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Abstract. The article discusses the method for the classification of non-moving civil objects for information
received from unmanned aerial vehicles (UAVs) by synthetic aperture radar (SAR). A theoretical approach to
analysis of civil objects can be estimated by cross-entropy using a naive Bayesian classifier. The entropy of
target spots on SAR images revaluates depending on the altitude and aspect angle of a UAV. The paper shows
that classification of the target for three classes able to predict with fair accuracy P = 0,964 based on an artificial
neural network. The study of results reveals an advantage compared with other radar recognition methods for a
criterion of the constant false-alarm rate (PCFAR < 0.01). The reliability was confirmed by checking the initial
data using principal component analysis.

1 Introduction

The trend of the modern airborne radar systems for ground
monitoring is the introduction of machine learning and artifi-
cial intelligence technologies (Gini, 2008). The methods us-
ing automatic detection and recognition of the objects over
the underlying surface are required in the tasks of terrain
mapping, aerial photography, and video fixation (Pillai et
al., 2008; Soumekh, 1999). The physical principles of radar
recognition are based on the received echo signals from
radar contrast targets, Doppler shifts of moving objects, and
changes in the polarization structure of the reflected wave
(Lee and Pottier, 2009).

One of the prospective directions is the use of unmanned
aerial vehicles (UAVs), which monitor the Earth’s surface
by synthetic aperture radar (SAR). These radar systems en-
sure images in real time are received at different altitudes
and varying aspect angles (Moreira et al., 2013; Long et al.,
2019).

The modern development of SAR includes the use of
the so-called homogeneous environment and applications for
MIMO systems (Moreira et al., 2013). An important charac-
teristic of the automatic target recognition (ATR) is a con-

stant false-alarm rate (CFAR) (Zhoufeng et al., 2002; Jung
et al., 2009), the type of radar polarization (Lee and Pot-
tier, 2009), and SAR imaging modes (stripmap or spotlight
mode). The potential accuracy can reach 0.3 m with a lin-
ear resolution using multilook processing in the spaceborne
radar (Kim et al., 2014; Novak et al., 1998) (Fig. 1).

The UAV application of the SAR mode does not allow
such a resolution to be achieved and, therefore, detecting ob-
jects in the region of interest (ROI) is usually difficult.

It is advisable to use spatial characteristics for the group
of targets detected by UAV within the conditions of an ac-
cessible radar map (Novak et al., 1998). Such research was
treated in an article (Kvasnov, 2019) where spatial features
from the Terra-SAT satellite were used to detect an area with
a set of the objects. A further development can be carried out
as a recognition of the ground groups in a given area. Such a
group can be infrastructure elements in civilian applications
(town blocks, agricultural field, sea docks, etc.) (Yin et al.,
2007; Moulton et al., 2008). Any vehicles (cars in parking,
planes on the airstrip) can have an order of location (Hal-
versen et al., 1994; Owirka et al., 1995). At the same time,
the ROI must have a reference point in the course of UAV
monitoring the terrain as a condition for civil object recog-
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Figure 1. Synthetic aperture radar (SAR) of stripmap mode in UAV.

Figure 2. Region of interest (ROI) on the map in SAR.

nition (Labowski et al., 2016). The reference point is to be
a previously identified object (for example, a road, forest, or
building) (Fig. 2) (Huimin and Baoshu, 2007).

According to the concept of high-level classification (El-
Darymli et al., 2016), we will consider the feature-based ap-
proach that can be implemented as a single multi-class classi-
fier. There is a set of the mathematical models for ATR SAR:

– Bayes classifier (Kvasnov, 2020);

– linear discriminant function (Srinivas et al., 2014; Yu et
al., 2011);

– neural networks (Cho and Park, 2018; Ernisse et al.,
1997).

The analysis of the civil targets can be implemented on based
situational modelling with templates (Huimin and Baoshu,
2007). Therefore, in order to get a template of the dataset, we
will use artificial neural networks based on a multilayer per-
ceptron (El-Darymli et al., 2016; Ernisse et al., 1997). Most
of these papers do not take into account the speckle of the
image, which can vary depending on UAV altitude (Ullmann
et al., 2018).

The purpose of the article is to consider the ATC method
for the non-moving civil objects by spatial characteristics in
SAR mode. We suppose the technique focuses on analysis of
ROI where essential fluctuations of entropy exist after esti-
mating entire features of image artificial neural network con-
structs in order to recognize the object group. The training
data have been used for different resolution. Examples of
SAR images (Figs. 2, 3, and 4) are demonstrated from the
resource https://www.sandia.gov (last access: 5 July 2021).

2 Theoretical approach to tasks of radar recognition

Let us have a finite number of the group objects (classes)
Yn : n ∈N that must be classified. A set of the observa-
tions (features) is given, Xm :m ∈N , which corresponded
to known classes. There is an unknown transformation of
the set Xm→ Yn on a finite volume of the training sample
F {(x1,y1), . . ., (xm,yn)}. It is required to construct such an
algorithm for the initial data F that provided the minimiza-
tion of the loss function at the output (Wang et al., 2015):

{Xm→ Yn} : CE(Yn)→min. (1)

The object classification algorithm will be constructed by us-
ing the gradient descent method. Then we define the cross-
entropy as a loss function:

CE(Y )=H (p)+DKL(p‖q), (2)

where H (p) and DKL(p‖q) are entropy and relative en-
tropy (Kullback–Leibler divergence) over probability distri-
butions p(y) and q(y), respectively; p(y) is the classification
model of the binary indicator; q(y) is the predicted model of
probability.

We will consider a training sample where the labels of
recognition objects are fixed: Ynconst; then, H (p)= const.
After rewriting, Eq. (3) as a logistic function is

CE(Y )=DKL(p‖q)=−
n∑
i=1

[
(pi) log(qi)

+ (1−pi) log(1− qi)
]
. (3)

The function CE(Y ) tends to fit the forecasting distribution
to the asymptotic value, penalizing both erroneous predic-
tions (1−pi) and uncertain predictions (pi < 1). We will
use CE(Y ) as a measure between the real target and noise
for SAR images.

In order to estimate the efficiency of the concluded results
of classification, we will use principal component analysis
(Karhunen–Loève theorem). This method is defined to as-
sess the independence of features and determine the most
critical of them. Mathematical implementation is the esti-
mation of the covariance matrix with the minimum num-
ber of elements on the main diagonal. The empirical co-
variance matrix can be obtained from the training sample
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F {(x1,y1), . . ., (xm,yn)}:

Cm×m =
1
n
XTX ∀n > m. (4)

The estimation of the principal components is carried out
on centred data 〈xm〉, so that 〈xm〉 = xm− x. The covari-
ance matrix Cm×m is able to be represented in the canonical
form (spectral matrix decomposition) of eigenvalues (3) and
eigenvectors (V ):

Cm×m = V3V−1, (5)

where V is a matrix whose columns are eigenvectors of the
matrix Cm×m; 3= diag( λ1 . . . λm ) is a diagonal ma-
trix with corresponding eigenvalues on the main diagonal;
V−1 is the inverse matrix to matrix V.

There are problems of seeking orthogonal projections with
the maximum scattering. Then principal component vectors
are an orthonormal set V=

[
v1 . . . vm

]T , which com-
prises eigenvectors of the covariance matrix C, allocated in
decreasing order of eigenvalues λ : λ1 ≥ λ2 ≥ . . . ≥ λm. In
order to estimate the number of principal components, we
use the relative squared error δ2

k for the first k components:

δ2
k =

1
tr(C)

[
tr(C)−

k∑
i=1

λi

]
, (6)

where tr(C) is the covariance matrix trace C.
After projection onto the first k principal components, it is

convenient to normalize the covariance matrix by unit vari-
ance. Hence, for each coordinate this value is qi/

√
λi .

3 Mathematical model of recognition on SAR
images

The exposal of UAV can essentially vary quality character-
istics of studied SAR images. When we focus on ROI, the
speckle pattern of this picture has a unique degree of entropy.
According to the given condition, Eq. (2), cross-entropy of
the target spot under study is able to fluctuate. We need to
create a method which allows us to find the best option for
extracting an informative parameter from images.

3.1 Mathematical decision

According to Eq. (1), our object is to find an estimate of the
conditional probability p(Y |xi). If we make an assumption
about the independence of the features xi ∈Xm, then the so-
lution can be found as a product of the naive Bayesian clas-
sifier:

p (Y |xi)= p(Y )×
∏
i

p (xi |Y ) , (7)

where p(Y ) is the average probability of all recognition
classes yj ∈ Yn; p(xi |Y ) is the likelihood function for an ar-
bitrary feature xi , conditional on the set of classes Y being
known.

Table 1. Chosen features for classification.

Features Note

Quantity of objects Point objects or extended objects
Average distance between objects –
Width of civil object –
Length of civil object –

If new data CE(Y |xi) enter instead of initial data,
CE(Y ), they would add the expected amount of uncertainty
in Eq. (3):

CE(Y |xi)=
∑
y

p (Y,xi) log
p (Y,xi)
p(Y )

. (8)

We considered the case pi = 1; then, in Eq. (3) there will
remain one additive component. When we substitute Eq. (7)
into Eq. (8) and simplify the equation, we will get

CE(Y |xi)=−
∑
i

(
p (yi) log

[
q ( |yi)

]
+HY (=)

)
, (9)

whereHY (=)= p(yi)
∑
j

log[q(xj
∣∣yi)] is conditional entropy

introduced by a feature xj provided that class yi ∈ Y is
known.

The maximization CE(Y |xi) in Eq. (9) is defined by
the influence of conditional entropy. Obviously, the extreme
value in Eq. (9) can be calculated as a maximum likelihood
estimation that is not a trivial task (Gini, 2008). On the other
hand, it is appropriate to focus on choosing meanings xj ac-
cording to experimental data.

3.2 Task application

In our study, we tried to find a set of the features for the clas-
sification procedure (Table 1). These features took into ac-
count the regularity of their occurrence for the object under
consideration. For example, a stretch of miscellaneous ran-
dom spots has an association with the extended target. At the
same time, vehicles in parking are order elements of similar
spots on the SAR image.

The obtained SAR images are usually presented as grey-
scale pictures (Soumekh, 1999). Morphological processing
makes it possible to evaluate differences between target spots
and noise using the value of entropy. Hence, the binarized im-
age allows detection of point objects by the brightness thresh-
old and further collecting them in an extended target (Wang
et al., 2015) (Figs. 3–8).

Entropy meanings are different if the speckle pattern of
images is analysed. If the SAR image comes closer to the
underlying terrain, then entropy is slightly higher: H1 >H2.
At the same time cross-entropy changes are more essential
than speckle pattern CE1 > CE2 (Figs. 3 and 4). Optimal
result CE can be found according to Eq. (9) as a function-
binarized threshold and selection of SAR images for differ-
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Figure 3. Extended target on the SAR image (block of town).

Figure 4. Point targets on the SAR image (power lines).

ent altitudes and aspect angles (Figs. 5 and 6) (Knott et al.,
2004).

Initially, the spatial characteristics of civil objects are de-
rived from entire target spots that are extracted from a bi-
narized image. Then all objects are identified by the cluster
analysis method (Figs. 7 and 8). We should separate objects
that are used as extended targets (ETs) and single group tar-
gets (SGTs) (Zhu et al., 2004). In order to apply the condi-
tion, we use Eq. (10):

∀�= {xi,yi}
k
i=1⇒

{
ET, if dist (xi,yi)< T,
SGT, if dist (xi,yi)≥ T ,

(10)

where � is the finite domain of the coordinate for spots in
ROI; xi and yi are Cartesian coordinates of binarized target
spots in ROI; dist(xi,yi) is the pairwise averaged Euclidean
distance between all objects on the plane; T is the distance
threshold between all binarized target spots in ROI.

It is important to emphasize that the number and size of
binarized spots depend on the altitude and aspect angle of a
UAV. For example, the correlation coefficient between fea-
tures extracted from perfect aspect angle estimated data and
from 10◦ aspect angle error data is 0.983 (Doo et al., 2017).
Based on the last statement, we choose the distance threshold

Figure 5. Binarized extended target.

Figure 6. Binarized point targets.

according to experimental data assuming the radar accuracy
does not exceed 1 m per pixel (Soumekh, 1999).

4 Construct a neural network for civil objects

The initial information of targets was obtained as an extrac-
tion of the miscellaneous spots on the binarized SAR image.
The civil objects were chosen infrastructure elements (power
lines and blocks of town or countryside) and vehicles (cars
in parking or agricultural machinery). The number of units
(classes) was Yn : n= 3. The total number of features was
Xm :m= 4. The training data were composed of collections
F {(x1,y1), . . ., (x192,y4)}.

According to Eq. (3), the cross-entropy value can be sim-
plified if we assume that the shift of the postulated distri-
bution is bias[p(y0)] → 1. Then the competing distributions
q(y1)= . . . = q(yn) have the distribution density

CE(Y )=−
1
n

n∑
i=1

[
log(p0)+ log(1−pi)

]
≈−

1
n

log
[
po(1−pi)n

]
. (11)
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Figure 7. Scheme of the civil object (extended object).

Figure 8. Scheme of the civil object (point objects).

An artificial neural network was constructed by gradient de-
scent with adaptive learning rate backpropagation. We used
four hidden layers with a log-sigmoid transfer function and
a linear output layer. The results of the network are shown in
Figs. 9 and 10.

It is seen that we have a loss function equal to MSE≈
0.014 (Fig. 9), which is quite an appropriate result. There is a
probability of class confusion (Fig. 10) when power lines can
be detected as a group of vehicles, which then is 〈Pconf〉 ≈

0.07. The other results do not make questions of recognition
accuracy.

5 Comparison with other methods

ATC SAR of the non-moving civil objects is illuminated in
several articles. In the paper by Kim et al. (2014), the cor-
rect classification performance for the final 10- and 20-target
classifiers was 77.4 % and 66.2 %, respectively (resolution
1 m per pixel). This result is demonstrably worse than the
accuracy of 92.7 % that we got.

In the paper by Halversen et al. (1994), research was car-
ried out on the recognition of group objects based on au-
tomated target cueing. Twenty-four target groups were con-
tained within the dataset; each target group consists of 6 to
11 targets. This research applied only a pure binarized por-
trait without studying the SAR images that we have made.
CFAR reached PCFAR ≈ 0.29 by high resolution 1 m per
pixel. We tried to analyse our data as to the false positive
errors using the receiver-operating characteristic (Fig. 11).

Figure 9. Mean squared error plot as of loss function: training –
70 %, validation – 15 %, test – 15 %.

Figure 10. Confusion matrix for recognition classes: 1 – power
lines, 2 – block of countryside, 3 – group of vehicles.

It appears to be certain that CFAR estimation is lower than
in the paper by Halversen et al. (1994) – PCFAR ≤ 0.01. Thus,
our results show a reasonable degree of reliability in recog-
nition of the group objects using a neural network.

The approach to the recognition of the point targets is il-
lustrated in Cho and Park (2018) and Ernisse et al. (1997).
Our result (92.7 %) exceeds the value P ≈ 0,87, which was
achieved by using airborne radar by F-15E (Ernisse et al.,
1997). The recognition accuracy of 95 % was obtained for the
multiple feature-based convolutional neural network method
(Cho and Park, 2018). Our result is proportional to this value,
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Figure 11. Receiver-operating characteristic of three recognition
classes.

Table 2. Four principal components.

Component Variance, Component
λ(×106) contribution,

δ (%)

1st principal component 1.6910 79.1945
2nd principal component 0.4185 19.6004
3rd principal component 0.0149 0.6993
4th principal component 0.0108 0.5058

but estimation of a false positive rate is omitted that puts in
doubt the efficiency of the proposed method.

6 Discussion and estimation of the results

The efficiency of the object classification is proportional to
the number of the features and dataset for entire classes
F {(x1,y1), . . ., (x4,y192)}. We tried to estimate the final re-
sult by means of the principal component analysis for the ini-
tial dataset (Kawalec et al., 2006). The original reduced train-
ing sampleXm{x1,x2, . . ., xm} is transformed into an orthog-
onal basis Vm{v1,v2, . . ., vm} according to Eq. (12), where
the coordinate axes coincide with the maximum variance in
descending order λmax . . . λmin. Each orthogonal component
has the contribution on its own that is given in Table 2.

The contribution of the first two main components (out of
four evaluated) is δ5 > 98 %. The data effectiveness can be
estimated based on their projections on the three main axes
(Fig. 12).

Having constructed the plot, correlation is demonstrated in
the orthogonal basis of the principal components. The graph
shows that there is an essential independence between all
the original data V = [ v1 . . . v4 ]

T . The most depen-
dent features are the length (v3) and width (v4) of the group

Figure 12. First, second, and third principal components of the
training sample: v1 – quantity of objects; v2 – average distance be-
tween objects; v3 – length of civil object; v4 – width of civil object.

object, respectively. Obviously, any size of spatial object is
correlated between each other. Generally, there is no need to
extend the space of input classes. Nevertheless, ROI requires
choosing a reference point in order for all recognition groups
to have disjoint zones on the terrain.

7 Conclusion

The article proposes a classification technique of the non-
moving civil objects based on the estimation of entropy that
was extracted from SAR images. The studied pictures re-
ceived UAV at the different altitudes and aspect angles. The
choice of recognition features was determined by minimiz-
ing the cross-entropy calculated for the model of the naive
Bayesian classifier. It is shown that a binarized image can
have a different degree of cross-entropy for the target spot
with respect to the speckle pattern of images. An efficient
classification approach using an artificial neural network was
demonstrated.

A training set (192 observations; four features) was used
for learning three classes of the non-moving civil targets –
power lines, block of town, and group of vehicles. The prob-
ability of the object classification is P ≈ 0.927 with a low
degree of constant false-alarm rate PCFAR ≤ 0.01. These in-
dicators are equal to or exceed the other results for the similar
methods.

In order to confirm the results of the classification, they
were verified by using the principal component analysis. The
checking showed an essential degree of decorrelation of stud-
ied features. Further research should aim to clarify the spatial
characteristics by extending experimental data.

Data availability. The underlying measurement data are not pub-
licly available but can be requested from the authors if required.
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