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Abstract. Virtual assembly (VA) is a method for datum definition and quality prediction of assemblies consid-
ering local form deviations of relevant geometries. Point clouds of measured objects are registered in order to
recreate the objects’ hypothetical physical assembly state. By VA, the geometrical verification becomes more
accurate and, thus, increasingly function oriented. The VA algorithm is a nonlinear, constrained derivate of the
Gaussian best fit algorithm, where outlier points strongly influence the registration result. In order to assess
the robustness of the developed algorithm, the propagation of measurement uncertainties through the nonlinear
transformation due to VA is studied. The work compares selected propagation methods distinguished from their
levels of abstraction. The results reveal larger propagated uncertainties by VA compared to the unconstrained
Gaussian best fit.

1 Current trends in dimensional metrology and
state-of-the-art datum definition and uncertainty
assessment

As quality demands on products increase, tolerance speci-
fications for parts become more and more complex. With
these challenging geometrical specifications, verification al-
gorithms are required that represent the geometrical sys-
tem more precisely. According to Nielsen (2003), in the last
few decades, dimensional tolerances shrank due to improved
manufacturing systems. However, the form deviations could
not be reduced by the same extent. Therefore, their consider-
ation should be intensified. A main deficit in the current In-
ternational Organization for Standardization (ISO) standard
for datum definition, ISO 5459 (Deutsches Institut für Nor-
mung e.V., 2011), is the lack of consideration of local form
deviations for datum features. A datum feature is defined as a
“real (non-ideal) integral feature used for establishing a sin-
gle datum” (Deutsches Institut für Normung e.V., 2017, p.
2). Datum systems composed of three datum features mathe-
matically define a coordinate system. This allows the defini-
tion of tolerance zones for extrinsic tolerances (Weißgerber
and Keller, 2014). About 80 % of all measurement tasks re-

quire datum systems, so a further function-oriented datum
system definition has a strong impact on geometrical veri-
fication. Hence, an assessment of the uncertainty for datum
systems is of broad interest. Figure 1 shows a datum defini-
tion, where three perpendicular associated planes are consid-
ered in a nested approach. The primary datum constrains 3
degrees of freedom (DOF), the secondary datum 2 DOF and
the tertiary datum 1 DOF (Gröger, 2015).

1.1 Concept of the virtual assembly

In this paper, measurement data of physical objects are gath-
ered from measurements using industrial computed tomog-
raphy (CT). Registration is the action of aligning a data
set relatively to another according to a datum definition in
a common coordinate system. Virtual assembly (VA) com-
prises the consideration of local form deviations in the da-
tum system computation. As shown in Fig. 1a, through VA,
the physical workpiece contact is simulated by computing
the contact points. The registration for VA is mathematically
stated as an optimization problem, as introduced in Weißger-
ber and Keller (2014). In the following, matrices are marked
as boldface capital, vectors in boldface italic, and scalar
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Figure 1. Datum definition by nested registration, using associated planes (a), registration approach according to the default case in the
current standard, (b) and registration approach according to virtual assembly (c).

values in roman formatting. The signed distances dsig,i of
i ∈ 1. . .N , i ∈ N+, corresponding pairs of points

{
p1,i,p2,i

}
,

with p1,i ∈ P 1 and p2,i ∈ P 2 determine the clearance be-
tween the surfaces to register. P 1 and P 2 are point sets of
surfaces 1 and 2, respectively, as presented in Fig. 1b and c.
The objective function f of the optimization problem is as
follows:

f
(
tx, ty, tz,φ,θ,ψ

)
=

N∑
i=1

d2
sig,i =min!, (1)

where the sum of the squared signed distances dsig is min-
imized. The optimization variables tx , ty , and tz determine
the translation, and φ, θ , and ψ are the Euler angles of the
rigid transformation of the point set to register P 2 to the fixed
point setP 1. The avoidance of a physical intersection of parts
is formulated as the omission of surface intersection, where
P 1 ∩P 2 =∅.

This optimization constraint can be either formulated as
a hard constraint, as implemented in this work, allowing
dsig,i ≥ 0 only, or by a soft constraint by introducing a
penalty term in order to permit small intersections. How-
ever, the constrained optimization is formulated as an un-
constrained, differentiable optimization problem by using the
Lagrange multiplier method (Griva et al., 2009). Thus, a La-
grange function L, according to the following:

L (M,λ)= f (M)+ λ · g (M)=
N∑
i=1

d2
sig,i

+ λ ·

Nneg∑
j=1

dsig,neg,j , (2)

with λ as the Lagrange multiplier and g (M) as sum
of squared negative signed distances dsig,neg,j is intro-
duced, where j ∈

[
1;Nneg

]
, j ∈ N+, and Nneg =

∣∣Dsig,neg
∣∣

is the cardinality of the set of negative signed distances
Dsig,neg =

{
dsig | dsig < 0

}
for a particular transformation

M
(
tx, ty, tz,φ,θ,ψ

)
. The first-order optimality condition

can be stated as ∇L= 0. The transformation of each point
p2,i of the point set P 2 from its initial scene coordinate sys-
tem into the transformed world coordinate system, defined

by the datum system and, in the following, denoted by super-
script Tr, is defined as follows:

PTr
2 =M ·P 2 = (R+T) ·P 2, (3)

where PTr
2 is the transformed point set, R is the rotation ma-

trix gathered by matrix multiplication of the individual rota-
tion matrices for φ, θ , and 9 in the named order, T is the
translation matrix with its components tx , ty , and tz, and M
is the composed transformation matrix. The signed distances
dsig,i are determined according to the following:

dsig,i = sign
(
nTi ·P

Tr
2,iP 1,i

)
·
∥∥P Tr

2,i −P1,i
∥∥

2, (4)

where ni is the normal vector in P1,i . The optimization prob-
lem is nonlinear due to trigonometric functions arising at
transformation, as shown in the explicit depiction in matrix
notation in Eq. (5) for a point p2,i

(
p2,i,x,p2,i,y,p2,i,z

)
, as

per the following:

pTr

2,i,x
pTr

2,i,y
pTr

2,i,z
1

=
 cosθ · cosψ −cosθ · sinψ sinθ tx

sinφ · sinθ · cosψ + cosφ · sinψ −sinφ · sinθ · sinψ + cosφ · cosψ −sinφ · cosθ ty
−cosφ · sinθ · cosψ + sinφ · sinψ cosφ · sinθ · sinψ + sinφ · cosψ cosφ · cosθ tz

0 0 0 1



·

p2,i,x
p2,i,y
p2,i,z

1

 . (5)

1.2 Introduction to measurement uncertainty
assessment

A complete statement of a measurement result includes the
measurement uncertainty. The measurement uncertainty is a
nonnegative quantity expressing doubt about the measured
value, defined as a “parameter, associated with the result of
a measurement, that characterizes the dispersion of the val-
ues that could reasonably be attributed to the measurand”
(ISO/IEC, 2008b). In ISO/IEC (2008a), the main stages of
uncertainty assessment are described as formulation, propa-
gation, and summarizing. During formulation, generally the
measurand Y is defined, input quantities X are determined,
and the measurement model is established as follows:

Y = f (X) . (6)

A main step is the uncertainty estimation for the input quan-
tities. The Guide to the expression of uncertainty in mea-
surement (GUM) (ISO/IEC, 2008b) reveals two methods for
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uncertainty estimation. With a type A evaluation, statistical
quantities from independent, uncorrelated observations are
assessed. With a type B evaluation, the uncertainty is esti-
mated based on a priori information, such as specifications,
previous measurements, calibration data, or user experience.
Since no a priori knowledge is available in this work, the
type A evaluation is conducted as described in Sect. 3.1. Un-
certainties are separated in systematic and stochastic con-
tributors. Since no calibrated values are available, the sys-
tematic error (bias) from a calibrated true value is omitted
in this work. During the propagation step, uncertainties as-
signed to Y are propagated through the measurement model.
An overview on propagation methods is given in Sect. 3.2. At
the summarizing step, the propagated uncertainty is consoli-
dated into a coverage interval, extended by coverage factor k
(ISO/IEC, 2008a).

2 Aim and scope of this paper

The aim of this work is to analyze the uncertainty propaga-
tion for the VA algorithm. Since only few contact points may
influence the hard constraint of the optimization problem, a
lower robustness compared to existing methods is initially as-
sumed. At the moment, uncertainty propagation is commonly
not considered for fitting algorithms such as the VA. How-
ever, information gathered from the uncertainty propagation
could, on the one hand, be used to claim the robustness of a
registration result and, hence, the derived measurements. On
the other hand, this allows a reduction in the uncertainty con-
tribution of registration algorithms, for example, by avoiding
less certain registration results.

As a use case, a linear guide assembly, consisting of a
slider mounted to a rail, is assessed, which is shown in Fig. 3.
Measurement data were captured using the CT system Werth
TomoScope HV 500, with an acceleration voltage of 180 kV,
a tube current of 240 mA, an integration time of 500 ms,
1000 projection images, and a resulting voxel size of 0.2 mm.

3 Description of methods for uncertainty
assessment and propagation

The propagation model corresponds to the model function
PTr

2 =M ·P 2 outlined in Eq. (3). Each quantity has an as-
sociated uncertainty. The initial uncertainties before prop-
agation comprise the transformation uncertainty uT, asso-
ciated to transformation M, and the point uncertainty UPt,
associated to the point set P 2. The propagated uncertainty
UTr is associated to the transformed measurement point set
PTr

2 . In the following, multiple modalities for the declara-
tion of the propagated uncertainty are introduced. The ma-
trix UTr

=

[
uTr

x ,u
Tr
y ,u

Tr
z

]
comprises the uncertainty compo-

nents of the x, y, and z coordinates. The composition of the
uncertainty components uTr

x , uTr
y and uTr

z to the combined

standard uncertainty uTr
c is defined as follows:

uTr
c =

√(
uTr

x
)2
+

(
uTr

y

)2
+
(
uTr

z
)2
, (7)

which allows the representation of multivariate measurands
in a scalar value. For the mathematical formulation of the
propagation, the uncertainties are stated in form of their cor-
responding covariance matrices. All uncertainties arise from
normal distributions due to a Gaussian distribution of random
variables in the measurement process. In Fig. 2, the graphi-
cal decomposition of the propagation model is shown. In the
following Sect. 3.1, the assessment of the initial uncertain-
ties, UPt and uT, is described. In Sect. 3.2, the propagation
to determine UTr and uTr

c is described.

3.1 Assessment of the initial uncertainties

The measurement point uncertainty UPt associated to P 2 is
assessed experimentally by 20 repeated CT scans at constant
measurement settings. It is determined according to the sin-
gle point uncertainty approach proposed by Fleßner et al.
(2016). For measurement point i ∈ 1. . .N , i ∈ N+, the uncer-
tainty matrix is defined according to the following:

UPt =

uPt,1,x · · · uPt,i,x · · · uPt,N,x
uPt,1,y · · · uPt,i,y · · · uPt,N,y
uPt,1,z · · · uPt,i,z · · · uPt,N,z

 . (8)

The column components uPt,i,x = uPt,i,y = uPt,i,z = uPt,i are
equal, since the used uncertainty assessment approach does
not allow the consideration of a probing direction.

The uncertainty uPt,i equals the standard deviation sPt,i of
the normally distributed distances dv,i that are gathered from
the 20 scan repetitions v ∈ 1. . .V , with d i as the average dis-
tance of all repetitions for each particular point index i, ac-
cording to the following:

uPt,i = sPt,i =

√√√√ 1
V − 1

V∑
v=1

(
dv,i − d i

)2
. (9)

In order to calculate the Euclidean norm, as follows:

dv,i =
∥∥pv,m−pi∥∥2, (10)

which is referring to the average point pi , corresponding sets
of points

{
pi,pv,m

}
are gathered by a k-nearest-neighbors

spatial search that identifies the indices m in pv correspond-
ing to each i in P i . P i denotes the point set of average points
pi ∈ P i that are the mean coordinates of all repetitions v de-
termined for each i. The uncertainty of transformation is as
follows:

uT =
[
uT,x,uT,y,uT,z,uφ,uθ ,uψ

]
, (11)

and it includes the uncertainties of the optimization variables
that are stated in Eq. (1). If uT is small, a high repeatability of
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Figure 2. Graphical decomposition of the propagation model.

Figure 3. Shown, from left to right, is the 3D representation of the VA, the front view of the assembly, and a technical drawing of the datum
system (primary datum A, secondary datum B, and tertiary datum constrained to zero tz = 0 and defined for both the rail and the slider.

registration results can be assumed. The uncertainty uT is as-
sessed by a Monte Carlo propagation, according to ISO/IEC
(2008a), as the standard deviations of the optimization vari-
ables from K = 10 000 repetitions, where the point set P 2 is
slightly transformed with the delta transformation as follows:

δT=
[
δtx,δty,δtz,δφ,δθ,δψ

]
. (12)

The small transformations in δT are random realizations
from a population N (0,σT) for the translations tx , ty , tz and
N (0,σR) for rotations φ, θ , and ψ . In this work, based on
scientific judgment (type B evaluation according to ISO/IEC,
2008a), the values σT = 0.1mm and σR = 0.001 rad are ap-
plied. The mean transformation of all K observations is con-
sidered as the true transformation, as follows:

T =
[
tx, ty, tz,φ,θ,ψ

]
. (13)

3.2 Uncertainty propagation method

For the mathematical formulation of the propagation, the
variance–covariance matrix 6 (hereafter just covariance ma-
trix) is introduced. Generally speaking, this quadratic matrix
comprises the uncertainties ul,m in form of their variances
s2
l,m = u2

l,m, where the diagonal entries for l =m represent
the variances, and correlations are expressed by the covari-
ances for l 6=m. The covariances are zero because the in-
put variables are assumed to be uncorrelated, according to
Galovska et al. (2012). Eigenvectors and eigenvalues of 6
describe a rotational uncertainty ellipsoid, as shown in Fig. 4.
For the generic measurement model Y= f (X), the covari-
ance matrix 6x is propagated into 6y by matrix multiplica-

tion, according to the following:

6y = Jy,x ·6x · J′y,x, (14)

where J is the Jacobian matrix developed in x, x is the es-
timate of X, and J′ is the transposed Jacobian matrix. The
derivatives occurring due to the Jacobian matrix J are analo-
gous to a Taylor series expansion. To cover nonlinear propa-
gation functions, higher-order terms of the Taylor series need
to be considered. The work of Galovska et al. (2018) gives
a further overview on uncertainty propagation methods in
the context of virtual measurements of gaps for the automo-
tive body in white. In our work, both the covariance matrices
6Pt,i for a certain point i, and 6T gathered from the trans-
formation uncertainty uT , are propagated through the trans-
formation function f (refer to Eq. 3) into 6Tr (Chong and
Mori, 2001; Galovska et al., 2012; Rüschendorf, 2016; Zeier
et al., 2012).
6Pt,i, and 6T are formulated as diagonal matrices accord-

ing to the following:

6Pt,i = diag
(
u2

Pt,i,u
2
Pt,i,u

2
Pt,i

)
and (15)

6T = diag
(
u2

T,x,u
2
T,y,u

2
T,z,u

2
φ,u

2
θ ,u

2
ψ

)
. (16)

The transformed uncertainties uTr
x ,u

Tr
y , and uTr

z correspond
to the square root of the diagonal entries in matrix 6Tr for
column and row indices l =m equal to one, two, and three
for the x, y, and z components, respectively.

The linear propagation (LP) is valid for small rotations
due to the small angle approximation, where sinx ≈ x and
cosx ≈ 1 for small values of x. Due to a preceding rough
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Table 1. Comparison of propagation methods concerning relative difference and normalized computation time in arbitrary units.

Propagation method Linear propagation (LP) Second order propagation (SO) Monte Carlo propagation (MC)

Mean relative difference drel
(standard deviation of drel)

2.57× 10−3 (1.25× 10−3) 3× 10−6 (7× 10−6) 0

Normalized computation time
referring to LP

1 1.6 14.3

Figure 4. Uncertainty components uTr
x , uTr

y , and uTr
z of the x, y, and z components, respectively (from left to right), and uncertainty ellipsoid

for UPt (small red sphere) and UTr (large brown ellipsoid) around an arbitrarily selected point.

alignment, rotations smaller than 0.01 rad (≈ 0.6◦) are deter-
mined by VA, resulting in relative errors of 1.7× 10−5 for
the sine function and 5×10−5 for the cosine function. To as-
sess the effect of possible approximation errors, the results
for the LP are compared to the propagation results for the
second order (SO) and the Monte Carlo (MC) propagation.
For this purpose, the propagation methods implemented in
the UncLib library in MATLAB R2018b supplied by Wol-
lensack (2020) were used.

4 Discussion

Figure 3 shows the coordinate system (CS) orientation and
the datum of A and B, respectively, that define the assem-
bly. The CS position is centered in the barycenter of the
slider. Each point p2,i in P 2 is rotated around the CS ori-
gin p0(0 | 0 | 0), with a radius ri , which is defined as the Eu-
clidean distance of the point and origin, according to the fol-
lowing:

ri =
∥∥p2,i−p0

∥∥
2. (17)

Due to the contribution of the transformation uncertainty
uT to the transformation, the propagated uncertainty UTr in-
creases with an increasing radius r , which can be related by
analyzing the visualizations in Fig. 4, where the components
uTr

x , uTr
y , and uTr

z increase towards the corners of the ana-
lyzed slider. The uncertainties of rotational transformation
parameters cause parabolic and circular patterns for the prop-
agated uncertainties. Here, a large uncertainty u2 of the ro-
tation in 2 causes a large uncertainty uTr

x . The components

uTr
y and uTr

z are affected to a smaller extent by uφ and uψ ,
respectively. The uncertainties uT,x , uT,y , and uT,z cause an
offset to uTr

x , uTr
y , and uTr

z , respectively. The datum A (see
Fig. 3) constraining the x translation shows the largest prop-
agated uncertainty uTr

x of about 0.1 mm. The uncertainty uTr
y

of about 0.06 mm, associated to datum B and constraining the
y direction, is nearly half as large. The uncertainty uTr

z in the
z direction is about 0.01 mm, which matches the initial un-
certainty before propagation, since tz is constrained to zero.
The fact that uTr

x is about 2 times the magnitude of uTr
y might

be an effect of imbalanced point sets because datum B con-
tains about half the points of datum A. Due to a high uncer-
tainty uTr

x , the projection of the uncertainty ellipsoid shown
in Fig. 4 in the x–y plane is distorted in the x direction. If
no rough pre-alignment is performed before VA, an increase
in the uncertainty uTr

c of about a factor of 10 is observed be-
cause the optimization result converges poorly for the equal
termination criteria. This emphasizes the need for a sufficient
pre-alignment. By comparing the uncertainty uTr

c for the VA
algorithm to an unconstrained Gaussian best fit registration,
an increase in uTr

c of about 50 % to 68 % was observed, as
shown in Fig. 6. Hence, the VA algorithm results in approxi-
mately twice the measurement uncertainty. The mean relative
differences are as follows:

drel =mean

(
uTr

c −u
Tr
c,MC

uTr
c,MC

.

)
(18)

For the LP and SO propagation methods referring to the
MC propagated uncertainty uTr

c,MC are presented in Table 1.
According to ISO/IEC (2008a), the MC method should be
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Figure 5. Uncertainty uTr
c of the slider (a) and histogram of uncertainty components UPt, uTr

x , uTr
y , uTr

z , and uTr
c (b).

Figure 6. Histogram of the initial uncertainty UPt and propagated uncertainty uTr
c for VA and the unconstrained (unconstr.) Gaussian best

fit (a). Histogram of relative differences 1uTr
c between VA and unconstrained Gaussian best fit (b).

used when a linearization of the propagation function is in-
adequate and, therefore, is considered as the ground truth
method. The propagated distribution is gathered due to prop-
agating a large number of random samples (here 106 sam-
ples) through the model function. For both the LP and SO
propagation, the values of drel are negligibly small, so that no
significant variation in uTr

c was observed. For a median prop-
agated uncertainty ũTr of approximately 0.25 mm, the rela-
tive difference of 2.57× 10−3 for the LP propagation results
in an absolute error of approximately ±0.7 µm only. How-
ever, relative to the LP propagation, the computational cost
for the MC propagation is about 14.3 times higher, while the
factor of the SO propagation is merely about 1.6.

5 Conclusion and outlook

The main contribution to the propagated uncertainty is due to
the uncertainty in the transformation parameters uT, which
depend on the formulation of the registration problem. Con-
firming the work of Galovska et al. (2012), it was shown that
the number and arrangement of the reference points consid-
ered for registration strongly influence the propagated uncer-
tainty. By an unconstrained Gaussian best fit, all points are
weighted equally, which reduces the uncertainty compared
to the VA algorithm, where certain points are considered in

the constraint function. Thus, compared to the unconstrained
Gaussian best fit, the uncertainty is nearly doubled. A preced-
ing rough alignment helps to strongly reduce the propagated
uncertainty. Due to small transformations remaining for the
VA after pre-alignment, the small angle approximation and,
hence, a linear propagation model can be sufficiently applied.
The propagated uncertainties are relatively large. The main
contribution to the propagated uncertainty UTr is the uncer-
tainty of transformation uT. Large observed values for uT
are also assumed to be caused due to large values for the
delta transformation δT. Since, in practice, no random shift
of the point set to register occurs, for practical measurements
the uncertainty of transformation uT and the propagated un-
certainty UTr are assumed to be considerably smaller. As an
outlook, the propagation model can be prospectively used
to state uncertainties for virtual measurements that are per-
formed on the registered data sets. Here the analysis of the
gap flush between the taillight and tailgate for an automotive
application by virtual measurements regarding uncertainties
is to mention Galovska et al. (2018). Parameter studies on
best termination criteria can be performed, aiming to mini-
mize the uncertainty of transformation uT.

The propagation model can be verified by analyzing re-
peatability studies on virtual measurements of registered
assemblies. Moreover, computationally efficient minimum
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variance estimators, such as Kalman filters can be studied
in order to evaluate the preliminary VA registration result
during an iteration based on the magnitude of uncertainty.
As a further approach, the Jacobian matrix J of the uncer-
tainty propagation can be evaluated during the VA optimiza-
tion, which is a measure for the sensitivity of the propagated
uncertainty towards the transformation variables. By doing
so, fewer uncertain registration results can possibly be deter-
mined.
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