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Abstract. In measurement science and engineering, the method of compensation plays a decisive role and is
widely used in practical applications, in particular for sensors and measurement systems, where high accuracy
is required. However, a general theoretical system description of this method with particular respect to figures
of merit in sensor technology does not exist yet. Nevertheless, this is important for a real understanding of the
system’s structure and its properties and would facilitate prospective sensor design. Within this work, we pro-
vide a general system-based description and comparison of both the compensation and the deflection method.
Based on a general sensor model and selected transfer functions, which cover most sensor types, important
sensor properties like static deviations in sensitivity, long-term drift effects, response time, output signal char-
acteristics as well as nonlinearities and hysteresis are studied in a systematic fashion for both measurement
methods. In the case of a compensation method, the core sensor element is part of a controlled closed-loop
system, leading to different system properties compared to an open-loop sensor operated in deflection method.
The influence of linear standard controllers, which are widely used in industrial measurement and control sys-
tems, is studied with respect to the sensor properties. In the conclusions we will summarize which controller
type is appropriate for the attainment of a specifically targeted sensor behavior.

1 Introduction

“The history of science is the history of measurement” (Cat-
tell, 1893). Even though claimed by a psychologist in the late
19th century, the validity of this statement in the fields of sci-
ence and engineering is unchallenged. Measurement technol-
ogy has explosively developed, and is still immensely grow-
ing, with an almost unmanageable diversity of complex sen-
sors and measurement systems. Despite this variety and in-
cessant new developments, the improvement of existing sen-
sor concepts has always been of high interest. In almost every
field of sensors, improvements regarding accuracy, repeata-
bility, drift and hysteresis compensation, error proneness, re-
sponse time and many more are highly desirable, regardless
of the specific sensor principle. Usually, the sensor proper-
ties of a specific sensor depend on the transducer principle,
the sensor material properties and the measurand. In general,
sensors can be operated using different measurement meth-

ods (ISO/IEC Guide 99, 2007). Nowadays, most sensors use
the deflection method where the sensor output signal is a
direct measure of the input signal. This method comprises
the lowest demand in terms of system complexity, but on the
other hand the sensor output signal is directly determined by
the sensor properties, leading to a pre-determined, but often
insufficient sensor performance for specific applications.

A different method known in measurement technology
is the method of compensation. Possibly the most promi-
nent example is the mechanical beam balance (Dyer, 2001,
p. 302), where the beam angle is altered by the addition
of a sample weight into one tray and subsequently restored
by adding of the same weight to the other tray, resulting in
a balanced null-deflection state of the beam. The counter-
weight can be determined more precisely than the beam an-
gle, which leads to an overall higher measurement precision
compared to the deflection method. In general, the compen-
sation method can be applied to a wide range of sensors,
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Figure 1. Simplified schematic illustration of the principle of oper-
ation of(a) the deflection method and(b) the compensation method.
The spring represents an arbitrary transducer, whereas the mass of
the weight generally represents the input signal.

Table 1. Elementary comparison between deflection method and
compensation method in measurement.

Deflection method Compensation method

System model Xi XoGs

Xi Xc- Gs

~

Input MeasurandXi MeasurandXi

(e.g. forceF)

Output signalXo compensation quantityXc

(e.g. output voltage) (e. g. force)

Sensitivity Sdefl =

∣∣∣∣∣Xo

Xi

∣∣∣∣∣ = |Gs| Scomp=

∣∣∣∣∣Xc

Xi

∣∣∣∣∣ = ∣∣∣∣∣ G̃s

1+ G̃s

∣∣∣∣∣

almost irrespective of the sensor principle. However, the ap-
plicability of this method implies the existence of an actu-
ator unit (Fig.1) which is able to physically generate the
compensation quantity. In this method, the actual sensor out-
put signal is measured, subtracted from a reference value,
and the difference is fed back to the sensor input via a con-
troller/actuator unit, until the difference between output sig-
nal and reference value reaches zero. Thus, the static sen-
sor output signal remains constant for changes in the input
signal. Nevertheless, the “force” provided by the actuator
needed to maintain this balanced state is directly related to
the input signal. Compared to the deflection method, which is
an open-loop configuration, a sensor operated with the com-
pensation method is a closed-loop system. This leads to dif-
ferent system properties solely due to the feedback structure
as outlined in Table1. Furthermore, because of the perpet-
uation of the balanced “undeflected” state, the sensor prop-
erties negligibly contribute to the overall system behavior,
leading to smaller measurement uncertainties and hence to
better measurement results. Additionally, the properties of
the feedback loop can be set and tuned systematically. This is
the reason why the compensation method is used in particular
in technical applications with high-precision requirements or
expanded operation fields, like precision balances (Krause,

2005), AFMs (in constant force mode) (Bhushan, 2005),
broadband lambda probes (Bosch GmbH, 2010), hot-wire
anemometers (in constant temperature operation) (Finger-
son and Freymuth, 1996; Tavoularis, 2005), MEMS-based
accelerometers (Che and Oh, 1996; Stuart-Watson and Tap-
son, 2004), continous non-invasive blood pressure monitor-
ing (Fortina et al., 2006), or even in hydrogel-based sen-
sors very recently (Schulz et al., 2011) (see Sect.2). De-
spite the potential benefits of the compensation method in
current and future measurement technology, surprisingly, no
general theoretical description of the properties of a sensor
operated with the compensation method is available. In par-
ticular, theoretical considerations concerning the properties
of such sensors with respect to particular requirements in
sensor technology like high sensitivity, fast response time,
robustness against long-term instabilities of the core sensor
element (seegs in Fig. 6) do not exist to our knowledge.
Mostly, books on measurement science just refer to the com-
pensation method very briefly without any theoretical as-
pects or mathematical formulations at all (Webster, 1999;
Dyer, 2001; Klaassen, 2002; Bakshi and Bakshi, 2009; Pro-
fos and Pfeifer, 1994; Hoffmann, 2007; Lerch, 2011) or even
ignore it (Gosh, 2009; Niebuhr and Lindner, 2002). How-
ever, some authors have shown system-based calculations for
a specific application. In the work of Krause (Krause, 2004,
2005), a comparison between the deflection and the compen-
sation method specifically applied to a precision balance is
accomplished. InKiencke and Eger(2008), a system-based
approach considering selected aspects of the compensation
method is outlined briefly. Moreover, the cited references ap-
peared in German and are thus not accessible to an interna-
tional readership. Hence, a systematic general system-based
description with particular respect to important sensor trans-
fer functions, sensor behavior, and sensor properties for prac-
tical applications cannot be found in the current literature.

This paper aims at a theoretical description of the com-
pensation method in sensor technology. A system-based ap-
proach is used to describe both the deflection and the com-
pensation method. The goal of this study is a general un-
derstanding of the system behavior of a closed-loop sen-
sor and to draw specific conclusions for system design
and properties toward realization of high sensitivity, sup-
pression of static systematic deviations, fast response, in-
dependence of interfering and long-term drift effects like
material drift/relaxation and aging. The influence of three
different linear standard controller-types, i.e. Proportional
(P), Proportional-Integral (PI), and Proportional-Integral-
Derivative (PID), on the system behavior is studied. Con-
clusions are drawn regarding which controller type should
be applied for realizing specific sensor properties. The sys-
tem analysis is carried out in the frequency domain, but is
transformed back to the time domain at certain points for
better understanding, illustration, and interpretation. At first,
a general sensor model is introduced, and different transfer
functions, which mainly cover the transfer characteristics of
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current sensors, are proposed. The modified system structure,
which results from the feedback for compensation, is shown
and the resulting transfer functions are calculated. These
transfer functions are systematically analyzed with respect
to certain sensor properties mentioned above. The resulting
sensor output signal of the compensated sensor is shown in
dependence on the controller parameters.

2 Compensation method in current sensor
applications

In this section, a very brief review of the use of the compen-
sation method in selected current sensor applications shall be
given. Mainly, this section is to show that the compensation
method can be applied to a broad range of sensor principles.
Therefore, selected sensor principles from different fields of
application are introduced, and the advantages due to com-
pensation are briefly presented. However, a detailed review
or extended description of the respective measurement prin-
ciples are beyond the scope of this work.

2.1 Electrodynamic precision balance

This balance principle is exceedingly widely used and is ap-
plied to measurement problems requiring very high preci-
sion. The basic working principle is schematically shown in
Fig. 2. If a massm is applied to the tray, the beam deflects.
This deflectionxc is detected by an optical position sensor.
The coil currentIc generates the forceFc at the lever and is
adjusted by the electronic controller in such a way that the
deflectionxc in the steady state is zero. Hence, the voltage
VM at the resistorRM is proportional to the coil current, and
thus, to the applied massm. The coil current can be set up far
more precisely than the beam deflection can be measured.
Therefore, weights can be determined with high precision.
Furthermore, the beam is quasi-undeflected during the en-
tire measuring process. A mechanical deficient or indifferent
beam is stabilized by the electronic feedback. Consequently,
the mechanical properties of the beam will negligibly affect
the measurement process (Ştef̌anescu, 2011).

2.2 Atomic force microscope in constant force mode

The atomic force microscope (AFM) ranks among the most
versatile methods for the imaging of nanoscale structures in
micro/nano electronics or molecular biology, nanomanipula-
tion, and nanoassembly (Bhushan, 2005). Basically, a sharp
tip on a flexible cantilever is brought into close proximity
to the sample surface, as schematically illustrated in Fig.3.
The resulting interaction between the tip and the sample sur-
face causes a deflectiond of the cantilever. This deflection
is detected by measuring the reflection of a laser spot off of
the backside of the cantilever using a four quadrant photo
detector. For an undeflected cantilever, ideally, the spot is
detected in the center of the detector. A movement of the
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Figure 2. Basic principle of an electrodynamic precision balance
according toKrause(2005) andŞtef̌anescu(2011).

cantilever leads to a shift of the spot position on the detec-
tor. Thus, the detector signal is a direct measure of the can-
tilever deflection. Due to the “optical lever”, even small de-
flections can be detected reliably. In constant force mode,
the detector signal is compared to a reference signal and
fed to a controller. The provided controller signal, which
leads to a z-movement of the piezo stagezp, is exactly as-
sessed such that the cantilever deflection is balanced and
the force acting on the cantilever remains constant in the
steady state. The controller signal is thus a direct estimate of
the surface structure. PI- or PID-controllers are widely used
in the feedback loop (Abramovitch et al., 2007). However,
also other controller types like Proportional-Double-Integral
(PII) or Proportional-Double-Integral-Derivative (PIID) con-
trollers have been reported (Abramovitch et al., 2009).

Since the relation between the force acting on the can-
tilever and the tip-sample-distance is highly non-linear, the
closed-loop configuration enables a reliable detection of the
sample surface properties. However, the scan speed is limited
by the dynamics of the feedback loop.

2.3 Hot wire anemometer in constant-temperature mode
(CTA)

Hot wire anemometers are indispensable instruments in flow
metrology. They are able to measure flow velocity and ve-
locity profiles in liquids and gases. Here, the resistanceRw

of a wire probe is changed by the temperature change (heat
dissipationQ of the wire) caused by a liquid or gas flowJ,
as illustrated in Fig.4. Basically, the dissipated thermal en-
ergy is a measure of flow velocity. In constant temperature
mode, the wire probe is part of a Wheatstone bridge circuit
with constant current supplyI0. Assuming a balanced bridge
at a certain condition, a flow of liquid or gas with a certain
velocity consequently leads to a heat transfer from the wire
probe. This results in a temperature decrease, consequently

www.j-sens-sens-syst.net/1/5/2012/ J. Sens. Sens. Syst., 1, 5–27, 2012
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Figure 3. Basic principle of an atomic force microscope in a closed-
loop configuration (constant force mode).

in an increase in resistivity∆Rw, and therefore, in an unbal-
anced state of the bridge circuit (∆Vb , 0). The difference
voltage∆Vb is amplified by a servo amplifier. The resulting
output currentIA of the amplifier is fed back to the bridge
circuit. This current again induces a temperature increase at
the wire probe such that the bridge balance is restored and
the wire probe remains at constant temperature at the steady
state. In this closed-loop configuration, the amplifier output
IA is a function of the dissipated heat from the sensor wire
and indirectly of the flow velocity (Fingerson and Freymuth,
1996).

A high gain servo amplifier enables the measurement of
rapid flow velocity fluctuations. The cut-off frequency of
an anemometer in constant temperature mode can be about
three orders of magnitude higher compared to conventional
constant current anemometers (Tavoularis, 2005). Due to the
constant wire probe temperature, the effect of the thermal in-
ertia of the wire is greatly minimized compared to an open-
loop system.

2.4 Broadband lambda probe

Lambda probes are widely used for oxygen detection and are
mainly employed for the measurement of the air/fuel ratio
λ in combustion engines in automotive industry, pioneered
by Robert Bosch GmbH in the early 1970s. Conventional
lambda probes use a galvanic Nernst-cell, composed of a
solid electrolyte as oxygen conductor between two platinum
electrodes. This cell provides an electrical output voltageVλ
related to the excess oxygen in the exhaust gas. However,
with this configuration only a detection of aboutλ = 1 is pos-
sible. Well above and below this value, the change in the
output voltage is only marginal; the transfer characteristics
shows a two-step behavior, as shown in Fig.5b.

Broadband lambda probes – as the name suggests – can
operate in a broadλ-range compared to the conventional de-

J

Q

servo amplifier

I0

Rw

R1

R2
R3 IA

DVb

Figure 4. Basic principle of a hot wire anemometer in constant
temperature mode (CTA).

sign (Robert Bosch GmbH, 1994). This broadband configu-
ration is schematically shown in Fig.5a. Here, a sandwich
structure comprising a sensing cell, which is identical to the
Nernst-cell in the conventional design, a diffusion gap, and
a pumping cell are part of a closed-loop control circuit. The
exhaust gas is inserted to the diffusion gap via a porous diffu-
sion channel, leading to a certain oxygen content inside the
diffusion gap and consequently to a certainλ-value. The out-
put voltageVλ of the sensing cell directly depends on this
λ-value and is compared to the preset reference voltageVref.
The latter is chosen in such a way that it corresponds toλ = 1
(≈ 450mV). Assumingλ > 1 (lean mixture, excess air) in the
diffusion gap leads toVλ < Vref and hence to a voltage dif-
ference at the input of the amplifier. This voltage difference
results in an output currentIp. This pumping current pumps
excess oxygen ions out of the diffusion gap for compensation
to maintain a constant air/fuel ratio ofλ = 1. Forλ < 1 (rich
mixture, lack of air) in the diffusion gap, the pumping current
has an opposite sign and causes pumping of oxygen ions into
the diffusion gap. Thus, an initially imbalanced oxygen con-
centration is compensated and theλ-value inside the diffu-
sion gap remains constant at the steady state. The magnitude
and the sign of the pumping current are a measure ofλ.

With this closed-loop configuration, a broadλ-range
0.7< λ <∞ can be detected, whereas∞ indicates the oxy-
gen concentration of pure air of 21 % (see Fig.5c). This en-
ables expanded areas of application apart from its standard
use (Bosch GmbH, 2010).

3 General sensor model with deflection method

3.1 Sensor model

To keep generality, we regard the sensor as a single-input
single-output (SISO) system with inputxi and outputxo. The
transfer behavior is described by the impulse responsegs

with xo(t) = gs∗ xi(t), irrespective of any specific sensor prin-
ciple, as shown in Fig.6. Here,xi is the measurand and can
be any physical, chemical or biological quantity, whereasxo

J. Sens. Sens. Syst., 1, 5–27, 2012 www.j-sens-sens-syst.net/1/5/2012/
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Figure 5. (a) Schematic illustration of the core section of a broad-
band lambda probe including the feedback control circuit, accord-
ing to NGK (2012) (for the sake of simplicity, the heater neces-
sary to heat up the probe to the optimal working temperature is not
shown in this illustration); general illustration of the transfer char-
acteristics of a conventional(b) and a broadband lambda probe(c)
according toBosch GmbH(2010).

is assumed to be an electrical output signal (voltage or cur-
rent) according to the general sensor definition, and∗ is the
convolution operator. Furthermore, we assume the sensor to
be a linear time-invariant (LTI) system. The linear dynamic
input–output relation of the sensor in the time domain can be
completely described by an ordinary linear differential equa-
tion of ordern (n≥m; n,m∈ N) with constant coefficients in
the following form:

an
dnxo

dtn
+an−1

dn−1xo

dtn−1
+ · · ·+a1

dxo

dt
+a0xo =

bm
dmxi

dtm
+bm−1

dm−1xi

dtm−1
+ · · ·+b1

dxi

dt
+b0xi . (1)

x (t)i x (t)o
gs X (s)i X (s)oGs

x (t)  o  x (t)i*gs= X (s)  o  X (s)i
.Gs=

(a) (b)

Figure 6. System model of a sensor;(a) in the time domain,(b) in
the frequency domain.

Here, a0, . . . , an and b0, . . . , bm are constant coefficients
which are explicitly determined by the sensor properties.
However, in consideration of real sensor systems, basically
three instrument types, which mainly cover the transfer char-
acteristics of most sensors, can be classified according to
their dynamic response as: (I) first-order systems (PT1),
(II) second-order systems (PT2), and (III) differentiating
second-order systems (PT2-D). Thus, Eq. (1) can be simpli-
fied for these three cases. The resulting input–output rela-
tions in the time domain are given in Table2. However, to ob-
tain the output characteristics for a given input signal, the de-
scription in the time domain requires the solution of the dif-
ferential equations. This may result in complicated solution
algorithms, especially for more complex systems in closed-
loop configuration later on. Moreover, the quantitative inter-
pretation of the solution and the extraction of practical con-
clusions may be not straightforward due to bulky mathemati-
cal expressions. Therefore, the sensor transfer characteristics
is transformed from the time domain to the frequency do-
main, which enables a powerful method for theoretical sys-
tem description (Shinners, 1998). Thus, the sensor can be
completely described by its transfer function

Gs(s) =
Xo(s)
Xi(s)

=L{gs(t)} =

∞∫
0

gs(t)e
−stdt. (2)

Here,L is the Laplace operator, ands the complex variable.
The sensor transfer functions according to Eq. (2) for the
three basic sensor types are given in Table2. The general
sensor coefficients in the input–output relations are substi-
tuted by the static sensitivityK and the characteristic time
constantsT, T1, T2, andT3 of the respective system.

From Table2 it is apparent that the sensor can be basically
described by a quasi-static part and a time-dependent dy-
namic part as illustrated in the general sensor model in Fig.7.
The sensor model comprises the influence of the measurand
Xi (measurement channel) and an interference quantityZ (in-
terference channel). The static sensor behavior can vary from
ideal linear behaviorK due to the existence of non-linearities,
which are apparent in most sensor applications. Both the lin-
ear partK and the non-linear partf directly depend on the
measurandXi . The static sensitivity is also changed by the
interfering quantityZ, e.g. temperature in many sensor ap-
plications. When no input signal is applied (Xi = 0), only the

www.j-sens-sens-syst.net/1/5/2012/ J. Sens. Sens. Syst., 1, 5–27, 2012
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Table 2. Sensor classification and assignment of the respective input–output relations and resulting transfer functions as well as common
examples for the respective sensor types.

Sensor type Input–output relation Sensor transfer function Examples
xo(t) = gs ∗ xi(t) Gs(s) = Xo(s)/Xi(s)

I: First-order system (PT1) xo =
b0
a0
· 1

a1
a0

d
dt +1
· xi K · 1

sT+1 Temperature sensors

(Fraden, 2010)

II: Second-order system (PT2) xo =
b0
a0
· 1

a2
a0

d2

dt2
+

a1
a0

d
dt +1
· xi K · 1

T2
1 s2+T2s+1

Velocity sensors,
accelerometers
(Fraden, 2010)

III: Di fferentiating second- xo = a0 ·
b1

d
dt

a2
a0

d2

dt2
+

a1
a0

d
dt +1
· xi K · sT3

T2
1 s2+T2s+1

Piezoelectric sensors
order system (PT2-D) (Gautschi, 2002),

pyroelectric sensors
(Budzier and Gerlach, 2010)

as ao

K

f (X )i G(s)

xoffXi

Z

Xo

Quasi-static Dynamic

interference channelmeasurement channel

Figure 7. General sensor model with measurandXi and sensor out-
put Xo sub-divided in a quasi-static and a dynamic part and com-
prising a measurement and an interference channel.K intrinsic ideal
sensitivity,G(s) normalized sensor transfer function,αs sensitivity
coefficient, Z interference quantity altering the ideal sensitivity,f
non-linearities in the transfer characteristics,xoff sensor offset,αo

offset coefficient.

static sensor offsetxoff is measured as output signal. The sen-
sor offset is independent of the input signal, and thus, does
not contain information from the measurand. However, the
offset is superimposed byZ, and hence, changed by the inter-
ference quantity. In most sensors,xoff is primarily altered due
to temperature changes. The static sensitivity, the offset and
the influence of the interference quantity are additively su-
perimposed, and together with the dynamic sensor part, gen-
erating the sensor output signalXo. Note that the order of the
static and dynamic sensor part is arbitrary and could be also
changed. The sensor behavior can be expressed in a general
sensor model as

Xo = [(K +∆K) ·Xi + (xoff +∆xoff)] ·G(s), (3)

with

∆K = f +Z ·αs (4)

and

∆xoff = Z ·αo. (5)

It has to be pointed out that the influence of noise is ne-
glected in this model. Based on this sensor model, the effect
of the compensation method applied to such a sensor regard-
ing the influence of non-linearities, the interference quantity
and static sensitivity changes on the sensor output signal are
of interest (see Sect.4).

3.2 Quasi-static sensor behavior

For the description of the quasi-static sensor behavior, we as-
sume that all dynamic processes are terminated and that the
system is in an equilibrium state (G(s) = 1 for s→ 0). Hence,
from Fig. 7 and Eq. (3) it becomes clear that the static sen-
sor output signal is basically determined by two parts. One
is the static sensor offset x̃off = (xoff +∆xoff) = (xoff +Z ·αo),
which is determined by the intrinsic sensor offset xoff and
the interference quantityZ, but independent of the input sig-
nal Xi . The other part is the sensor sensitivity, which is usu-
ally altered by non-linearities and the interference quantity
Z as a function of the input signal. According to Eq. (3),
the resulting sensitivity can be expressed as the superposi-
tion of an ideal constant sensitivityK and a deviation∆K
as K̃ = (K +∆K). Here, again two cases have to be consid-
ered: (i) a time-independent sensitivity change (∆K = con-
stant) and (ii) a time-dependent sensitivity change (drift)
(∆K = ∆K(s)). For a time-independent sensitivity change,
the interference quantity is constant over time. If one consid-
ers small time-independent deviations∆K from the ideal be-
havior, the impact of relative systematic deviations∆K on the
static sensor output signal can be calculated using a Taylor-
series and expressed as a systematic static deviationεdefl

s as

εdefl
s =

∆X∆K,s
o

Xo
=

1
Xo

∂Xo

∂K
·∆K =

∆K
K

(6)

J. Sens. Sens. Syst., 1, 5–27, 2012 www.j-sens-sens-syst.net/1/5/2012/
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Figure 8. Mechanical analog and resulting transfer function of a
sensor with(a) ideal linear time-independent sensitivityK (no drift)
and(b) time-dependent sensitivity change due to viscoelastic mate-
rial properties (drift);σ mechanical stress,ε mechanical strain,E
Young’s modulus of the elastic spring,η viscosity of the dashpot.

and is equal to the relative sensitivity change.
The second case of a time-dependent sensor sensitivity

(drift) is apparent in many sensor applications and results
from time-dependent variations of the interference signal. In
this paper, this phenomenon is described by a simple model
– known from mechanical sensors – which demonstrates the
basic idea but keeps simplicity at the same time. The model
originates from a simple spring-dashpot arrangement con-
nected in series (Maxwell-model), as illustrated in Fig.8.
This mechanical model represents relaxation effects in spring
elements under load due to viscoelastic material properties.
The resulting transfer function is used to describe linear drift
effects irrespectively of any specific sensor principle.
In the frequency domain,̃K can generally be described as

K̃(s) = K ·
s+ δ

s
, (7)

whereδ is a variable drift rate. Although we consider the
static sensor behavior in this section, the phenomenon of
drift is a dynamic process occurring in the quasi-static part
of the sensor model. Therefore, we can illustrate the time-
dependent sensitivity by calculating the sensor response due
to a step change of the input signalXi in the time domain,
which leads to

xo(t) =L−1
{
K̃(s) ·

1
s

}
= K(1+ δt). (8)

The normalized step responsexo/K for the model in Eq. (8)
for different drift ratesδ is shown in Fig.9. For a constant
input signal, the static sensor output signal should ideally be
constant. However, due to the drift phenomenon, the output
signal increases with time. Thus, an explicit correlation be-
tween the input and the output signal is not possible without
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 � =  0 . 5  s - 1
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Figure 9. Normalized sensor output signalxo/K (interrupted lines)
for a unit step input (solid line) when considering a time-dependent
sensor sensitivity (drift) with different drift ratesδ.

additional stipulations, i.e. the knowledge of the drift rate and
the establishment of a constant measurement time.
For a time-dependent sensitivity change, the ideal sensitivity
K has to be replaced bỹK(s) from Eq. (7). Thus, the rela-
tive deviation of the output signal for a drift-affected sensor
according to Eq. (6) becomes

εdefl
d =

∆X∆K,d
o

Xo
=

(
1+
δ

s

)
∆K
K
. (9)

For both time-dependent and time-independent sensitivity
changes∆K, it is obvious that the sensor output signal is
directly influenced by these deviations. For temporal drift
effects, the relative deviationεdefl

d (s) of the sensor output is
time-dependent. For infinite measurement times, the devia-
tion reaches infinity. On the other hand, forδ = 0 Eq. (9)
becomes Eq. (6).

3.3 Response time

Equation (7) describes the time-dependence of the quasi-
static sensor parameterK and hence characterizes the un-
wanted long-term behavior of changing sensor properties,
whereasG(s) describes the dynamic short-term behavior.
Usually, a response time as short as possible is desired. As
quoted in Table2, sensors can be classified by their transfer
functionG(s). In general, the dynamic behavior of a sensor
depends on the location of the roots of the numerator polyno-
mial (zeros) and the denominator polynomial (poles) in the
complex Gauss-plane. In particular, the sensor response time
is determined by the dominant pole that is placed closest to
the imaginary axis. The poles and zeros are preset by the
sensor coefficients (a0, a1, a2, b0, b1) and consequently by
the intrinsic sensor properties. Therefore, the operation of a
sensor in deflection mode (open-loop configuration) leads to
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Figure 10. Normalized sensor output signalsxo/K for the different
sensor types and different sensor parameters (interrupted lines) for
a unit step input (solid line).

a defined dynamic response that cannot be modified. Typical
step responses of sensor types I and II with different sensor
parameters are exemplarily illustrated in Fig.10.

4 General sensor model with compensation method

4.1 System model

Sensors using the compensation method exhibit a closed-
loop feedback structure where the deflection is brought back
to zero by a compensation force. This causes a force equi-
librium and keeps the deflection of the sensor – occasionally
with a small remnant control deviation – at zero. The de-
flection can no longer be the measurement signal because it
amounts more or less to zero. The sensor signal being pro-
portional to the measurand is now the compensation force or
an electrical quantity creating this compensation force. The
resulting compensation circuit must at least contain the sen-
sor itself, an amplifier, and the controller/actuator unit. Other
components (e.g. D/A converter, filter) may be necessary, but
do not alter the general system behavior and are thus ne-
glected in this study. Because we act on the assumption of
an electrical sensor output signal, amplification with a high-
gain amplifier is assumed. For the sake of simplicity, we as-
sume the amplifier, actuator, and controller to be much faster
than the sensor itself. This would be particularly the case for,
e.g. mechanical and chemical sensors. Hence, we can con-
sider the actuator and the controller as one block placed in
the feedback path. For other sensor types, where this sim-
plifying assumption does not hold, the closed-loop sensor
model with only one block in the feedback path is never-
theless applicable. In this case, the dominant time constant
of the feedback block is a combination of the time constants
of the actuator and the controller parameters, respectively.
The sensor with compensation is illustrated in Fig.11. Note

X’i

Xc

-

Sensor

Controller

XoG ’(s)s V

G (s)c

- XrefXi F
DX

Figure 11. Closed-loop compensation circuit where the sensor out-
put signalXo is fed back to the sensor input via an amplifier and
a controller.F is a transfer element transforming an arbitrary input
quantity in a quantity which can be actually compensated.

that the input signalX′i of the feedback structure is not nec-
essarily the measuring quantityXi . If a direct compensation
of Xi is not possible, because the desired quantity cannot be
generated by an existing device or the generation is too com-
plicated, an equivalent quantityX′i , which is correlated toXi

asX′i = F ·Xi and which is accessible for compensation must
exist. This is a necessary requirement for the applicability of
the compensation method to a certain sensor. The correlation
betweenXi andX′i can be a simple factor (e.g. the gravity of
Earth connecting mass and force in a balance) or rather com-
plex (e.g. broadband lambda-probe or closed-loop hydrogel-
based sensors (Schulz et al., 2011)), depending on the spe-
cific sensor. In any case, the overall system behavior of the
compensation circuit is independent ofF. Therefore, to keep
simplicity without loosing generality, we assumeF = 1 and
thus,X′i = Xi andG′s =Gs for all further considerations.

Initially, the input signalXi causes the sensor output signal
Xo. Xo is amplified toV ·Xo, the preset reference valueXref is
subtracted from it and fed back to the controller that gener-
ates the compensation quantityXc. Hence,Xc counteracts the
sensor input signal. Assuming ideal compensation, the sensor
inputXi−Xc is balanced during the whole measuring process
in such a way that∆X and henceV ·Xo−Xref becomes zero
at the steady state. Hence, the sensor outputXo remains con-
stant, independent of changes of the input signal. However,
the “force” Xc, which is necessary to compensate changes of
the input signal, depends on the input signal. Therefore,Xc

is a measure of the input signalXi and thus the output sig-
nal of the “force”-compensated sensor. The resulting transfer
function of the compensation circuit can then be written as

Gcomp(s) =
Xc(s)
Xi(s)

=
V ·Gs(s) ·Gc(s)

1+V ·Gs(s) ·Gc(s)
=

G̃(s)

1+ G̃(s)
, (10)

with

G̃(s) = V ·Gs(s) ·Gc(s) (11)

and expressed in a more general form as

Gcomp(s) =
Ncomp(s)

Dcomp(s)
=

cmsm+ ...+ c1s+ c0

dnsn+ ...+d1s+d0
, (12)
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Table 3. Transfer functions of basic linear standard controller types
(Datta et al., 2000).

Controller type Transfer function

P-controller GP
c(s) = kP

PI-controller GPI
c (s) = kP+

kI
s

PID-controller GPID
c (s) = kP+

kI
s + kD · s

where both numeratorNcomp and denominatorDcomp are
composed of polynomials. From Eq. (10) one can see that
for Gcomp, 0, the compensation quantityXc can be used as a
direct measure of the measuring quantityXi . Because of the
feedback loop, a transfer function in the form̃G/(1+G̃) arises
(cp. Table1), which exibits a completely different structure
compared to the simple open-loop transfer function. More-
over, the system properties can now be tuned and adjusted
in certain limits via the amplifier gain and the parameters of
Gc. Thus,Gcomp can be regarded as a variably tunable trans-
fer function.

The controller is assumed to be a standard linear P-, PI-,
or PID- controller, respectively. In principle, a specific con-
troller could be designed for the task of compensation. How-
ever, practically, the predominant majority of all control tasks
are realized by standard controllers (Visioli , 2006). There-
fore, we focus on those standard controllers. The transfer
functions of the three controller types are listed in Table3.
Here,kP is the P-factor,kI the I-factor, andkD the D-factor,
with

kI =
kP

TI
and kD = kPTD, (13)

whereTI and TD are the integral time and the differential
time of the controller, respectively. We assumekP, kI , and
kD to be constant. The application of the controller transfer
functionsGc(s) from Table3 and the sensor transfer func-
tionsGs(s) from Table2 to Eq. (10) leads to the closed-loop
transfer functions of the three sensor types. The resulting
transfer functions of the different sensor–controller combi-
nations are listed in Table4 where K∗ = K ·V. In the fol-
lowing, K∗ · kP is termed as feedback factor. However, the
most important requirement for a technical use of a closed-
loop system is the system stability, i.e. a bounded input signal
leads to a bounded output signal (BIBO-stability) (Shinners,
1998). Stability has to be guaranteed for all operating condi-
tions. This necessitates the analysis of the closed-loop trans-
fer functions to determine the parameter range in which the
system is stable.

4.2 Stability requirements

Stability analysis is easily accessible in the frequency domain
by analysis of the closed-loop transfer functionGcomp(s), as

stated in Eq. (12). This transfer function is asymptotically
stable if and only if

– Gcomp is proper, i.e. the degreemof the numeratorNcomp

is smaller or equal to the degreen of the denominator
Dcomp (m≤ n, see Eq.12), and

– if all poles ofGcomp are placed in the complex left open
half-plane (LOH).

The first stability condition can be easily evaluated by a sim-
ple look at the respective closed-loop transfer function (Ta-
ble 4). The second stability condition can be verified by a
stability criterion (e.g. Routh criterion (Shinners, 1998) as
used within this work) applied to the denominator polyno-
mial Dcomp(s). Here, the necessary condition is that all coeffi-
cientsdν of the denominator have the same sign (Stodola con-
dition: Stodola, 1894; Hurwitz, 1895) (e.g.dm, . . . , d0 > 0).
The sufficient condition results from the employed stability
criterion and has to be evaluated subsequently. If the numer-
ator degree amounts ton≤ 2, the Stodola condition is also
sufficient. For that simplified case, no stability criterion has
to be used in addition.

Beside the fundamental necessity for system stability, we
additionally claim a minimum-phase system. Thus, all zeros
of Gcomp have to be located in the complex left half-plane,
including the imaginary axis. In this case, the same crite-
rion (second criterion above) as for the poles is valid, ex-
cept that the coefficientscν of the numerator can be equal to
zero as well (cm, . . . , c0 ≥ 0). A closed-loop transfer func-
tion exhibiting nonminimum-phase zeros (zeros in the open
right half plane) will show initial overshoot or undershoot,
i.e. the step response initially shows an inverse response,
spending part of its time going in the “wrong” direction until
it changes its direction towards the steady state. This kind of
step response exhibits nonmonotonic behavior. This inverse
response exists if the transfer function has at least one zero
in the right half-plane. Depending on the number of zeros in
the right half-plane, the inverse response can become quite
complex and can exhibit more direction reversals and zero-
crossings (time-dependent signal passes through the value
of zero) (Hoagg and Bernstein, 2007; Stewart and Davison,
2006). This behavior is inadequate for sensor applications
because the steady state should be reached as fast as possi-
ble and a monotone step response is aspired. Therefore, the
controller parameters have to be chosen in such a manner that
the asymptotically stable closed-loop transfer function shows
minimum-phase behavior at the same time. From Table4 it
is apparent that the first stability criterion is fulfilled for all
transfer functions. For real sensors,K > 0, V > 0, andT > 0
can be assumed without limitation. Using these assumptions,
first the range of the control parameters which guarantee
BIBO-stability is calculated by utilization of the second sta-
bility criterion. Subsequently, the parameter range to assure
a minimum-phase behavior is calculated. The calculated re-
sults are separately listed in Table5, and finally the resulting
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Table 4. Closed-loop transfer functionsGcomp(s) for all sensor-controller combinations considered;K∗ = K ·V.

Gcomp(s) P PI PID

I: PT1
K∗kP

sT+(K∗kP+1)
K∗(kPs+kI )

s2T+(1+K∗kP)s+K∗kI

K∗(kD s2+kPs+kI )
(T+K∗kD)s2+(1+K∗kP)s+K∗kI

II: PT2
K∗kP

T2
1 s2+T2s+(1+K∗kP)

K∗(kPs+kI )
T2

1 s3+T2s2+(1+K∗kP)s+K∗kI

K∗(kD s2+kPs+kI )
T2

1 s3+(T2+K∗kD)s2+(1+K∗kP)s+K∗kI

III: PT2-D
K∗kPT3s

T2
1 s2+(T2+K∗kPT3)s+1

K∗T3(kPs+kI )
T2

1 s2+(T2+K∗kPT3)s+(1+K∗kI T3)
K∗T3(kD s2+kPs+kI )

(T2
1+K∗kDT3)s2+(T2+K∗kPT3)s+(1+K∗kI T3)

parameter range meeting both requirements is stated. As can
be seen in Table5, for the combination of a sensor with PT2

behavior together with a PI- or PID-controller, respectively,
the degree of the denominator is of order three. Because of
that, the Routh criterion derived from the Routh table has
been used to get the sufficient stability condition. Stability
analysis by utilization of the Routh criterion is explained
in more detail in AppendixA. From these considerations it
turns out that the range of controller parameters guarantee-
ing stability depends on the sensor properties. Note that the
second stability condition is even satisfied if certain parame-
ters exhibit negative values. However, if one claims stability
and minimum-phase behavior at the same time, the controller
parameters do not depend on the sensor properties. The pa-
rameters can be any positive value or even equal zero, except
for the combination of a PT2 element with a PI- or a PID-
controller. This enables a wide range of possible controller
parameters for the adjustment of the desired system behav-
ior for specific applications. Moreover, these findings do not
show any contradiction towards the application of the com-
pensation method in a technical measurement system. How-
ever, from a practical point of view, the static feedback gain
cannot be increased ad infinitum. Above a certain critical
gain, a finite lag of the feedback path will lead to instabil-
ities.

4.3 Steady state behavior

4.3.1 Static deviation from ideal compensation

The designated aim of the compensation method is ideal
compensation of the sensor inputXi , such thatV ·Xo−Xref

becomes zero at the steady state (s→ 0, t→∞ ). For the
sake of simplicity, let us assumeXref = 0. Then,

∆X = Xi −Xc = Xi − (V ·Gs ·Gc ·∆X) (14)

should be consequently as small as possible. From Eq. (14)
we can set up a transfer functionG∆ between the compensa-
tion deviation∆X and the input signalXi as

G∆ :=G∆X
Xi
=
∆X(s)
Xi(s)

=
1

1+V ·Gs ·Gc
. (15)

Since Eq. (15) comprises the same denominator as the gen-
eral transfer function in Eq. (10), we can act on the assump-
tion that all poles ofG∆ exhibit negative real part (for the

parameter range in Table5), and that the transfer function is
thus stable. In this case, one can apply the final value theorem
of the Laplace transform, generally written as

lim
t→∞

x(t) = lim
s→0

[s·X(s)]. (16)

Using Eq. (16), we can calculate the deviation∆x(t→∞)
from ideal compensation in the steady state for a step change
of Xi as

∆x(∞) = lim
t→∞
∆x(t) = lim

s→0

[
s·G∆(s) ·

1
s

]
= lim

s→0
G∆(s). (17)

Example: PT1-type sensor with P-controller

For the simplest example of a PT1-type sensor in combina-
tion with a P-controller,G∆ is

G∆(s) =
sT+1

sT+K∗kP+1
, (18)

leading to

∆x(∞) = lim
s→0

( sT+1
sT+K∗kP+1

)
=

1
1+K∗kP

. (19)

The static deviation from ideal compensation for all sensor-
controller combinations are given in Table6. From Table6
one can see the same behavior for both PT1- and PT2-type
sensors regarding the static deviation from ideal compensa-
tion. For application of a P-controller,∆x depends on the
feedback factor. For unity feedback (K∗kP = 1), a deviation of
50 % is observed. However, for an increasing feedback fac-
tor, the deviation decreases and converges to zero for a high-
gain feedback. A deviation of only 1 % is already reached
with a feedback factor of 100. For the application of a PI-
or PID-controller,∆x turns out to be zero, and thus, inde-
pendent of the feedback parameters. Therefore, a PI- or PID-
controller should be used for these sensor types in order to
achieve full compensation. The combination of a PT2-D-type
sensor with a P-controller cannot be used for sensor appli-
cations. This can be easily understood by application of the
final value theorem to the respective transfer function in Ta-
ble4. In this case, the sensor output at the steady state always
equals zero independent of the input signal. Thus, different
input signals would always lead to the same (zero) output
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Table 5. Parameter range guaranteeing BIBO-stability and a minimum-phase system, and the resulting combined parameter range satisfying
both requirements for all considered sensor-controller combinations.

Gcomp(s) P PI PID

Parameter range for a BIBO-stable system

I: PT1 kP > −
1

K∗ kP > −
1

K∗ , kI > 0 kP > −
1

K∗ , kI > 0, kD > −
T
K∗

II: PT2 kP > −
1

K∗ kP > −
1

K∗ , kI > 0 kP > −
1

K∗ , kI > 0, kD > −
T2
K∗

1+K∗kP−
T2

1 K∗kI

T2
> 0 a 1+K∗kP−

T2
1 K∗kI

T2+K∗kD
> 0 a

III: PT2-D kP > −
T2

K∗T3
kP > −

T2
K∗T3

, kI > −
1

K∗T3
kP > −

T2
K∗T3

, kI > −
1

K∗T3
, kD > −

T2
1

K∗T3

Parameter range for a minimum-phase system

I-III: kP ≥ 0 kP ≥ 0, kI ≥ 0 kP ≥ 0 b, kI ≥ 0, kD ≥ 0

Resulting combined parameter range

I: PT1 kP > 0 c kP ≥ 0, kI > 0 kP > 0 d, kI > 0, kD ≥ 0

II: PT2 kP > 0 kP ≥ 0, kI > 0 kP > 0, kI > 0, kD ≥ 0

T2(1+K∗kP) > T2
1 K∗kI

a (T2+K∗kD)(1+K∗kP) > T2
1 K∗kI

a

III: PT2-D kP > 0 kP ≥ 0, kI ≥ 0 kP > 0 d, kI ≥ 0, kD ≥ 0

a This criterion results from the application of the Routh criterion.
b Except forkD = 0, this case is however not relevant due to the stability requirement.
c The casekP = 0 is not relevant for sensor applications.
d kP > 0 instead ofkP ≥ 0 excludes the imaginary zero pair.

Table 6. Static deviation from ideal compensation for all considered
sensor-controller combinations.

∆x(∞) P PI PID

PT1
1

1+K∗kP
0 0

PT2
1

1+K∗kP
0 0

PT2-D N.A. 1
K∗T2kI+1

1
K∗T2kI+1

signal. However, a PI- or a PID-controller can be success-
fully applied. The application of PI- or PID-controller to this
sensor type leads to a static deviation that depends on the
feedback factor, the integral timeTI and the time constantT2.
Thus, for a high feedback factor and a small integral time, the
static deviation converges to zero.

4.3.2 Influence of static parameter variations

For a static analysis of the compensation circuit, we as-
sume the closed-loop system to be in a steady state (Gstat

comp=

Gcomp(s→ 0)). So far, we have considered an ideal sensitivity
K for the transfer function of the compensation circuit. How-
ever, as described in the general sensor model in Sect.3.1,
the sensitivity is usually influenced by the interference quan-
tity. Furthermore, compared to the open-loop sensor, the am-

plifier and the controller parameters can exhibit deviations
from ideal behavior as well. Considering small static varia-
tions, the impact of these deviations on the output signalXc

can be calculated by a first-order Taylor-series as

ε
comp
s =

∆Xc

Xc
=

1
Xc

(
∂Xc

∂K
·∆K+

∂Xc

∂V
·∆V+

3∑
i=1

∂Xc

∂ki
·∆ki

)
. (20)

Here,ki ∈ {kP, kI , kD} and∆ki ∈ {∆kP, ∆kI , ∆kD} are the con-
troller parameters and their systematic deviations, respec-
tively, depending on which controller type is used.

Example: PT1-type sensor with P-controller

For the simplest example of a PT1-type sensor in combina-
tion with a P-controller,εcomp

s is

ε
comp
s =

1+KVkP

KVkP

[ VkP

(1+KVkP)2
∆K +

KkP

(1+KVkP)2
∆V

+
VK

(1+KVkP)2
∆kP

]
=

1
1+K∗kP

(
∆K
K
+
∆V
V
+
∆kP

kP

)
. (21)

To allow an easy comparison with the open-loop sensor, the
deviations which do not result from the sensor itself can be
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Figure 12. Ratio between systematic static deviations of the closed-
loop sensor and the open-loop sensor versus the feedback factor
K∗kP for a PT1-type sensor in combination with all three controller
types.β indicates different deviation contributions from the feed-
back elements compared to the deviation of the sensor itself.

summarized as a feedback deviation∆FB and can generally
be described as a multiple (β) of the sensor deviation as

∆FB
FB
=
∆V
V
+
∆kP

kP
= β ·

∆K
K
. (22)

Thus, Eq. (21) becomes

ε
comp
s =

1+ β
1+K∗kP

∆K
K
. (23)

The ratio between the relative systematic static deviation of
the closed-loop compensation circuit and the open-loop sen-
sor is

ε
comp
s

εdefl
s
=

1+ β
1+K∗kP

. (24)

This ratio is illustrated in Fig.12 as a function of the feed-
back factor, and ofβ, indicating the deviation contribution
of the feedback elements. Usually, the feedback elements
should be designed such that systematic deviations are much
smaller than the deviations of the sensor itself. As can be
seen from Fig.12, if the feedback deviations are just 1 %
(β = 0.01) of the sensor deviations, a unity feedback already
minimizes the overall deviation to 50 % compared to an
open-loop sensor. However, if the circuit comprises higher
feedback deviations, the feedback factor can be systemati-
cally increased to achieve a specified lower deviation of the
output signal. If one wants to achieve a constant uncertainty,
the required feedback factor linearly increases withβ, as
stated in Eq. (24).

The ratios between the deviations of the closed-loop con-
figuration compared to the open-loop sensor for all sensor-
controller combinations are listed in Table7. From this table,

Table 7. Systematic static deviations of the closed-loop sensor for
all sensor-controller combinations.

ε
comp
s P PI PID

PT1

∆K
K +

∆V
V +

∆kP
kP

1+K∗kP
0 0

PT2

∆K
K +

∆V
V +

∆kP
kP

1+K∗kP
0 0

PT2-D N.A.
∆K
K +

∆V
V +

∆kI
kI

1+K∗kP
T3
TI

∆K
K +

∆V
V +

∆kI
kI

1+K∗kP
T3
TI

Xi

Xc

-
V

G (s)c

- Xrefs + d
sK(s)=

~
K

DX

Figure 13. Closed-loop compensation circuit where the quasi-static
sensor part is characterized by a sensitivityK̃, describing the dy-
namics of the drift process by a drift model.

one can see that for PT1- and PT2-type sensors in combina-
tion with a P-controller, the systematic deviations depend on
the deviation contributions of the single circuit elements and
the feedback factor. However, by additional application of an
I-part (PI- or PID-controller), the systematic deviations can
be completely eliminated and no longer depend on the devi-
ations of the circuit elements. For a PT2-D-sensor in combi-
nation with a PI- or PID-controller, a similar behavior as dis-
cussed for the P-controller before can be observed. Here, the
overall deviation of the output signal cannot only be tuned by
the static amplificationV and the P-factorkP, but additionally
by the integral timeTI . The smaller the integral time is, the
better is the resulting suppression of deviations.

4.3.3 Influence of time-dependent parameter variations

If the external interference quantity varies with time, the
long-term sensor output signal shows a continuous drift even
if the dynamic sensor part is already equilibrated. The dy-
namics of the drift process is modeled by the transfer func-
tion K̃(s). The application of the drift model from Eq. (7) to
the closed-loop compensation circuit is illustrated in Fig.13.
The closed-loop transfer functions according to Eq. (10),
considering all three controller types, are calculated and
listed in Table8. From Table8one can observe that the unsta-
ble transfer function of the open-loop sensor exhibiting drift
in Eq. (7) is transformed into a more complex transfer func-
tion. Here, the coefficients of the numerator and the denom-
inator can be tuned. We also find that all three closed-loop
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Table 8. Closed-loop transfer functionG∆K,d
comp considering a time-

dependent sensitivitỹK instead of an ideal static sensitivityK by
application of the drift model from Eq. (7) to the static sensor part
(grey box in Fig.13).

G∆K,d
comp(s)

P K∗kP(s+δ)
(1+K∗kP)s+K∗kPδ

PI K∗kPs2+(K∗kI+K∗kPδ)s+K∗kIδ

(1+K∗kP)s2+(K∗kI+K∗kPδ)s+K∗kIδ

PID K∗kD s3+(K∗kP+K∗kDδ)s
2+(K∗kI+K∗kPδ)s+K∗kIδ

K∗kD s3+(1+K∗kP+K∗kDδ)s2+(K∗kI+K∗kPδ)s+K∗kIδ

transfer functions are exactly proper. The parameter range
enabling a stable as well as a minimum-phase system is de-
termined according to the criteria in Sect.4.2 and listed in
TableB1. From this table one can see that the system can be
operated in a broad parameter range without jeopardizing the
system stability. For the utilization of a P- or PI-controller,
the controller parameters have to be simply positive to assure
a stable minimum-phase system. For a PID-controller, the
restrictions seem more complicated. However, if one simpli-
fies the expression arising from the Routh table, one finds
that again all of the stated requirements are met for posi-
tive controller parameters (kP, kI , kD > 0) independent of the
drift-rate (see Sect.B1 in AppendixB). In this sense, stabil-
ity directly involves a system without drift, because a system
exhibiting drift is a priori unstable. This can be shown by
calculating the steady state behavior of the output signal (xc)
considering a unit step input according to Eq. (16) as

xc(∞) = lim
t→∞

xc(t) = lim
s→0

G∆K
comp(s) = 1 (25)

and is valid for all three controller types. One can see that
the output signal of the closed-loop system is constant at the
steady state for all three controller types, whereas the output
signal of the open-loop sensor diverges to infinity (cp. Fig.9).

To enable a quantitative comparison of the quality of drift
suppression for the three different controller types in depen-
dence on the controller parameters, the use of a global per-
formance index is reasonable. A performance index, which
is easy to handle and meaningful at the same time, is the In-
tegral Square Error (ISE) (Newton et al., 1964) which can be
written in the time domain as

J =

∞∫
0

∆x2(t)dt. (26)

Here, ∆x(t) is the difference between the input stepxi =

1(t) and the actual sensor output signalxc (cp. Fig. 13).
This integral is a function of the controller parametersJ =
f (kP,kI ,kD). The requirement for best drift suppression is that

J is as small as possible (J
!
= min). For a quantitative eval-

uation of this requirement and to get reasonable analytical

Table 9. Performance index from Eq.27 for drift suppression for
the three controller types

Performance indexJ

P 1
2K∗kPδ(1+K∗kP)

PI 1
2K∗kPδ(1+K∗kP)+2K∗kI (1+K∗kP)

PID 1
2K∗kPδ(1+K∗kP)+2K∗kI (1+K∗kP)+2K∗2kPkDδ

2

equations forJ, the transformation from the time to the fre-
quency domain is reasonable. Since we already proved sys-
tem stability for all three controller types, we can use Parse-
val’s theorem (Newton et al., 1964) for the accomplishment
of the transformation as

J =

∞∫
0

∆x2(t)dt =
1
2π

+∞∫
−∞

|∆X(s)|2ds

=
1
2π

+∞∫
−∞

∆X(s)∆X(−s)ds (27)

with

∆X(s) =
1

1+K s+δ
s VGc

·
1
s

=
k0+ k1s+ ...+ kr−1sr−1

l0+ l1s+ ...+ lr sr
, lr , 0 (28)

according to the system structure in Fig.13 for a unit step
input. The explicit general solution of this integral up tor =
10 can be found inNewton et al.(1964). The insertion of the
respective controller transfer function into Eq. (28) gives the
compensation deviation∆X(s), as stated in TableB2. The
solution of the integral according to Eq. (27) and Newton
et al. (1964), respectively, leads to the quality criteriaJ for
the three controller types as given in Table9 (cp. Sect.B2).
From Table9 it is obvious that the equation

∂J
∂ki
= 0, with ki ∈ {kP,kI ,kD} (29)

cannot be explicitly satisfied. No local minimum in depen-
dence of the controller parameters can be found because the
first derivatives (∂J/∂kP, ∂J/∂kI , ∂J/∂kD) only converge to
zero for infinitely large controller parameters (kP, kI , kD→

∞). This is not in contradiction to the stability requirements
and means that the drift suppression capability of the re-
spective controller type is only restricted by practical limi-
tations of the controller parameters. To exemplarily illustrate
the drift suppression of the closed-loop sensor for different
controller types, the sensor step responses for selected con-
troller parameters as well as the performance indicesJ as a
function of the respective controller parameter are illustrated
in Fig. 14. From Fig.14 (left) it can be observed that when
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Figure 14. Step response of the closed-loop sensor for selected controller parameters (left) and ISE performance index as a function of the
respective controller parameter (all other parameters are fixed) (right) for a(a) P-controller,(b) PI-controller, and(c) PID-controller. The
light gray region indicates a tolerance band of±1 % of the steady state value. For all graphs a drift rate ofδ = 1s−1 was considered.

the system experiences an input step, it instantaneously fol-
lows this step to a certain extent until it is damped and con-
verges to unity. The higher the respective controller param-
eter is, the less damping can be observed. Furthermore, the
steady state is reached even earlier. Here, reaching the steady
state means that the sensor signal sets in into a tolerance
band of±1 % of xc(t) = 1 (gray region) and does not leave
it anymore. This trend also reflects in the ISE performance
indices in Fig.14 (right). Here, generallyJ is minimized for
increasing controller parameters. Moreover, with increasing
controller complexity,J is additionally minimized. However,
it can be seen that the P-part has the strongest influence on the
quality of drift suppression. It is noteworthy that even a feed-
back factor ofK∗kP = 1 leads to a complete drift-suppression

solely due to the closed-loop sensor structure. However, tun-
ing of the feedback factor leads to a faster accomplishment of
the steady state. The I-part shows less influence on the over-
all drift suppression but can nevertheless be used to improve
the time to reach equilibrium. For smallkI an overshoot can
be observed due to the zeros of the numerator in the trans-
fer function (Fig.14b, left). However, for increasingkI , this
overshoot decreases. For a PID-controller (Fig.14c, right),
the influence of the I-part is more pronounced than that of
the D-part. Both parts show higher influences for small feed-
back factors. However, for increasing feedback factors, the
influence of these parts decreases and becomes negligible for
very high feedback factors. The I- and the D-part however
influence the signal characteristics. The D-part even leads
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to decaying oscillations within the tolerance band (Fig.14c,
left), which is not an aspired behavior. Thus, we can con-
clude that the use of a P-controller with high feedback gain
can satisfactorily fulfill the demand of drift suppression. A
PI-controller is recommendable, if a faster accomplishment
of the steady state is aspired, or if the feedback factor cannot
be increased due to technical limitations. However, the use of
a PID-controller is basically possible but would not be very
convenient.

4.3.4 Non-linearities and hysteresis

Even if engineering in measurement science aims at a prefer-
ably linear system behavior, almost all sensors show non-
linearities to some extent in a certain output signal range.
It is known that a non-linearity of a sensor in closed-loop
operation is linearized to a certain extent due to the actual
operation around a reference working point as

Xref − ε ≤ V ·Xo ≤ Xref + ε, (30)

whereasε is kept minimal due to the feedback structure.
Hence, in general, a sensor operated by the compensa-
tion method will show linearized input–output characteristics
compared to the same sensor operated in deflection method.
However, this may not be valid for all sensors operated by
the compensation method or may just be valid for a lim-
ited input signal range. Here, a nonlinear system descrip-
tion can be used because a simple nonlinear model may pro-
vide better approximations of the sensor behavior over an
expanded range of operation than linear models. Despite the
existence of a nonlinear sensor part, the application of lin-
ear controllers can be possible. We assume that the sensor
dynamics can be decomposed into a static or time-varying
nonlinear function f and a linear dynamic part, which is
described by transfer function. For this system description,
two system models, i.e. the Wiener model and the Hammer-
stein model, are widely used because of their simplicity and
physical meaning. Both models can be used to approximate
a wide range of nonlinear dynamic systems (Narendra and
Gallman, 1966). The Hammerstein model applied to a non-
linear sensor in closed-loop configuration is shown in Fig.15.
A Wiener model has the reverse system structure where the
linear dynamic part is followed by the nonlinear part. Oc-
casionally, combined models with Wiener-Hammerstein or
Hammerstein-Wiener structure are also used. The system
identification and assignment to one of the above models is
an intensive research field, which has to be considered sep-
arately and is beyond the scope of this work. However, also
for nonlinear sensors in closed-loop configuration, stability
has to be assured for all operating conditions. If an exist-
ing sensor can be approximated by one of the above models,
the stability of the closed-loop system can be achieved if the
non-linearity is bounded by a Lipschitz condition or satisfies
an appropriate sector condition. The basic idea is to deter-
mine the controller parameters which are included inG̃lin

s (s)

Xi DX Xc

linG (s)
~

Gs

lin
V Gcf (DX,t)

-

Figure 15. Hammerstein model of a nonlinear sensor in closed-
loop configuration. The model comprises a static nonlinear partf
ahead of a linear dynamic subsystem̃Glin

s . The linear subsystem
is composed of the linear time-invariant part of the sensor trans-
fer function as well as the linear amplifier and controller transfer
functions.

in such a way that a specific stability criterion is fulfilled
without consideration of the nonlinear part. Various stability
criteria do exist for this class of systems, e.g. circle criterion
or Popov’s criterion (Slotine and Li, 1991; Khalil, 1992).

Sensors exhibiting hysteresis are also nonlinear systems
and can thus be described by the models introduced above.
However, phenomenologically, the output signal of the core
sensor elementGs is kept at a quasi-static state around a
reference working point due to the feedback structure (see
Eq. 30). Since hysteresis mainly arises from dissipative ef-
fects like inner friction inside the core sensor element or large
amplitudes (e.g. plastic deformation of a spring element un-
der load), these effects are greatly suppressed by the compen-
sation method when assuming an actuator without hysteresis.

4.4 Dynamic system behavior

4.4.1 Response time

In general, the sensor response time of any sensor-type is
determined by the poles of its transfer function. In the sim-
plest case, only one pole, and thus only one time constant,
exists. However, for higher-order transfer functions, several
poles do exist. The pole that is located nearest to the imagi-
nary axis in the LOH is dominant and determines the time to
reach equilibrium. The condition for response time reduction
is that the dominant pole of the closed-loop system is located
in the LOH relative to the dominant pole of the open-loop
sensor

<{scomp
p } <<{sdefl

p } (31)

as schematically shown in Fig.16. As apparent from Table4,
the denominator coefficients of all transfer functions depend
on the controller parameters. This directly implies that in
principle the pole locations can be explicitly set in certain
limits by tuning the controller parameters.

Example: PT1-type sensor with P-controller

The best accessible example to understand the influence of
the closed-loop feedback structure on the sensor response
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x

Figure 16. Representation of the complex Gauss plane exhibiting
the real partr of the dominant polesdefl

p of the open-loop sensor
and the LOH relative to this pole (gray region). The dominant pole
scomp

p of the closed-loop sensor has to be located in this half plane to
enable a response time reduction according to Eq. (31).

,

time is the combination of a PT1-type sensor with a P-
controller. If one rearranges the respective transfer function
from Table4, one gets

Gcomp(s) =
K∗kP

1+K∗kP
·

1

1+ s T
1+K∗kP

=
Kcomp

1+ sTcomp
(32)

with

Tcomp=
T

1+K∗kP
. (33)

From Eq. (32) one can observe that the closed-loop system
is also a first-order system, however with a modified time
constantTcomp. This time constant depends on the impressed
time constantT of the open-loop sensor itself and inversely
on the feedback factor. Thus,T is reduced toTcomp by the
factor (1/(K∗kP)) and converges to zero forK∗kP→∞. The
time-dependent sensor output signal for a unit step input of
the open-loop PT1-type sensor as well as the closed-loop sen-
sor comprising a P-controller are shown in Fig.17a for dif-
ferent feedback factors.

From Fig.17a, one can observe the influence of different
feedback factors on the sensor response time and on the static
control deviation, as discussed in Sect.4.3.1. It is notewor-
thy that even a unity feedback leads to a minimization of
the closed-loop response time of 50 %, which can be seen
in Fig. 17b. Here, the normalized closed-loop time constant
is illustrated as a function of the feedback factor. Fig.17c
schematically illustrates the effect of the feedback structure
on the pole location of the closed-loop sensor.

For the combination of more complex controller and sen-
sor types, the transfer functions also become more complex.
Hence, for denominator polynomials of increasing order (two

or higher), the analytical determination of the poles becomes
more demanding. At order two a case differentiation has to
be made. For order three a general analytical solution is still
possible but not trivial and may not lead to valuable practical
conclusions. Therefore, to check the feasibility of a response
time reduction and to verify the influence of the different con-
troller types on the response time of the closed-loop system,
we use a similar method as already used to proof system sta-
bility. This method verifies which requirements have to be
fulfilled, so that all poles of the closed-loop transfer function
are placed in the LOH relative to the dominant pole of the
respective open-loop transfer function. This directly implies
a response time reduction. The steps required to accomplish
this are:

– The determination of the dominant poles of the open-
loop transfer functionssdefl

p and its real partsr =
<{sdefl

p }.

– The redevelopment of the denominator polynomials
Dcomp(s) of the closed-loop transfer functions at point
s= r into the new polynomialDr

comp(s) = dr
0+dr

1(s−r)+
. . .+dr

n(s− r)n using the Horner scheme.

– The evaluation of the coefficientsdr
0 . . . dr

n by applica-
tion of the Stodola condition and additional application
of the Routh criterion (forn> 2) to Dr

comp to evaluate if
all poles of the closed-loop transfer functions are placed
left of s= r (cp. gray region in Fig.16).

– The extraction of the controller parameters required to
meet these conditions.

A detailed example of this procedure can be found in Ap-
pendix C. In Table10, the dominant time constants of the
open-loop sensor as well as the parameter requirements for
a response time reduction for all sensor controller combina-
tions are proposed. From this table it can be seen that the ap-
plication of the compensation method can lead to a decisive
response time reduction. For a PT1-type sensor, the require-
ments are clear and simple. For higher order sensor types, the
requirements become more complex. However, in general it
can be observed that always one controller parameter only
depends on the parameters of the open-loop sensor or has
to be simply positive. The remaining controller parameters
depend on the respective other controller parameters as well
and cannot be chosen individually. This can be exemplarily
seen for the closed-loop time constant of a PT1-type sensor
in combination with a PI-controller in Fig.18. Here, the re-
quirements from Table10 are illustrated. It can be observed
that a response time reduction is only possible if the feed-
back factor amounts toK∗kP > 1 and if the integral timeTI is
smaller than the time constantT of the open-loop sensor. The
smaller the integral time is, the better response time reduction
can be achieved. However, for everyK∗kP, aTI exists where
the response time becomes minimal. These minimum points

J. Sens. Sens. Syst., 1, 5–27, 2012 www.j-sens-sens-syst.net/1/5/2012/



V. Schulz et al.: Compensation method in sensor technology 21

Table 10. Dominant time constants (|1/r |) of the three different sensor types as well as the requirements (parameter range) for a response
time reduction of the closed-loop sensor for all considered sensor-controller combinations.

Open-loop sensor Closed-loop sensor

Sensor Dominant P PI PID
type time constant

|1/r|

I: PT1 T kP > 0 kP >
1

K∗ , kP >
1

K∗ +
2kD
T

kI >
kP
T kI >

kP
T −

kD
T2

a

kD > −
T
K∗

b

II: PT2

(1) ϕ ≤ 2: 2T1
ϕ

– – kP >
ϕ2−4
4K∗ +

ϕkD
T1

kI >
ϕ(4K∗kP−ϕ

2+4)
8K∗T1

−
ϕ2kD

4T2
1

kD >
ϕT1
2K∗

2K∗[kI T
3
1−kDT1(1+K∗kP)+ϕK∗k2

D]

T1(ϕT1−2K∗kD) > 0 c

(2) ϕ > 2:
∣∣∣∣∣ 2T1

−ϕ+
√
ϕ2−4

∣∣∣∣∣ kP > 0 kP >
ϕ
√
ϕ2−4−ϕ2+4

2K∗ kP >
T1(ϕ
√
ϕ2−4−ϕ2+4)+K∗kD(2ϕ−2

√
ϕ2−4)

2K∗T1

kI >
kP

(
ϕ−
√
ϕ2−4

)
2T1

kI >
kPT1(ϕ−

√
ϕ2−4)+kD(ϕ

√
ϕ2−4−ϕ2+2)

2T2
1

ϕ > 3
√

2
kD >

T1(ϕ−3
√
ϕ2−4)

2K∗

2K∗kP

√
ϕ2−4−2K∗kI T1

3
√
ϕ2−4−ϕ

K∗2k2
D(2
√
ϕ2−4−2ϕ)+K∗kD(4ϕ2−4ϕ

√
ϕ2−4−14)T1−2K∗kI T

3
1+

T1(3T1

√
ϕ2−4−ϕT1+2K∗kD)

+2
√
ϕ2−4(ϕ2−3)−2ϕ3+8ϕ

> 0 c 2K∗kPT2
1

√
ϕ2−4+2K∗kPkDT1+T2

1 [
√
ϕ2−4(2ϕ2−6)+8ϕ−2ϕ3]

> 0 c

III: PT2-D

(1) ϕ ≤ 2: 2T1
ϕ

N.A. kP > 0 kP >
ϕkD
T1

kI >
2ϕK∗kPT3+T1(ϕ2−4)

4K∗T1T3
kI >

K∗(2ϕkPT1−ϕ
2kD)T3+T2

1 (ϕ2−4)

4K∗T12T3

kD > −
T2

1
K∗T3

b

(2) ϕ > 2:
∣∣∣∣∣ 2T1

−ϕ+
√
ϕ2−4

∣∣∣∣∣ N.A. kP > −
T1

√
ϕ2−4

K∗T3

b kP >
K∗kD(ϕ−

√
ϕ2−4)T3−T2

1

√
ϕ2−4

K∗T1T3

kI >
kP(ϕ−
√
ϕ2−4)

2T1
kI >

kP(ϕ−
√
ϕ2−4)T1+kD(ϕ

√
ϕ2−4−ϕ2+2)

2T2
1

kD > −
T2

1
K∗T3

b

a This condition is only valid for positivekI due to the stability requirement.
b This condition is automatically fulfilled due to the stability requirement.
c This condition results from the application of the Routh criterion.
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sensor using a PI-controller versus integral time. The gray region
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are indicated by the locus (small-dotted line). A further min-
imization ofTI will only lead to an under-damped oscillatory
system but not to a further response time reduction.

For the PT2-type and the PT2-D-type sensor, two differ-
ent cases according to the pole location were considered:
(1) ϕ = T2/T1 ≤ 2 (real double pole or a complex conju-
gate pole pair), and (2)ϕ = T2/T1 > 2 (two real poles). Note
that the combination of PT2-type sensor, which is critically-
damped (ϕ = 2) or under-damped (ϕ < 2) with a P- or PI-
controller, will never lead to a response time reduction. Only
the response time of over-damped systems (ϕ > 2) can be re-
duced using these controller types. However, the application
of a PID-controller overcomes this limitation. Due to the de-
pendence of all the specific requirements of all the sensor

controller combinations on many parameters, a graphical il-
lustration is not possible. Therefore, the controller parame-
ters enabling a response time reduction have to be calculated
for a specific problem. Subsequently, it has to be checked
that the obtained parameter range is a subset of the parame-
ter range for a stable minimum-phase system.

4.4.2 Output signal characteristics

While the response time is determined by the poles of the
transfer function, the zeros of the numerator influence the
signal characteristics, i.e. overshoot or undershoot of the step
response can occur. With the requirement of a minimum-
phase system, we already excluded the possibility of an in-
verse sensor response, i.e. undershoot. However, the loca-
tion of the zeros with respect to the pole location determines
whether the step response shows no maximum, one max-
imum or even several maxima before settling at the final
steady state. For a proper sensor behavior, a step response
which attains the final steady state as fast as possible, and
hence shows no maximum, is convenient. This is only possi-
ble if the transfer function only contains real poles and zeros.
The evaluation can be done best by rearranging the general
transfer function from Eq. (12) in its pole-zero representation
as

Gcomp(s) =
cm

dn

(s− s01) · (s− s02) · . . . · (s− s0m)
(s− sp1) · (s− sp2) · . . . · (s− spn)

=
c′m
d′n

(1+TN1) · (1+TN2) · . . . · (1+TNm)
(1+TD1) · (1+TD2) · . . . · (1+TDm)

, (34)

with

s0µ = −
1

TNµ
, spν = −

1
TDν
. (35)
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For further considerations, we assume the time constants to
be ordered by size as

TN1 ≥ TN2 ≥ . . . ≥ TNµ, µ = 1, . . . , m,

TD1 ≥ TD2 ≥ . . . ≥ TDν, ν = 1, . . . , n. (36)

A step response without overshoot (no maximum) is possible
if all time constants are real and every numerator time con-
stantTNµ is smaller than the corresponding denominator time
constantTDν.

Therefore, the controller parameters have to be chosen
such that the above requirement is fulfilled. Consequently,
a transfer function exhibiting only real poles and no zeros
never shows an overshoot of its step response. Note that
changing the numerator time constants also changes the de-
nominator time constants, because they depend on each other
via the controller parameters and cannot be changed individ-
ually.

5 Conclusions and summary

Based on a general sensor model, both the deflection and
the compensation method have been described and compared
in a general systematic fashion. A system-based approach
was applied with regard to important figures of merit of sen-
sor technology. In particular, the quasi-static sensor behav-
ior comprising systematic static variations of the sensitivity,
long-term drift effects as well as the dynamic sensor behav-
ior, i.e. response time and output signal characteristics, has
been described. Three sensor types, i.e. PT1-, PT2-, and PT2-
D-type sensors, which cover most of the existing sensors,
were analyzed concerning both measurement methods.

In conclusion, for a sensor operated with the deflection
method the following applies:

– A static sensitivity change of the sensor due to an exter-
nal interference quantity directly influences the sensor
output signal.

– Quasi-static sensitivity changes, i.e. long-term drift ef-
fects, lead to a continuous infinite increase of the output
signal, whereas an explicit assignment of the input sig-
nal to the output signal is not possible without additional
stipulations.

– The response time is impressed by the sensor princi-
ple and the sensor material properties, as well as by
the underlying physical phenomena, respectively. This
directly reflects in the coefficients of the denominator
polynomial of the respective transfer function.

– For the transfer functions studied, the output signal
characteristics is in direct correlation with the response
time of the sensor, and thus just determined by the de-
nominator coefficients.

– For the operation of the sensor, a detailed understanding
of the sensor structure or sensor modelling is not neces-
sary. Only sensor calibration is necessary.

– The system complexity is relatively low compared to the
compensation method.

For a sensor operated with the compensation method, the
following conclusions can be drawn:

– A sensor operated with the compensation method con-
stitutes a feedback system as known from feedback
loops in automatic control.

– Different from feedback loops in automatic control, the
measuring signal is the compensation quantity, i.e. the
output signal of a controller/actuator unit.

– Like for every feedback loop system, system stability
plays a decisive role and has to be assured for all sensor
operation conditions.

– For the studied closed-loop sensor transfer functions,
stability and additional minimum-phase behavior is as-
sured for the set of positive controller parameters.

– Static sensitivity changes of the core sensor element due
to an external interference quantity are suppressed by
the static gain of the feedback elements. Thus, the influ-
ence on the output signal is only marginal, and for some
sensor controller combinations even zero.

– Sensors exhibiting long-term drift effects can be sta-
bilized, so that a constant output signal is achieved at
the steady state. This is even possible with a simple
unity feedback. P- and PI-controllers have been found
to be most suitable for drift suppression, whereas a PID-
controller is less adequate.

– Non-linearities of a sensor in closed-loop operation are
linearized to a certain extent due to the actual operation
around a reference working point. A sensor operated
by the compensation method shows linearized input–
output characteristics compared to the same sensor op-
erated in deflection method when assuming a linear ac-
tuator.

– A sensor exhibiting nonlinear behavior can be operated
with the compensation method by using linear standard
controllers.

– The poles of the closed-loop sensor transfer function
can be tuned by the controller parameters. In princi-
ple, the response time can be decisively reduced com-
pared to an open-loop sensor. The requirements for a
response time reduction have been calculated for all
sensor-controller combinations. However, for a PT2-
type sensor with a real double pole or a complex conju-
gate pole pair, a response time reduction is not possible
with a P- or PI-controller.
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– The output signal characteristics depends on the loca-
tion of the zeros with respect to the location of the poles.
However, both zeros and poles are a function of the con-
troller parameters and cannot be set separately.

– To determine the optimized controller parameters, a de-
tailed model of the core sensor element and all possible
peripheral devices must exist, which makes the sensor
design more demanding.

– Compared to the deflection method, the application of
the compensation method results in a higher system
complexity due to the necessity of additional devices
like a controller and actuator.

Appendix A

Application of the Routh criterion

To evaluate the sufficient condition for asymptotic stability
of a closed-loop transfer function with denominator degree
three or higher, the positive coefficientsdν (ν = 0,1,2, ...,n)
of the denominatorDcomp(s) have to be arranged in the first
two lines of the Routh table as follows (Gantmacher, 1959):

n: dn dn−2 dn−4 · · · 0
(n-1): dn−1 dn−3 dn−5 · · · 0
(n-2): en−1 en−2 en−3 · · · 0
(n-3): fn−1 fn−2 fn−3 · · · 0
. . . .
. . . .
. . . .
3: gn−1 gn−2 0
2: hn−1 hn−2 0
1: in−1 0
0: jn−1

The coefficientsen−1, en−2, en−3, . . . in the third line result
from the cross product of lines one and two:

en−1 =
dn−1dn−2−dndn−3

dn−1
,

en−2 =
dn−1dn−4−dndn−5

dn−1
,

en−3 =
dn−1dn−6−dndn−7

dn−1
, . . .

The calculation of the e-values is carried out until all remain-
ing values are zero. The calculation of the f-values is carried
out analogous with the two overlying lines as:

fn−1 =
en−1dn−3−dn−1en−2

en−1
,

fn−2 =
en−1dn−5−dn−1en−3

en−1
,

fn−3 =
en−1dn−7−dn−1en−4

en−1
, . . .

From these two new lines again further lines can be cal-
culated. Note that the last coefficient in the Routh table
matches the absolute term of the denominator polynomial
Dcomp, i.e. jn−1 = d0.

The Routh criterion is:

The characteristic polynomialDcomp(s) of the closed-
loop transfer function with positive coefficients dν (ν =
0,1,2, . . . ,n) describes an asymptotic stable system, if and
only if all coefficients in the first column of the Routh table
are positive:

en−1 > 0, fn−1 > 0, . . . ,gn−1 > 0,hn−1 > 0, in−1 > 0, jn−1 > 0.

Example: PT2-type sensor with PID-controller

As shown in Table4, the denominator polynomial is
Dcomp(s) = T2

1 s3+ (T2+K∗kD)s2+ (1+K∗kP)s+K∗kI .
Therefore, the complete Routh table reads:

3: T2
1 (1+K∗kP) 0

2: (T2+K∗kD) K∗kI 0

1:
(T2+K∗kD)(1+K∗kP)−T2

1 K∗kI

T2+K∗kD
0

0: K∗kI

Therefore, the Routh criterion is:

T2
1 > 0, (T2+K∗kD) > 0, K∗kI > 0, (1+K∗kP)−

T2
1 K∗kI

T2+K∗kD
> 0.

The first three requirements are already fulfilled by the nec-
essary condition that all coefficients of the denominator poly-
nomial have to be positive. Therefore, the third requirement
can be regarded as real sufficient condition that must be ad-
ditionally considered to guarantee system stability.

Appendix B

Closed-loop sensor with time-dependent parameter
variations

B1 Parameter range for stability and a minimum-phase
system for a drift-afflicted sensor

The parameter range to assure a BIBO-stable and a
minimum-phase system for the transfer functions in Table8
in Sect.4.3.3are listed below in TableB1. For the utilization
of a PID-controller, the stability requirement arising from the
Routh criterion can be rewritten as

kP+K∗k2
P+K∗kDkPδ+

kI

δ
+

K∗kIkP

δ
+K∗kDkI > K∗kDkI .

From this description it can be easily seen that the inequation
is fulfilled if the controller parameters are positive. Thus, the
closed-loop sensor system – comprising a PID controller – is
stable if all controller parameters are positive.
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Table B1.Combined parameter range guaranteeing system
stability and a minimum-phase system for a drift-afflicted sensor
with linear drift.

Parameter range for a BIBO stable and
minimum-phase system

P kP > 0

PI kP ≥ 0, kI > 0

PID kP > −
kI
δ

and kP ≥ −kDδ, kI > 0, kD > 0

K(kP+
kI
δ

) > K2kDkI
1+KkP+KkDδ

∗

∗ This requirement results from the application of the Routh
criterion.

B2 ISE quality criteria for the different controller types

Based on the coefficients of the numerator and denomina-
tor polynomial of the compensation deviation∆X(s), the ISE
quality criteria for the different controller types can be calcu-
lated according to TableB2.

Appendix C

Redevelopment of the denominator polynomial

As a representative practical example of the method of the
redevelopment of the denominator polynomial to verify the
possibility of a response time reduction, the combination of a
PT2-sensor with a PI-controller shall be used. This is accom-
plished using the steps described in Sect.4.4.1:

1. Determination of the dominant pole of the
open-loop sensor

The dominant pole is

sdefl
p =

−T2+

√
T2

2 −4T2
1

2T2
1

. (C1)

For the determination of the real part, a case differentiation
has to be made:

(1) ϕ =
T2

T1
≤ 2 : r1 = <{sdefl

p } = −
T2

2T2
1

=
ϕ

2T1
, (C2)

(2) ϕ =
T2

T1
> 2 : r2 =<{s

defl
p } =

−T2+

√
T2

2 −4T2
1

2T2
1

=
−ϕ+

√
ϕ2−4

2T1
. (C3)

2. Redevelopment of the denominator polynomial of the
closed-loop sensor at point s= r

According to Table4, the denominator polynomial of the
closed-loop transfer function is

Dcomp(s) = T2
1 s3+T2s2+ (1+K∗kP)s+K∗kI . (C4)

The application of the Horner scheme to Eq. (C4) leads to
the general representation of the redeveloped polynomial at
point s= r as

Dr
comp(s) = r +K∗(rkP+ kI)+ r3T2

1 + r2T2

+(2rT2+3r2T2
1 +K∗kP+1)(s− r)

+(T2+3rT 2
1)(s− r)2

+T2
1(s− r)3. (C5)

3. Evaluation of the polynomial coefficients

The resulting polynomial coefficientsdr
0, . . . ,d

r
3 of the rede-

veloped polynomial are now calculated for the two different
cases. Furthermore, the Stodola conditiondr

0 > 0, . . . ,dr
3 > 0

is applied to calculate the resulting controller parameters.
(1) r = r1:

dr1
0 =

8K∗kIT1−4ϕK∗kP+ϕ
3−4ϕ

8T1
> 0

dr1
1 =

4K∗kP−ϕ
2+4

4
> 0

dr1
2 = −

ϕT1

2
> 0

dr1
3 = T2

1 > 0 (C6)

From the evalutaion of the parameters it can be easily seen
thatdr1

2 > 0 can never be fulfilled. Thus, the Stodola condition
is not satisfied. Consequently, a response time reduction is
not possible for this case. Hence, further evaluation of the
Routh criterion is not necessary.
(2) r = r2:

dr2
0 =

K∗(2kIT1+ kP

√
ϕ2−4−ϕkP)

2T1
> 0

dr2
1 =

2K∗kP−ϕ
√
ϕ2−4+ϕ2−4
2

> 0

dr2
2 =

T1(3
√
ϕ2−4−ϕ)
2

> 0

dr2
3 = T2

1 > 0 (C7)

The Routh criterion according to AppendixA can be written
as

dr2
1 −

dr2
3 dr2

0

dr2
2

> 0, (C8)

and rewritten as

−2K∗kIT1+
√
ϕ2−4(2K∗kP+2ϕ2−6)−2ϕ3+8ϕ

3
√
ϕ2−4−ϕ

>0. (C9)

www.j-sens-sens-syst.net/1/5/2012/ J. Sens. Sens. Syst., 1, 5–27, 2012



26 V. Schulz et al.: Compensation method in sensor technology

Table B2.Compensation deviation∆X(s) as a function of the controller parameters for the three controller types and the rules for the
calculation of the ISE performance indexJ according toNewton et al.(1964).

∆X(s) Performance indexJ

P 1
(1+K∗kP)s+K∗kPδ

=̂
k0

l0+l1s

k2
0

2l0l1

PI s
(1+K∗kP)s2+(K∗kI+K∗kPδ)s+K∗kIδ

=̂
k0+k1s

l0+l1s+l2s2

k2
1l0+k2

0l2
2l0l1l2

PID s
K∗kD s3+(1+K∗kP+K∗kDδ)s2+(K∗kI+K∗kPδ)s+K∗kIδ

=̂
k0+k1s

l0+l1s+l2s2+l3s3

k2
2l0l1+(k2

1−2k0k2)l0l3+k2
0l2l3

2l0l3(l1l2−l0l3)

The conditionT2
1 > 0 is automatically fulfilled. The remain-

ing inequations can now be solved forϕ and the respective
controller parameterskP, kI , as stated in Table10.
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