S3+(T+Krkp)+(1+K*kp)s+K K,
: PT--D K*kpT3s K*T3(kps+k)) K*T3(kD52+kpS+k|)
: 2 T2P+(To+K kpT3)s+1 T2P+(To+K kpT3)sH(1+K*k Ta) (T2+K*kp T3)S2+(To+K*kpT3)s+(1+K*K T3)

parameter range meeting both requirements is stated. As cgrarameter range in Tab%, and that the transfer function is

be seen in Tablg, for the combination of a sensor with PT  thus stable. In this case, one can apply the final value theorem
behavior together with a PI- or PID-controller, respectively, of the Laplace transform, generally written as

the degree of the denominator is of order three. Because of

that, the Routh criterion derived from the Routh table has/im X(t) = lim[s- X(s)]. (16)
been used to get the figient stability condition. Stability

analysis by utilization of the Routh criterion is explained Using Eq. (6), we can calculate the deviatiakx(t — oo)

in more detail in AppendipA. From these considerations it from ideal compensation in the steady state for a step change
turns out that the range of controller parameters guaranteesf X; as

ing stability depends on the sensor properties. Note that the

second stability condition is even satisfied if certain parame-ax(co) = I|m Ax(t) = lim [s GA(9)- _] = lim GA(s) (17)

ters exhibit negative values. However, if one claims stability

and minimum-phase behavior at the same time, the controller

parameters do not depend on the sensor properties. The paxample: PTi-type sensor with P-controller

rameters can be any positive value or even equal zero, excepl. 1o simplest example of a RType sensor in combina-

for the combination of a PJelement with a PI- or a PID- tion with a P-controllerG? is
controller. This enables a wide range of possible controller

parameters for the adjustment of the desired system behav- a sT+1

ior for specific applications. Moreover, these findings do not G(9)= ST+Kkp+1’ (18)

show any contradiction towards the application of the com- _

pensation method in a technical measurement system. Howeading to

ever, from a practical point of view, the static feedback gain ST+1 1

cannot be increased ad infinitum. Above a certain critical Ax(co) = Ilm( ) —. (19)

gain, a finite lag of the feedback path will lead to instabil- s0\sT+Kke+1/ 1+ K'ke

ities. The static deviation from ideal compensation for all sensor-
controller combinations are given in TakBe From Table6

4.3 Steady state behavior one can see the same behavior for both-Rihd PB-type

sensors regarding the static deviation from ideal compensa-
tion. For application of a P-controlleAx depends on the
The designated aim of the compensation method is ideateedback factor. For unity feedbadkke = 1), a deviation of
compensation of the sensor inpXit such thatV - X, — Xet 50 % is observed. However, for an increasing feedback fac-
becomes zero at the steady state(0,t — o ). For the  tor, the deviation decreases and converges to zero for a high-
sake of simplicity, let us assum&es = 0. Then, gain feedback. A deviation of only 1% is already reached
with a feedback factor of 100. For the application of a PI-
AX= X = Xe =X = (V:Gs:Ge- AX) (4 or PID-contraller,Ax turns out to be zerop,pand thus, inde-
should be consequently as small as possible. From®y. ( pendent of the feedback parameters. Therefore, a PI- or PID-
we can set up a transfer functi@? between the compensa- controller should be used for these sensor types in order to
tion deviationAX and the input signaX; as achieve full compensation. The combination of g #Ftype
sensor with a P-controller cannot be used for sensor appli-
AX(9) 1 . : ; o
= . (15) cations. This can be easily understood by application of the
X(s)  1+V-Gs-Ge final value theorem to the respective transfer function in Ta-
Since Eq. {5 comprises the same denominator as the genble4. In this case, the sensor output at the steady state always
eral transfer function in Eq10), we can act on the assump- equals zero independent of the input signal. ThuSecint
tion that all poles ofG* exhibit negative real part (for the input signals would always lead to the same (zero) output

4.3.1 Static deviation from ideal compensation

G*=Gy* =

J. Sens. Sens. Syst., 1, 5-27, 2012 wWww.j-sens-sens-syst.net/1/5/2012/
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Table 5. Parameter range guaranteeing BIBO-stability and a minimum-phase system, and the resulting combined parameter range satisfying
both requirements for all considered sensor-controller combinations.

Geome(S) P Pl PID

Parameter range for a BIBO-stable system

I: PT, ke > —2= ke>—7,k >0 ke>—2,k >0,kp > —7&

Il: PT, ke>—% kp>—%,k.>o ko> -, ki >0ko > -2
1+K'ke— 1K 5 02 1+K*kp—TZ§KTikk'D>oa

IPTAD ko> —g2 ko> - k> —gde ko>~ k> —he ko > — s

Parameter range for a minimum-phase system

I-11: ke >0 ke>0,k >0 ke>0%k >0,k =0

Resulting combined parameter range

I: PT, ke>0°¢ ke >0,k >0 ke>0%k >0,kp >0

II: PT, ke >0 ke >0,k >0 ke >0,k >0,kp >0

To(1+K'ke) > T2K'K @ (To+Kkp)(1+ K*kp) > T2K*k 2

Il: PT,-D ke >0 ke>0,k >0 ke>09 k >0,kp >0

2 This criterion results from the application of the Routh criterion.

b Except forkp = 0, this case is however not relevant due to the stability requirement.
¢ The casép = 0 is not relevant for sensor applications.

9k > 0 instead okp > 0 excludes the imaginary zero pair.

Table 6. Static deviation from ideal compensation for all considered plifier and the controller parameters can exhibit deviations

sensor-controller combinations. from ideal behavior as well. Considering small static varia-
tions, the impact of these deviations on the output sigfal
AX(e) P Pl PID can be calculated by a first-order Taylor-series as
PT, — 0 0
e comp_ AXe _ 1 (0%
P:D  NA i3 ki

Here,k; € {kp, ki, kp} andAk; € {Akp, Ak, Akp} are the con-
troller parameters and their systematic deviations, respe

signal. However, a PI- or a PID-controller can be successiVely, depending on which controller type is used.
fully applied. The application of PI- or PID-controller to this

sensor type leads to a static deviation that depends on thexample: PT;-type sensor with P-controller
feedback factor, the integral tinTg and the time constaiib.

Thus, for a high feedback factor and a small integral time, the

static deviation converges to zero.

T

For the simplest example of a Piype sensor in combina-

tion with a P-controlleres®™Pis
4.3.2 Influence of static parameter variations omp 1+ KVkP[ Vie K+ Kke AV
s KVk [(1+KVkp)2 (1+KVkp)?
For a static analysis of the compensation circuit, we as- VK
sume the closed-loop system to be_ ina stea(_JIy sﬁiﬁﬁ%z N +mAkP]
Geomg(s — 0)). So far, we have considered an ideal sensitivity
: | oeanSE 1 (AK AV Ake
K for the transfer function of the compensation circuit. How- = ik kp( + — v + — o ) (21)

ever, as described in the general sensor model in Segt.
the sensitivity is usually influenced by the interference quan-To allow an easy comparison with the open-loop sensor, th
tity. Furthermore, compared to the open-loop sensor, the amdeviations which do not result from the sensor itself can be

D
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2,0 Table 7. Systematic static deviations of the closed-loop sensor for
—— p=0.01 all sensor-controller combinations.
. -=-p=01
15 . P §=1 e P Pl PID
%m 4 . PT]_ Tkpp 0 0
~— *
1,0 kg
a V \ Ry 52
g X o PT; T 0 0
° S N . AK , AV, A AK LAY, A
SV 0,5 < PT,-D NA. KV T3r| KV Tng
D . 1+K*kpﬁ l+K”ka7|
PI, PID < .
0,0Ol e ““‘i;\ﬁ‘-_‘-“i‘oo X, mAX't ) <+ X,
, K*k ) K(S)—K S ~—
P B |

Figure 12. Ratio between systematic static deviations of the closed-
loop sensor and the open-loop sensor versus the feedback factor
K*kp for a PT;-type sensor in combination with all three controller G (S)
types.g indicates diferent deviation contributions from the feed- c
back elements compared to the deviation of the sensor itself. Xc

Figure 13. Closed-loop compensation circuit where the quasi-static
summarized as a feedback deviati®fB and can generally ~sensor part is characterized by a sensitiWtydescribing the dy-
be described as a multiplg)(of the sensor deviation as namics of the drift process by a drift model.

AFB AV  Ake  AK

— = C— 22 . .
FB \% * kp P K (22) one can see that for RTand PB-type sensors in combina-
Thus, Eq. 21) becomes tion with a P-controller, the systematic deviations depend on
s the deviation contributions of the single circuit elements and
comp_  1+B AK 23) the feedback factor. However, by additional application of an

& T4 Kke K I-part (PI- or PID-controller), the systematic deviations can

Th b he relati . ic deviati Pe completely eliminated and no longer depend on the devi-
€ ratio between the relative systematic static deviation oty of the circuit elements. For a £ID-sensor in combi-

the closed-loop compensation circuit and the open-loop sen

: nation with a PI- or PID-controller, a similar behavior as dis-
sor is

cussed for the P-controller before can be observed. Here, the
™ 14p overall deviation of the output signal cannot only be tuned by
= (24) the static amplificatiol and the P-factokp, but additionally

e 1+Krke' . ! ! e
] o o ) by the integral timeT,. The smaller the integral time is, the
This ratio is illustrated in F|912 as a function of the feed- better is the resu'ting Suppression of deviations.

back factor, and of, indicating the deviation contribution
of the feedback elements. Usually, the feedback element
should be designed such that systematic deviations are muc
smaller than the deviations of the sensor itself. As can bdf the external interference quantity varies with time, the
seen from Fig12, if the feedback deviations are just 1% long-term sensor output signal shows a continuous drift even
(8 = 0.01) of the sensor deviations, a unity feedback alreadyif the dynamic sensor part is already equilibrated. The dy-
minimizes the overall deviation to 50% compared to annamics of the drift process is modeled by the transfer func-
open-loop sensor. However, if the circuit comprises highertion K(s). The application of the drift model from Eqj7)(to
feedback deviations, the feedback factor can be systematthe closed-loop compensation circuit is illustrated in Bigj.
cally increased to achieve a specified lower deviation of theThe closed-loop transfer functions according to ELp)(
output signal. If one wants to achieve a constant uncertaintyconsidering all three controller types, are calculated and
the required feedback factor linearly increases vwdthas  listed in Table8. From TableB one can observe that the unsta-
stated in Eq.Z4). ble transfer function of the open-loop sensor exhibiting drift
The ratios between the deviations of the closed-loop condin Eqg. (7) is transformed into a more complex transfer func-
figuration compared to the open-loop sensor for all sensortion. Here, the co@cients of the numerator and the denom-
controller combinations are listed in TalleFrom this table, inator can be tuned. We also find that all three closed-loop

.3.3 Influence of time-dependent parameter variations
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Table 8. Closed-loop transfer functioG4, considering a time-  Table 9. Performance index from EQ7 for drift suppression for
dependent sensitiviti instead of an ideal static sensitivitg by ~ the three controller types
application of the drift model from Eq7J to the static sensor part

(grey box in Fig.13). Performance inded
=] . —
Géé(rﬁd p(S) 2K*kpS(1+K*kp)
1
P (1+|L<:kkp)(§++£)*k - Pl 2K*kpo(1+K* kp)+2K* k| (1+K *kp)
P P
1
P K*kps?+(K*k +K*kps)s+K*k & PID 2K*kpd(1+K*kp)+2K*k; (1+K*kp)+2K* Zkpkp 62

(T+K kp) 2+ (K"K +K*kpo)s+K*k &

PID K*kp S3+(K*kp+K *kp 6)S2+(K *ky +K*kpd) s+K* k6
K*kp S3+(1+K*kp+K*kp6) 2 +(K*k; +K*kps)s+K*k &

equations foid, the transformation from the time to the fre-
guency domain is reasonable. Since we already proved sy
. tem stability for all three controller types, we can use Parse
transfer functions are exactly proper. The parameter range_ .

. L . 7 val's theorem Rewton et al. 1964 for the accomplishment
enabling a stable as well as a minimum-phase system is de-

termined according to the criteria in Sedt2 and listed in of the transformation as

TableB1. From this table one can see that the system canbe  » 1 =

operated in a broad parameter range without jeopardizing thd = | AX*(t)dt = > f |AX(s)[Pds

system stability. For the utilization of a P- or Pl-controller, 0 S

the controller parameters have to be simply positive to assure +oo

a sta_\bl_e minimum-phase sysfcem. For a PID-c_ontroIIe_r, the — ifAX(s)AX(—s)ds 27)
restrictions seem more complicated. However, if one simpli- 2r )

fies the expression arising from the Routh table, one finds

that again all of the stated requirements are met for posiwith

tive controller parameterkg, k, kp > 0) independent of the 1 1
drift-rate (see SecB1 in AppendixB). In this sense, stabil- AX(s) 1+ KSVG. s
ity directly involves a system without drift, because a system S ¢ 1
exhibiting drift is a priori unstable. This can be shown by _ kotkis+..+kaS”
calculating the steady state behavior of the output sigaal ( lo+11S+... +I; s

considering a unit step input according to Etg)(as according to the system structure in Fig for a unit step
. . input. The explicit general solution of this integral uprte

Xe(c0) = t"_,rgo Xo(t) = Q_%Gggmp(s) =1 (29) 1(? can be fou%d irNgewton etal(1964. The insegrtion g; the
) _ respective controller transfer function into EQ8) gives the

and is valid for all three controller types. One can see thatcompensation deviationX(s), as stated in Tabl®2. The
the output signal of the closed-loop system is constant at thgq|,tion of the integral according to EcR®) and Newton
steady state for all three controller types, whereas the outpug; 4. (1964, respectively, leads to the quality criterafor

signal of the open-loop sensor diverges to infinity (cp. B)d.  the three controller types as given in Tablécp. SectB2).
To enable a quantitative comparison of the quality of drift prom Tableg it is obvious that the equation

suppression for the threeftéirent controller types in depen-

dence on the controller parameters, the use of a global perédJ
formance index is reasonable. A performance index, whichak,
is easy to handle and meaningful at the same time, is the In-

tegral Square Error (ISENewton et al, 1964 which can be cannot be explicitly satisfied. No local minimum in depen-
written in the time domain as dence of the controller parameters can be found because t

first derivatives §J/0kp, 0J/0k;, 0J/0kp) only converge to
zero for infinitely large controller parametets(k;, kp —

%0 (28)

s

0, with k € {ke, ki, ko) (29)

00

J= foz(t)dt. (26) o0). This is not in contradiction to the stability requirements
5 and means that the drift suppression capability of the re
spective controller type is only restricted by practical limi-

Here, Ax(t) is the diference between the input step= tations of the controller parameters. To exemplarily illustrate

1(t) and the actual sensor output signal (cp. Fig. 13).  the drift suppression of the closed-loop sensor fdiedent
This integral is a function of the controller parametérs  controller types, the sensor step responses for selected cg
f(ke.ki, ko). The requirement for best drift suppression is that rg|ler parameters as well as the performance inditas a
Jis as small as possible]é min). For a quantitative eval- function of the respective controller parameter are illustrate
uation of this requirement and to get reasonable analyticain Fig. 14. From Fig.14 (left) it can be observed that when
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Figure 14. Step response of the closed-loop sensor for selected controller parameters (left) and ISE performance index as a function of the
respective controller parameter (all other parameters are fixed) (right)(8rRxcontroller,(b) Pl-controller, andc) PID-controller. The
light gray region indicates a tolerance bandtdf% of the steady state value. For all graphs a drift raig-efl s* was considered.

the system experiences an input step, it instantaneously folsolely due to the closed-loop sensor structure. However, tun-
lows this step to a certain extent until it is damped and con-ing of the feedback factor leads to a faster accomplishment of
verges to unity. The higher the respective controller paramthe steady state. The I-part shows less influence on the over-
eter is, the less damping can be observed. Furthermore, thal drift suppression but can nevertheless be used to improve
steady state is reached even earlier. Here, reaching the steathe time to reach equilibrium. For sm#lan overshoot can
state means that the sensor signal sets in into a tolerandge observed due to the zeros of the numerator in the trans-
band of+1 % of x.(t) = 1 (gray region) and does not leave fer function (Fig.14b, left). However, for increasing, this

it anymore. This trend also reflects in the ISE performanceovershoot decreases. For a PID-controller (i, right),

indices in Fig.14 (right). Here, generallyl is minimized for

the influence of the I-part is more pronounced than that of

increasing controller parameters. Moreover, with increasingthe D-part. Both parts show higher influences for small feed-

controller complexity,) is additionally minimized. However,

back factors. However, for increasing feedback factors, the

it can be seen that the P-part has the strongest influence on thefluence of these parts decreases and becomes negligible for
quality of drift suppression. It is noteworthy that even a feed-very high feedback factors. The |- and the D-part however
back factor ofK*kp = 1 leads to a complete drift-suppression influence the signal characteristics. The D-part even leads

J. Sens. Sens. Syst., 1, 5-27, 2012
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to decaying oscillations within the tolerance band (Hid, élin(s)

left), which is not an aspired behavior. Thus, we can con- X AX mco----------
clude that the use of a P-controller with high feedback gain_ O L[ Aiin ] | |

can satisfactorily fulfill the demand of drift suppression. A f(AX’ t) G 4 G
Pl-controller is recommendable, if a faster accomplishment
of the steady state is aspired, or if the feedback factor cannot
be increased due to technical limitations. However, the use of
a PID-controller is basically possible but would not be very
convenient.

e m e — e ———————-

Figure 15. Hammerstein model of a nonlinear sensor in closed
loop configuration. The model comprises a static nonlinear part
ahead of a linear dynamic subsystéﬁi‘. The linear subsystem
4.3.4 Non-linearities and hysteresis is composed of the linear time-invariant part of the sensor trang

. . N . . fer function as well as the linear amplifier and controller transfer
Even if engineering in measurement science aims at a prefetg

. . unctions.
ably linear system behavior, almost all sensors show non-
linearities to some extent in a certain output signal range.
It is known that a non-linearity of a sensor in closed-loop in such a way that a specific stability criterion is fulfilled
operation is linearized to a certain extent due to the actuawithout consideration of the nonlinear part. Various stability

operation around a reference working point as criteria do exist for this class of systems, e.qg. circle criterion
or Popov’s criterion $lotine and Lj 1991, Khalil, 1992).
Xiet =& <V - Xo < Xref + &, (30) Sensors exhibiting hysteresis are also nonlinear systen|

wherease is kept minimal due to the feedback structure. . .
Hence, in general, a sensor operated by the compensi—'owever' phenomenologically, the output signal of the corg

tion method will show linearized input—output characteristics sensor element; is kept at a quasi-static state around 3

compared to the same sensor operated in deflection metho(%efferenceiworkrl]ng pomF due.tcl) the. fee(ibackdstrgctu.re (Sf
However, this may not be valid for all sensors operated by g.30). Since hysteresis mainly arises from dissipative ef

the compensation method or may just be valid for a lim.- fects like inner friction inside the core sensor element or larg

ited input signal range. Here, a nonlinear system descripf"mpl'tUdes (e.g. plastic deformation of a spring element un

tion can be used because a simple nonlinear model may proqer. load), tkr‘]egefﬁr:acts are grgatly suppressed.bhy thehcompen
vide better approximations of the sensor behavior over arpation method when assuming an actuator without hysteres

expanded range of operation than linear models. Despite the

existence of a nonlinear sensor part, the application of lin-4-4 Dynamic system behavior

ear corjtrollers can be possible..We assume tha}t the SensQr, 1 Response time

dynamics can be decomposed into a static or time-varying

nonlinear functionf and a linear dynamic part, which is In general, the sensor response time of any sensor-type
described by transfer function. For this system descriptiondetermined by the poles of its transfer function. In the sim;
two system models, i.e. the Wiener model and the Hammerplest case, only one pole, and thus only one time constar
stein model, are widely used because of their simplicity andexists. However, for higher-order transfer functions, severg

physical meaning. Both models can be used to approximatgoles do exist. The pole that is located nearest to the imagj

a wide range of nonlinear dynamic systerfafendra and nary axis in the LOH is dominant and determines the time tg
Gallman 1966. The Hammerstein model applied to a non- reach equilibrium. The condition for response time reductior
linear sensor in closed-loop configuration is shown in Efy. s that the dominant pole of the closed-loop system is locate,
A Wiener model has the reverse system structure where thé the LOH relative to the dominant pole of the open-loop
linear dynamic part is followed by the nonlinear part. Oc- sensor
casionally, combined models with Wiener-Hammerstein or _, com
Hammerstein-Wiener structure are also used. The syster?\r{{Sp < %{ﬁeﬂ} (31)

identification and assignment to one of the above models igs schematically shown in Fi@i6. As apparent from Tablé,
an intensive research field, which has to be considered sefne denominator cdgcients of all transfer functions depend
arately and is beyond the scope of this work. However, alsayn the controller parameters. This directly implies that in

has to be assured for all operating conditions. If an exist-imits by tuning the controller parameters.

ing sensor can be approximated by one of the above models,

the st.ablht_y O.f the closed-loop system can b?. achleveq 'f.theExampIe: PT,-type sensor with P-controller
non-linearity is bounded by a Lipschitz condition or satisfies
an appropriate sector condition. The basic idea is to deterThe best accessible example to understand the influence
mine the controller parameters which are include@ih(s) the closed-loop feedback structure on the sensor respon
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or higher), the analytical determination of the poles becomes

epiesysem A Im{sl;nStabIe system more demanding. At order two a caséfehie_ntiation has to
be made. For order three a general analytical solution is still

response time | response time possible but not trivial and may not lead to valuable practical
[edustion | Increase conclusions. Therefore, to check the feasibility of a response

time reduction and to verify the influence of thé&drent con-
troller types on the response time of the closed-loop system,

So )‘(I’ - we use a similar method as already used to proof system sta-

Re{s} bility. This method verifies which requirements have to be
fulfilled, so that all poles of the closed-loop transfer function
are placed in the LOH relative to the dominant pole of the
respective open-loop transfer function. This directly implies
a response time reduction. The steps required to accomplish
this are:

Figure 16. Representation of the complex Gauss plane exhibiting — The determination of the dominant poles of the open-
the real part of the dominant poles*" of the open-loop sensor loop transfer functionss)®" and its real partsr =
and the LOH relative to this pole (gray region). The dominant pole %{$eﬂ}_
s " of the closed-loop sensor has to be located in this half plane to
enable a response time reduction according to &. ( — The redevelopment of the denominator polynomials
, Dcomy(S) Of the closed-loop transfer functions at point
s=r into the new polynomiaDg,y,(S) = dy+dj (s—r)+

. . o . ...+ d.(s—r)" using the Horner scheme.
time is the combination of a Ritype sensor with a P- + o ) g

controller. If one rearranges the respective transfer function _ The evaluation of the cdicientsd, ... df, by applica-

from Table4, one gets tion of the Stodola condition and additional application
K*Kp 1 Keomp of the Routh criterion (fon > 2) to chomptq evaluate if
Geomd(9) = : = 32 all poles of the closed-loop transfer functions are placed
1+Kkp 1 T 1+sT U
* STk comp left of s=r (cp. gray region in Figl6).
with — The extraction of the controller parameters required to
T meet these conditions.

Tcomp: mp (33)
A detailed example of this procedure can be found in Ap-

From Eqg. 82) one can observe that the closed-loop systempendix C. In Table 10, the dominant time constants of the
is also a first-order system, however with a modified time open-loop sensor as well as the parameter requirements for
constantl¢comp This time constant depends on the impresseda response time reduction for all sensor controller combina-
time constan® of the open-loop sensor itself and inversely tions are proposed. From this table it can be seen that the ap-
on the feedback factor. Thu$, is reduced toTlcomp by the plication of the compensation method can lead to a decisive
factor (1/(K*kp)) and converges to zero fét*kp — 0. The  response time reduction. For a £fiype sensor, the require-
time-dependent sensor output signal for a unit step input ofments are clear and simple. For higher order sensor types, the
the open-loop Pitype sensor as well as the closed-loop sen-requirements become more complex. However, in general it
sor comprising a P-controller are shown in Flga for dif- can be observed that always one controller parameter only
ferent feedback factors. depends on the parameters of the open-loop sensor or has

From Fig.17a, one can observe the influence dfglient  to be simply positive. The remaining controller parameters
feedback factors on the sensor response time and on the statiepend on the respective other controller parameters as well
control deviation, as discussed in SetB.1 It is notewor-  and cannot be chosen individually. This can be exemplarily
thy that even a unity feedback leads to a minimization of seen for the closed-loop time constant of a®ype sensor
the closed-loop response time of 50 %, which can be seein combination with a Pl-controller in Fid.8. Here, the re-
in Fig. 17b. Here, the normalized closed-loop time constantquirements from Tabl&O0 are illustrated. It can be observed
is illustrated as a function of the feedback factor. Higc that a response time reduction is only possible if the feed-
schematically illustrates thdfect of the feedback structure back factor amounts td*kp > 1 and if the integral tim& is
on the pole location of the closed-loop sensor. smaller than the time constahtof the open-loop sensor. The

For the combination of more complex controller and sen-smaller the integral time is, the better response time reduction
sor types, the transfer functions also become more complexcan be achieved. However, for evefykp, a T, exists where
Hence, for denominator polynomials of increasing order (twothe response time becomes minimal. These minimum points
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Table 10. Dominant time constant$l{r|) of the three dierent sensor types as well as the requirements (parameter range) for a resp
time reduction of the closed-loop sensor for all considered sensor-controller combinations.

Open-loop sensor

Closed-loop sensor

Sensor Dominant P Pl PID
type time constant
1/r]
I:PTy T ke >0 ke > &, ko> & + 22
K K
k> k>-f5°
ko> - °
Il PT,
. 2T 2_4 K
(1)(,0S2 71 — - kP>iK*+¥z|—_f
K > @K ke?ed) oo
8K* Ty 4T12
ko > £
2K [k T3-kp T (1+K*kp)+oK*k2] 0c
TI6T1-2}"kp) >
. 2Ty o\ p2—4-p2+4 T1(p V2 —4-¢2+4)+K kp (20-2 V92 -4)
(Qe>2 Y ke >0 kp > om— ke > o
k‘”(w S”274) keT1 (o Vo) +ko (o Ve?—d—p2+2
K > k|>p1(w— <ﬁ—)+3(¥7 p2—4-¢°+2)
2Ty 21?2
T1(p-3Ve2-4)
0> ko > =
2K*kp \/p2-4-2K*K Ty K22 (2 V02~ 4-20) +K*kp (4¢P ~dp V2 4-14)T 1 -2K"K T3+
3Vy2-4-¢ T1(3T1 Ve2-4-¢T1+2K*kp)
+2Vp2-4(p?-3)-243+8¢ ~0¢ 2K kpT2 Vg2 -4+ 2K kpkp T1+T2[ Vg2 -4(22-6)+8p-24%] ~0¢
I: PT,-D
. 2T K
Q) e<2: 71 N.A. ke >0 kp>V’T—1D
20K kpT3+T1(0%—4) K* (2¢kpT1—¢%kp) T3+ T2(p?—4)
ki > AK*T1T3 ki > 4K*T12Ty
TZ
1 b
ko > — =
@) > 2: pa) NA Ko > — L Ve?-4 ko > Kol Ve?-4)T3-T2 Ve?-4
L4 : R e K*T3 K T1T3
K > kp(e— Vie2-4) K > kete Ve2-A)T1+ko (0 Ve?-4-0?+2)
2T, | a1
TZ
i b
ko > KT

@ This condition is only valid for positivé due to the stability requirement.
b This condition is automatically fulfilled due to the stability requirement.
¢ This condition results from the application of the Routh criterion.
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Figure 17. Influence of compensation method (&) step response of an open-loop sensor (solid lineYferls and a closed-loop sensor
(interrupted lines) for dierent feedback factoréh) normalized response time of a closed-loop sensor versus feedback fersehematic
illustration of the pole-zero map indicating the pole shift due to the system’s feedback structure for compensation. The gray region indicates
where a response time reduction is achieved.

controller combinations on many parameters, a graphical il-
'\ lustration is not possible. Therefore, the controller parame-
Tt P ters enabling a response time reduction have to be calculated
. \ o P for a specific problem. Subsequently, it has to be checked
M E - =Kk, =5 _ that the obtained parameter range is a subset of the parame-
= RY -« - Kk, =50 ter range for a stable minimum-phase system.

207y

e 4.4.2 Output signal characteristics

\.-- S I While the response time is determined by the poles of the
. ° 5 transfer function, the zeros of the numerator influence the
0,0 +——— PN s T signal characteristics, i.e. overshoot or undershoot of the step
1 10 100 response can occur. With the requirement of a minimum-
T/TI phase system, we already excluded the possibility of an in-
verse sensor response, i.e. undershoot. However, the loca-
Figure 18. Normalized response time of the closed-loop®fpe  tion of the zeros with respect to the pole location determines
sensor using a Pl-controller versus integral time. The gray regiorwhether the step response shows no maximum, one max-
indicates where a response time reduction is achieved. imum or even several maxima before settling at the final
steady state. For a proper sensor behavior, a step response
which attains the final steady state as fast as possible, and
hence shows no maximum, is convenient. This is only possi-
ble if the transfer function only contains real poles and zeros.
The evaluation can be done best by rearranging the general
transfer function from EqJ() in its pole-zero representation
as

are indicated by the locus (small-dotted line). A further min-
imization of T, will only lead to an under-damped oscillatory
system but not to a further response time reduction.

For the PB-type and the PFD-type sensor, two dier-
ent cases according to the pole location were considered:

(1) ¢ =To/T1 <2 (real double pole or a complex conju- Geomds = Cn (S S03) - (S= So7) .- (S= Som)

gate pole pair), and (2) = T»/T1 > 2 (two real poles). Note d/“ (S=%1) (5= p2) - (S~ Spn)
that the combination of Rftype sensor, which is critically- _ G (1+Th) (T+Tng) ... (1+ Tim) (34)
damped ¢ = 2) or under-dampedy(< 2) with a P- or PI- dy (L+Tp1)- (1+Tp2) ...  (1+ Tom)’

controller, will never lead to a response time reduction. Only

the response time of over-damped systegts @) can be re-  with

duced using these controller types. However, the application

of a PID-controller overcomes this limitation. Due to the de- 1 1
pendence of all the specific requirements of all the sensof% = T Spr = TTo

(35)
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For further considerations, we assume the time constants to —
be ordered by size as

TN12TN22...ZTNﬂ,y=1,..., m,
Tp12>2Tpp>...2Tp,, v=1,..., n. (36)

A step response without overshoot (no maximum) is possible For a sensor operated with the compensation method, th
if all time constants are real and every numerator time con+ollowing conclusions can be drawn:

stantTy, is smaller than the corresponding denominator time
constanfTp,.

Therefore, the controller parameters have to be chosen
such that the above requirement is fulfilled. Consequently,
a transfer function exhibiting only real poles and no zeros
never shows an overshoot of its step response. Note that
changing the numerator time constants also changes the de-
nominator time constants, because they depend on each other
via the controller parameters and cannot be changed individ- —
ually.

5 Conclusions and summary

Based on a general sensor model, both the deflection and
the compensation method have been described and compared_
in a general systematic fashion. A system-based approach
was applied with regard to important figures of merit of sen-
sor technology. In particular, the quasi-static sensor behav-
ior comprising systematic static variations of the sensitivity,
long-term drift @fects as well as the dynamic sensor behav-
ior, i.e. response time and output signal characteristics, has —
been described. Three sensor types, i.e-FHT,-, and PB-
D-type sensors, which cover most of the existing sensors,
were analyzed concerning both measurement methods.

In conclusion, for a sensor operated with the deflection
method the following applies:

— A static sensitivity change of the sensor due to an exter-
nal interference quantity directly influences the sensor
output signal.

— Quasi-static sensitivity changes, i.e. long-term drift ef-
fects, lead to a continuous infinite increase of the output
signal, whereas an explicit assignment of the input sig-
nal to the output signal is not possible without additional
stipulations.

— The response time is impressed by the sensor princi-
ple and the sensor material properties, as well as by -
the underlying physical phenomena, respectively. This
directly reflects in the cdBcients of the denominator
polynomial of the respective transfer function.

— For the transfer functions studied, the output signal
characteristics is in direct correlation with the response
time of the sensor, and thus just determined by the de-
nominator co#icients.

WWww.j-sens-sens-syst.net/1/5/2012/
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For the operation of the sensor, a detailed understandir

of the sensor structure or sensor modelling is not neces

sary. Only sensor calibration is necessary.

The system complexity is relatively low compared to the
compensation method.

A sensor operated with the compensation method cor}-

stitutes a feedback system as known from feedbac
loops in automatic control.

measuring signal is the compensation quantity, i.e. th
output signal of a controllgaictuator unit.

Like for every feedback loop system, system stability|
plays a decisive role and has to be assured for all sens
operation conditions.

For the studied closed-loop sensor transfer functions
stability and additional minimum-phase behavior is as-
sured for the set of positive controller parameters.

Static sensitivity changes of the core sensor element dy
to an external interference quantity are suppressed b
the static gain of the feedback elements. Thus, the influ

ence on the output signal is only marginal, and for some

sensor controller combinations even zero.

Sensors exhibiting long-term driftffects can be sta-

the steady state. This is even possible with a simp
unity feedback. P- and PI-controllers have been foun
to be most suitable for drift suppression, whereas a PID
controller is less adequate.

bilized, so that a constant output signal is achieved }5{
I

Non-linearities of a sensor in closed-loop operation are

linearized to a certain extent due to the actual operatio
around a reference working point. A sensor operate
by the compensation method shows linearized input
output characteristics compared to the same sensor o
erated in deflection method when assuming a linear ag
tuator.

A sensor exhibiting nonlinear behavior can be operate
with the compensation method by using linear standar
controllers.

The poles of the closed-loop sensor transfer functio
can be tuned by the controller parameters. In princi;
ple, the response time can be decisively reduced con
pared to an open-loop sensor. The requirements for
response time reduction have been calculated for a
sensor-controller combinations. However, for a,PT
type sensor with a real double pole or a complex conju
gate pole pair, a response time reduction is not possibl
with a P- or Pl-controller.

J. Sens. Sens. Syst., 1, 5-27, 2012
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— The output signal characteristics depends on the locaFrom these two new lines again further lines can be cal-
tion of the zeros with respect to the location of the poles.culated. Note that the last déieient in the Routh table
However, both zeros and poles are a function of the conimatches the absolute term of the denominator polynomial
troller parameters and cannot be set separately. Dcomp: i-€. jn-1 = do.

- Tq determine the optimized controller parameters, a _de'The Routh criterion is:
tailed model of the core sensor element and all possible
peripheral devices must exist, which makes the senso

The characteristi | iaD f the closed-
design more demanding. e characteristic polynomiaD¢omy(s) © e close

loop transfer function with positive cfiecients d, (v =

— Compared to the deflection method, the application of0,1,2,...,n) describes an asymptotic stable system, if and
the compensation method results in a higher Systenpnly if all coeficients in the first column of the Routh table
complexity due to the necessity of additional devicesare positive:
like a controller and actuator. €r-1>0,f1>0,....0n-1>0,hp1>0,in-1>0,jp1>0.

Appendix A Example: PT,-type sensor with PID-controller

o o As shown in Tablet, the denominator polynomial is
Application of the Routh criterion Deomg(9) = lesg+ (To+ K*kp) S + (1 + K*kp)s+ K*k;.

. . . . Therefore, th mplete Routh table r :
To evaluate the dficient condition for asymptotic stability erefore, the complete Routh table reads

of a closed-loop transfer function with denominator degree 3: Tf (1+K*kp) O
three or higher, the positive cigientsd, (v=0,1,2,...,n) 5 T+ K* K 0
of the denominatobcom(S) have to be arranged in the first : (T2 + K'kp) K
two lines of the Routh table as follow&antmacherl959: L | mcaio-Tic o
n: dn dn_z dn_4 0 ' To+Kko
(n-1): | dh-g Ghg Ghs - O 0: K"k
N-2):| €1 €2 €3 - 0 o
En_3;: fn—i fn_z fn—i 0 Therefore, the Routh criterion is: ,
T2>0, (T2+K*ko) > 0, Kk > 0, (1+ K*kp) - 1y > 0.
. . . . The first three requirements are already fulfilled by the nec-
3: Ori G2 O essary condition that all céiecients of the denominator poly-
2: hn1 hno 0 nomial have to be positive. Therefore, the third requirement
1: in_1 0 can be regarded as realfBcient condition that must be ad-
0 jno1 ditionally considered to guarantee system stability.

The codficientse,_1, €2, €13, ... in the third line result Appendix B

from the cross product of lines one and two: L
P Closed-loop sensor with time-dependent parameter

On-10h 2 — dndn3 variations
en—l d—,
n-1
dn10h_a — dndn_s B1 Parameter range for stability and a minimum-phase
€2 = a1 ’ system for a drift-afflicted sensor
&3 = On-10h-6 — Gndh-7 The parameter range to assure a BIBO-stable and a
Oh-1 minimum-phase system for the transfer functions in T&ble

The calculation of the e-values is carried out until all remain-in Sect4.3.3are listed below in TablB1. For the utilization
ing values are zero. The calculation of the f-values is carriedof a PID-controller, the stability requirement arising from the

out analogous with the two overlying lines as: Routh criterion can be rewritten as
_ ki K*k
f, = Satha—dnaho o + K + K koked + -1 + 6""’ K koks > K kok.
€1
f €10 50Oy 1603 From this description it can be easily seen that the inequation
n-2 = €1 ’ is fulfilled if the controller parameters are positive. Thus, the

€n-10h-7—dn1604 closed-loop sensor system — comprising a PID controller —is

fhs = €1 v stable if all controller parameters are positive.
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Table B1.Combined parameter range guaranteeing system
stability and a minimum-phase system for a driftiated sensor
with linear drift.

Parameter range for a BIBO stable and
minimum-phase system

kp >0

ke >0,k >0

ko>~ and ke > —ko6, ki > 0,ko > 0
K(ke+ %) > mresis

1+Kkp+Kkpd
* This requirement results from the application of the Routh
criterion.

Pl
PID

B2 ISE quality criteria for the different controller types

Based on the cdicients of the numerator and denomina-
tor polynomial of the compensation deviatiaix(s), the ISE
quality criteria for the dierent controller types can be calcu-
lated according to TablB2.

Appendix C

Redevelopment of the denominator polynomial

As a representative practical example of the method of the
redevelopment of the denominator polynomial to verify the ~2
possibility of a response time reduction, the combination of adit
PT,-sensor with a Pl-controller shall be used. This is accom-

plished using the steps described in Séct.1

1. Determination of the dominant pole of the
open-loop sensor

The dominant pole is

~To+ |[T2-4T2

212

(C1)

Sgeﬂ _

For the determination of the real part, a casgedéntiation
has to be made:

Tz T, o
1p=—=<2: = G A 2
De=g<2:n Ris o = T (C2)

T, ; ~Ty+ [T2-4T2
p==>2:1=R{g"} =
@) T, 2=R{" 272

o+ p?-4
= o, . (C3)
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2. Redevelopment of the denominator polynomial of the
closed-loop sensor at point s=r

According to Table4, the denominator polynomial of the
closed-loop transfer function is

Deomp(9) = T?S> + To& + (1 + K*kp)s+ K*k;. (C4)

The application of the Horner scheme to EG4) leads to
the general representation of the redeveloped polynomial
points=r as
Dbome(S) = r+K*(rkp+k) +r3TZ + 17T,
+(2rT2+3r%T2 + K'kp + 1)(s—T)

+(T2+ 3TH)(s—r)?

+T2(s-r) (C5)
3. Evaluation of the polynomial coefficients
The resulting polynomial cdcientsd(,...,d; of the rede-

veloped polynomial are now calculated for the twéalient
cases. Furthermore, the Stodola conditifjn-0,...,d; >0
is applied to calculate the resulting controller parameters.
Q)r=rq:

8Kk Ty~ 4K ko +¢ —4p

di =
0 8T,
4K Kkp — 92 + 4
Ty
= -2 =50
2 >
= T?>0 (C6)

From the evalutaion of the parameters it can be easily see
thatd > 0 can never be fulfilled. Thus, the Stodola condition
is not satisfied. Consequently, a response time reduction
not possible for this case. Hence, further evaluation of th
Routh criterion is not necessary.

2)r=ry:
qz = K* (2K T1 + kp vp? — 4 — pkp)
;= >0
AR
gr = Kke-oVeP-d+e?-4
1 - 2 >
g - Bve-4-9)
2
d? = T2>0 (C7)

The Routh criterion according to Appendican be written
as

2
0

2
3

d;z -5 >0, (C8)
2
and rewritten as
-2K*k T 2_A(2K*kp+20%—6)—243+8
ki T1+ @2 =4 (2K Kp+2¢°—6)—2¢°+ % 0. (C9)

3Vp?-d—¢
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Table B2. Compensation deviationX(s) as a function of the controller parameters for the three controller types and the rules for the
calculation of the ISE performance ind&according taNewton et al(1964).

AX(9) Performance inded
P 1 ~ _ko i

(TrKkp)StK kpd = Totiis Zolr
Pl S ~  kotkis k%|0+k§|2

(1+K*kp)S2+(K*k +K *kps)s+K *k; § T g+l st s? 2lgl1lo
PID ~ ko+kis K2lol1 +(K2—2koko)lol3+k31 213

S o
K*kp S3+(1+K*kp+K*kp 6)s2+(K*kj +K*kpd) s+ K* ki & T g+l st +3s3 2lgl3(I112-Tol3)

The conditionT? > 0 is automatically fulfilled. The remain-
ing inequations can now be solved ferand the respective
controller parametells, k;, as stated in Tabl&O.
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