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Abstract. This paper aims to improve the traditional calibration method for reconfigurable self-X (self-
calibration, self-healing, self-optimize, etc.) sensor interface readout circuit for industry 4.0. A cost-effective
test stimulus is applied to the device under test, and the transient response of the system is analyzed to correlate
the circuit’s characteristics parameters. Due to complexity in the search and objective space of the smart sen-
sory electronics, a novel experience replay particle swarm optimization (ERPSO) algorithm is being proposed
and proved a better-searching capability than some currently well-known PSO algorithms. The newly proposed
ERPSO expanded the selection producer of the classical PSO by introducing an experience replay buffer (ERB)
intending to reduce the probability of trapping into the local minima. The ERB reflects the archive of previously
visited global best particles, while its selection is based upon an adaptive epsilon greedy method in the velocity
updating model. The performance of the proposed ERPSO algorithm is verified by using eight different popu-
lar benchmarking functions. Furthermore, an extrinsic evaluation of the ERPSO algorithm is also examined on a
reconfigurable wide swing indirect current-feedback instrumentation amplifier (CFIA). For the later test, we pro-
posed an efficient optimization procedure by using total harmonic distortion analyses of CFIA output to reduce
the total number of measurements and save considerable optimization time and cost. The proposed optimization
methodology is roughly 3 times faster than the classical optimization process. The circuit is implemented by us-
ing Cadence design tools and CMOS 0.35 µm technology from Austria Microsystems (AMS). The efficiency and
robustness are the key features of the proposed methodology toward implementing reliable sensory electronic
systems for industry 4.0 applications.

1 Introduction and literature survey

Machine learning (ML) and artificial intelligence (AI) are
considered the electricity for the twentieth century. The in-
tegration of AI and ML with other evolving technologies
such as cyber-physical systems, big data analytics, cloud
computing, and industrial internet of things I(I)oTs is en-
abling the most noticeable change in the industrial domain
(Diez-Olivan et al., 2019) known as industry 4.0 (Kager-

mann et al., 2013; Abd and König, 2020). I(I)oTs devices
and industry 4.0 introduce more demands on sensors and sen-
sory electronics, primarily regarding measurement data accu-
racy, versatility, flexibility, long-term reliability, and robust-
ness (Koenig, 2018; Trends, 2014). The performance of sen-
sors and sensory electronics is strongly challenged by static
and dynamic variations (Lee et al., 2018b; Lin et al., 2019).
Fabrication process imperfections such as lithographic un-
certainties, mechanical stress due to packaging, and process
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parameter deviations are referred to as static variations. How-
ever, the environmental variations, thermal drift due to ex-
ternal heating and self-heating, power supply fluctuations,
and aging effects are considered a dynamic variation (Alraho
et al., 2020). Usually, analog sensory electronics are overde-
signed to address the static and dynamic variations that result
in larger die area and more power consumption.

On the other hand, ML and AI in smart sensory elec-
tronics (SSEs) enable the circuit design with the self-X
(self-calibration, self-healing, self-optimize, etc.) properties
(Kammara et al., 2018a; Lee et al., 2018a) to tackle the vari-
ations. AI enables online calibration methods to calibrate the
sensory electronics system even after the chip fabrication
(Delaine et al., 2019). Calibration methods are realized by
designing an integrated circuit (IC) with controllable tuning
knobs and performance measurements setup. With the inser-
tion of tuning knobs, SSEs can calibrate themselves to re-
deem extreme static and dynamic deviations, which relax the
power consumption (Lee et al., 2018b). In contrast, the recal-
ibration of SSE comes with the cost of larger parasitics, a big-
ger die area, and longer configuration or optimization time.
This imposes a significant limitation on the dynamic perfor-
mance of the system. To resolve this remedy, we introduced
the reconfigurability only to the sensitive elements, which
have a major impact on the overall system performance.

Similarly, the overhead of the performance measurement
setup is also considerably essential for SSE in terms of sys-
tem complexity and measurement time of different quanti-
ties. There are two fundamental classifications of the on-chip
measurement setup, depending on the assessment criteria of
the target performance characteristics. The first class utilizes
a direct performance measurement method to verify perfor-
mance characteristics (Lee et al., 2018b). This scheme offers
more accuracy and precision but raises the design complex-
ity and chip area (Andraud et al., 2016). The second class
uses the indirect measurement (IM) method that relies on
statistical interference. These IM methods output a simulta-
neous estimation of multiple system performance parameters
from simple test stimuli (Andraud et al., 2016; Variyam et al.,
2002; Stratigopoulos and Mir, 2012; Natarajan et al., 2010).

Authors in Variyam et al. (2002) applied an optimized
multitone signal with the help of an evolutionary algo-
rithm (EA) to the operational amplifier and examined a tran-
sient response for the indirect estimation of characteristics
such as input common-mode range, gain, slew rate, and
bandwidth. To enhance the prediction accuracy, a substi-
tute test flow centered on the two defect filters approach is
proposed in Stratigopoulos and Mir (2012). A similar con-
cept is presented in Natarajan et al. (2010), where an enve-
lope detector is applied to infer the target characteristics of
the ICs. Nevertheless, in the application of SSE, this category
of IMs needed to be optimized due to finite computational re-
source constraints.

An alternative cost-effective indirect measurement tech-
nique using non-intrusive sensors is illustrated by Andraud

et al. (2016), in which the sensor is electrically disconnected
from the main circuit. As operating conditions of these sen-
sors are strongly correlated with the characteristics of ICs,
the target characteristics of the primary circuit can be easily
estimated and measured economically from different charac-
teristics of the non-intrusive sensor. It is difficult to approxi-
mate the performance predictor analytically; therefore, an ar-
tificial neural network (ANN) is usually used as a regressor
to approximate the regression task. Besides, the data genera-
tion and collection for the training phase of ANN is quite a
challenging task, and its complexity increases exponentially
with the complexity of a device under test (DUT).

The primary objective of this research paper is to address
the missing link for the assessment or optimization unit. It
reviews tuning or calibration knobs insertion challenges and
the cost-effective performance evaluation setup for self-X
SSE. A reconfigurable wide-swing indirect current-feedback
instrumentation amplifier (CFIA) is selected as a test vehi-
cle for the extrinsic evolution of the proposed methodology.
CFIA is an essential part of measurement systems and sen-
sory readout electronics, particularly for bridge sensors (Al-
raho and König, 2019).

1.1 Indirect current-feedback instrumentation
amplifier (CFIA)

The block diagram of proposed reconfigurable CFIA is
shown in Fig. 1, as a continuation of further improvement to
our previously proposed work presented in Alraho and König
(2019). In-circuit implementation, the major improvement is
the considerable reduction in tuning knobs without any scari-
fication of system reconfigurability, which results in the min-
imization of parasitics and layout area. The proposed system
also has an offset calibration block supervised by AI. More
details about the circuit can be found in Alraho et al. (2020),
while the main focus of this research project is to address
the problem of efficient implementation of the calibration
method for SSE. A low-cost indirect performance measure-
ment method is being proposed for performance evaluation
measurement setup by applying simple test stimuli. It works
on the principle of correlation and dependency of different
performance characteristics of SSE among one another (Za-
man et al., 2020a).

1.2 PSO algorithm

As far as the selection of optimizer for calibration pro-
cess is concerned, the derivative-based optimizers cannot be
applied due to discontinuous objective space. In contrast,
meta-heuristic optimization algorithms behave extremely
well despite the presence of objective space discontinuity.
Therefore, the traditional particle swarm optimization (PSO)
(Eberhart and Kennedy, 1995) is utilized after expanding its
exploration capabilities as an optimizer to satisfy the require-
ments of complex search space as well as objective space
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Figure 1. The block diagram of the reconfigurable current-feedback instrumentation amplifier (CFIA).

optimization for SSE. In the last decade, many improved ver-
sions of the PSO algorithm have been proposed in the litera-
ture to extend its searching capability and minimize the prob-
ability of getting trapped into the local minima (Liu et al.,
2018; Zhan et al., 2009). As an example, one of the most
famous modifications of PSO algorithms is linearly decreas-
ing inertia weight (LDW-PSO) (Shi and Eberhart, 1999). The
inertia weight w is defined as follows:

w = wmax− currentIteration
(
wmax−wmin

maxIteration

)
, (1)

where wmin and wmax represent the minimum and maximum
value of the inertia weightw, respectively; “currentIteration”
denotes the current running iteration number, and “maxItera-
tion” represents the maximum number of iterations. Usually,
a larger value of w achieves the global optimum exploration,
and a smaller value performs the local exploitation. More-
over, the PSO algorithm with linearly varying acceleration
coefficients (LAC-PSO) has been presented in Ratnaweera
et al. (2004). The cognitive scaling factor or acceleration
coefficient c1 is linearly decreasing, while the social scal-
ing factor or acceleration coefficient c2 is linearly increasing,
which are given as follows:

c1 = (c1f− c1i)×
maxIteration− currentIteration

maxIteration
+ c1i

c2 = (c2f− c2i)×
maxIteration− currentIteration

maxIteration
+ c2i, (2)

where c1i,2i and c1f,2f represent the initial and final values
of the acceleration coefficients respectively. Liu et al. (2019)

recently proposed the sigmoid function (SPSO) based adap-
tive acceleration coefficients adjustments, which are defined
as follows:

c1 = c2 = F (D)=
a

1+ e−c(D−d) + b, (3)

where a = 0.5, b = 1.5, c = 0.000035 3.81× search range
(distance between upper and lower bound of particle), d =
0, and D = Pp or g(k)− xi(k) represents the distance of the
ith particle to its personal or global best at the kth iteration.

The next class of PSO variants focuses on different up-
dating strategies and new topology structures to enhance the
search capabilities. Some well-known topologies are intro-
duced into PSO algorithms include pyramid, clusters, von
Neumann, and ring (Tawdross, 2007; Kennedy and Mendes,
2002). In the adaptive PSO algorithm, a new learning strat-
egy has been used to dynamically adjust the parameters
based on the evolutionary state (exploitation state, explo-
ration state, convergence state, and jumping-out state) infor-
mation (Zhan et al., 2009). Furthermore, a switching PSO al-
gorithm is recently proposed in Zeng et al. (2016) to switch
between the velocity updating models based on the evolu-
tionary state estimated by a Markov chain model. There are
also research activities about the introduction of biological
and sociological inspired methods to the PSO, such as the
aging theory-based PSO algorithm, the cultural-based PSO
algorithm, and the niching PSO algorithm (Zeng et al., 2016;
Chen et al., 2012; Brits et al., 2007; Daneshyari and Yen,
2010). However, there is still room for further improvement
to enhance the performance of the PSO algorithms, espe-
cially for high-dimensional complex multi-objective search
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Figure 2. Block diagram of the proposed design methodology
for SSE.

space with many local optima (Liu et al., 2018; Zeng et al.,
2020; Li et al., 2021), as in the case of SSE optimization.

2 Design methodology

The block diagram of proposed methodology is shown in
Fig. 2. As it is mentioned in the literature review, the mod-
ified particle swarm optimizer is being used as an optimiz-
ing algorithm. The test stimuli selection unit consists of si-
nusoidal and step signals. The reconfigurable CFIA is being
used as a sensory electronics system. Lastly, the signal pro-
cessing unit performs the total harmonics distortion measure-
ments by performing the fast Fourier transform (FFT) at the
CFIA output.

The key idea presented by authors in Variyam et al. (2002)
to utilize the EA for generating the effective test stimulus
to predict the characteristics of the operational amplifier is
being modified here for the SSE environment. It is ardu-
ous to generate any arbitrary waveform suggested by EA
due to larger computational constraints. The proposed design
methodology is established on applying fixed sinusoidal and
step signals to solve this issue. It is based on the fact that
the characteristics of amplifiers are strongly correlated, e.g.,
slew rate (SR) and gain-bandwidth product (GBW). The pro-
posed optimization unit first applies the sinusoidal signal to
the DUT. By performing the FFT on the system response,
most of the design characteristics can be estimated in a single
execution, specifically the total harmonics distortion (THD)
given as√ ∑
i=1,i 6=0,f

|Ai |
2

∣∣Af ∣∣ × 100%, (4)

where f is fundamental frequency and Ai is the complex co-
efficient from FFT for the ith harmonic and i 6= 0, f . This is
due to the fact that design imperfection like limited GBW,
input common-mode range (ICMR), SR, close-loop accu-
racy, SNR, full-power bandwidth, and the effective number
of bits (ENBs) can be translated to nonlinear distortion at the
output of the closed-loop amplifier (Johns and Martin, 2008;
Ye et al., 2012). The alternative approach to the proposed

method is to operate different AC, transient, and DC mea-
surements (Zaman and König, 2019), hence increasing the
optimization time and system complexity remarkably. It is
beneficial to eliminate the AC test of the amplifier with our
proposed methodology since it is not a simple measurement
task.

The mixtrinsic evolution first presented in Stoica (1999);
Stoica et al. (2000) means a population contains both extrin-
sic and intrinsic individuals. At the institute of the authors
in prior work, Tawdross (2007) extended this concept to per-
form the complex measurements (open-loop gain, phase mar-
gin, and output resistance, etc.) extrinsically on the SPICE
simulator and run the simple measurements (common-mode
range, output voltage swing, and offset) intrinsically. How-
ever, this solution is not appropriate for two reasons. Firstly,
simulating circuit modules are not accurate compared to the
physical hardware of the DUT. Secondly, it consumes a sub-
stantial amount of time restricted by the processing power.
Kammara et al. (2018b) developed a circuit synthesizer tool
based on transient analysis for nonlinear spiking neuron cir-
cuit optimization. However, their proposed method falls un-
der direct measurement methods, while our proposed solu-
tion relies on THD measurement to indirectly capture the
amplifier non-idealities.

Unfortunately, amplifier stability cannot be predicted from
spectrum information obtained by the sinusoidal response.
Therefore, the stability of the DUT is analyzed with the
help of a system step response. The proposed algorithm per-
forms the step response only if a better fitness value of THD
is found compared to the current swarm global best fitness
value rather than performing all detailed simulations for ev-
ery particle. Consequently, it reduces the analog circuits’ op-
timization time drastically. The flow diagram of the proposed
design methodology is summarized in Fig. 3. It begins with
the random initialization of the velocity and position of the
particles. After that, the FFT is performed from the reconfig-
urable amplifier output signal with the known sinusoidal fun-
damental frequency. From the resulting output spectrum, the
THD value is being calculated using Eq. (4), and this value
serves as a fitness or cost function value for the PSO-based
optimization. The stability test of the DUT is performed only
in the case of a better fitness response obtained. In the next
phase, the velocity update equation of the conventional PSO
is modified with the help of the previously visited global best
minimum. In order to maintain the balance between explo-
ration and exploitation, the epsilon greedy algorithm is uti-
lized, which will be explained in the following up section.
This process continues until the end of the maximum num-
ber of iterations.

2.1 The proposed experience replay particle swarm
optimization (ERPSO)

In this paper we are proposing experience replay particle
swarm optimization (ERPSO). The proposed ERPSO ex-
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Figure 3. Flow chart of the proposed design methodology.

panded the selection producer of the classical PSO by ran-
domly selecting the historic global best of particles with the
help of experience replay buffer (ERB) to solve the complex
objective space problem of SSE. The novelty of the ERPSO
relies upon the introduction of the ERB in the velocity updat-
ing equation (VUE) of the conventional PSO algorithm. The
ERB concept is usually being employed in the reinforcement
learning (Lin, 1992; Schaul et al., 2015) to make use of the
accumulated historical values for better convergence accu-
racy. In the case of ERPSO, the ERB represents the archive
of the previously visited global best particles. It helps to min-
imize the probability of the local minima trapping by taking

advantage of prior knowledge instead of using only the most
recent experience. The selection of the ERB is performed
based on an adaptive epsilon greedy algorithm to maintain
the balance between exploration and exploitation (Sutton and
Barto, 2018). The basic VUE of ERPSO is given by

V
j+1
i =
wr1V

j
i + c1r2

(
P
j
i −X

j
i

)
+ c2r3

(
Gj −X

j
i

)
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(
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j
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i

)
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(
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i

)
+c3r3

(
Aj −X

j
i

)
ε ≥ η ·w

,

(5)

where

– V
j
i represents the velocity of the ith particle in the
j th iteration;

– w is inertia weight whose value is defined by Eq. (1);

– r1,2,3 are uniformly distributed random numbers [0, 1];

– c1 and c2 are the cognitive and social coefficients, re-
spectively, and c1 = c2 = c3 = 2;

– P t
i and Gt are the personal and global best information

of the whole swarm;

– ε is a random variable whose basic purpose is to in-
troduce epsilon greedy algorithm to balance the explo-
ration and exploitation;

– η denotes the intensity factor to control the exploration
and exploitation;

– At represents the archive of previously visited global
best positions of the swarm.

The position update equation of ERPSO is given as follows:

X
j+1
i =X

j
i +V

j+1
i , (6)

where Xji represents the position of the ith particle in the
j th iteration. According to the proposed VUE, the particles
try to quickly converge towards the global optimum with the
probability of 1− ε. Therefore, the VUE of the conventional
PSO algorithm is used for the first scenario. On the other
hand, to minimize the probability of premature convergence,
the ERPSO algorithm randomly selects any historic global
best solution from the experience reply archive with the prob-
ability of ε.

The flow diagram of the ERPSO algorithm is illustrated
in Fig. 4. The ERPSO algorithm begins with random initial-
ization of the particles’ position and velocity of the particles.
Then the fitness value of each particle is evaluated. If the fit-
ness value is better than the particles’ global or personal best,
the respective field will be updated, and the value of inertial
weightw will be calculated based on Eq. (1). In the next step,
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Figure 4. Flow diagram of the proposed ERPSO algorithm.

the velocity of each particle will be updated based on ε value.
Finally, the particle’s position value will be amended, and
this procedure continues until reaching the end of the maxi-
mum number of iterations.

2.2 Transistor level design of reconfigurable CFIA

The transistor level design of the proposed fully differential
CFIA is presented in Fig. 5 (Alraho et al., 2020; Alraho and
König, 2019). The circuit successfully adapted the fully bal-
anced differential-difference amplifier, owing to its important
properties of having a wide input voltage span with the pos-
sibility of reaching high dynamic performance (Alzaher and
Ismail, 2001). The use of complementary input stage plus
employing efficient class AB output driver (Hogervorst et al.,
1994) allows for maximum signal dynamic range. Based on
the presented design approach, the circuit components’ first
manual cut design values and currents are passed as seed so-
lutions to the optimization unit for further improvement. By
inspecting the results obtained during design and optimiza-
tion iterations, a number of sensitive elements are shortlisted
to serve as tuning knobs of the algorithm as listed in Table 1
while keeping other devices fixed to the optimized values.

Tuning knobs are programmable arrays incorporating binary-
weighted scalable devices controlled by digital patterns gen-
erated by the algorithm. Figure 6 depicts scalable NMOS and
PMOS transistors, where the gate of the unselected transis-
tors from the array is shorted to the supply voltage for the
PMOS or to the ground for the NMOS. This will avoid the
saved charge at the floating gate capacitor of the transistor,
hence assuring the unselected transistor to be fully off and
reducing the leakage current. Similarly, banks of scalable re-
sistors and capacitors are also used in the design.

3 Results and discussions

3.1 Experimental test on benchmarking functions for the
ERPSO

In this work, eight different benchmarking functions (BMFs)
are selected from the literature to observe the optimization
behavior of the proposed ERPSO. The detailed information
about the BMFs is summarized in Table 2. It includes the
functions’ names, dimensionality, the span of search space,
and the global best value. All shortlisted BMFs are high-
dimensional problems to approximate the search space com-
plexity of SSE. The Griewank function f1(x) is one of the
most popular BMFs that is generally used to verify the con-
vergence rate of optimization algorithms. The Rastrigin func-
tion f2(x) and Ackley function f3(x) are hard to optimize
due to a large number of local optima. The Rosenbrock func-
tion f4(x) (also known as banana or valley function) and the
Levy function f7(x) are non-convex functions. The Schwe-
fel 1.2 function f5(x) and Schwefel 2.22 function f6(x) are
typical multimodal and unimodal functions, which are diffi-
cult to find the global optimum. Lastly, the Sphere unimodal
function f8(x) is selected to examine the convergence rate.

This experiment is conducted using 30 particles, 25 di-
mensions, and 5000 iterations. Each experiment is repeated
100 times to minimize randomness or lucky shots. The per-
formance of the ERPSO algorithm is compared over four fa-
mous PSO algorithms, including the LDW-PSO, LAC-PSO,
PSO, and SPSO. The convergence curves of the ERPSO al-
gorithms are illustrated in Fig. 7. The horizontal axis repre-
sents the number of iterations, and the vertical axis denotes
the mean of the fitness value of all the shortlisted PSO algo-
rithms on the logarithmic scale. It can be observed that the
convergence rate of the PSO and LAC-PSO is much faster
as compared to the ERPSO algorithm. However, the ERPSO
algorithm attains a better fitness value of the global mini-
mum compared to other PSO algorithms. The performance
of the ERPSO outperforms the other PSO algorithms in all
optimization BMFs, which demonstrates the capability of
ERPSO to avoid local optimum trapping. In the case of the
Ackley and Levy function, the performance of the proposed
ERPSO algorithm is comparable to LDW-PSO and outper-
forms others. Only in the Sphere function does our proposed
ERPSO algorithm exhibit less convergence, but it still suc-
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Figure 5. Transistor level realization of the fully differential CFIA.

Table 1. Configurable circuit elements of CFIA.

Reconfigurable element Objective Number
of bits

Feedback resistors Gain adjustment (1, 2, 4, 8, 16, 64, 128) 8
Compensation capacitors (CC) Slew rate (SR), gain bandwidth product (GBW), Phase margin (PM) 4
Class AB biasing circuit DC power dissipation, first non-dominant pole 30
Biasing current Major circuit characteristics, DC power consumption 5
Offset transconductance (Gmso) Offset voltage calibration (VOS) 31
Current mirror biasing diodes Saturation region 22

Table 2. Configuration of benchmarking functions (BMFs).

Function name Functions Dimension Search space Global
minima

Griewank f1(x) 25 [−600,600] 0
Rastrigin f2(x) 25 [−5.12,5.12] 0
Ackley f3(x) 25 [−32,32] 0
Rosenbrock f4(x) 25 [−30,30] 0
Schwefel 1.2 f5(x) 25 [−100,100] 0
Schwefel 2.22 f6(x) 25 [−100,100] 0
Levy f7(x) 25 [−10,10] 0
Sphere f8(x) 25 [−100,100] 0

cessfully finds the global optimum. The convergence of the
ERPSO can be improved by decreasing the exploration inten-
sity η. However, the exploitation is favored over exploration
because of the SSE search space complexity.

Furthermore, the additional information about the opti-
mization process is summarized in Table 3, where the statisti-
cal information about the fitness value (minimum, mean, and
the standard deviation) of different PSO algorithms for each
BMF is presented, including the achieved successful ratio of
convergence. The mean value of the ERPSO is lower than
the other PSO algorithms, which represents the dominance

of the ERPSO in achieving the global minima. As already
presented in the discussion of the convergence curves, the
convergence rate of the ERPSO is not as rapid as compared
to the other PSO algorithms, which has been highlighted here
in this table by the mean value of the f8(x). However, the pro-
posed ERPSO algorithm obtained the global minima with the
improved mean value for other BMF. Moreover, convergence
performance ratio (CPR) is one more essential metric to ex-
amine the algorithms’ successful attainability of its global
optimum. Different variates of the PSO algorithms show very
low CPR, like in the Rastrigin function, due to its large local
optimums. In contrast, the proposed ERPSO exhibits a much
higher CPR value because of the extended exploration capa-
bilities. Only for the Rosenbrock function optimization does
the ERPSO give less CPR but still far better than the other
algorithms.

3.2 Experimental test on reconfigurable SSE

In the next step, the performance of the ERPSO algorithm is
extrinsically evaluated on the complex objective space of the
CFIA circuit. For this assessment, a sinusoidal signal with a
frequency of 100 kHz and amplitude of 2Vp-p is applied as a
test stimulus for the targeted THD value of −75 dB. For this
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Figure 6. Scalable devices: (a) PMOS transistor and (b) NMOS transistor.

work, the sine wave signal is generated from the Cadence
tools. However, we already started the work on the real im-
plementation of a sinusoidal signal generator by using the
direct digital synthesizer (DDS) circuit (Shi and Sánchez-
Sinencio, 2015) based on the sine-DAC architecture (Yang
and Mason, 2009). The quantized generated signal can be
smoothed using anti-imaging (reconstruction low-pass filter)
to make the signal closer to the ideal source with a lower
THD value. In the next stage, the voltage-controlled voltage
source (VCVS) will be used to provide driving capability
and to have low output source impedance. Another known
technique for generating an on-chip sinusoidal signal is by
low-pass filtering the clock signal (Wei et al., 2013). Never-
theless, this approach requires a high-order filter to nullify
the harmonic components. Hence the filter circuit consumes
a considerable amount of power and chip area. In the step
response test, we used pulse signal with a time period of 1 µs
and amplitude of 2Vp-p.

All transistor widths are kept constant to 1 µm for the min-
imization of channel length modulation effects, and ERPSO
only varies the width of sensitive elements as specified in the
Table 1. Because this work is intended for the cloud com-
puting applications in industry 4.0 rather than edge com-
puting (Angelopoulos et al., 2020), therefore, we imple-
mented the algorithm and THD extraction from the FFT us-
ing Python language, while for the edge computing appli-
cations, the implementation of the FFT can be realized by
using field-programmable gate array (FPGA) (Saeed et al.,
2009) or dedicated on-chip solutions (Chauhan et al., 2013).
The CFIA circuit is designed by using Austria Microsys-
tems (ams) with 0.35 µm technology, whereas Cadence vir-
tuoso OCeaN (OCN) is used for the circuit simulation. The
achieved performance characteristics of the CFIA after the
optimization process are listed in Table 4. The optimization

process is performed with RL = 100 k�, CL = 5 pF, indus-
trial temperature range (−40 to+85 ◦C), and unity gain con-
figuration. As it can be observed from Table 4, the proposed
designing procedure illustrates the successful optimization of
the reconfigurable CFIA by optimizing the THD and pulse
response and satisfied most of its characteristics. Also, it can
be seen that the ERPSO optimized the circuit performance
under temperature variation to model the optimization of dy-
namic thermal deviation of ICs effectively.

The ERPSO algorithm invokes the pulse response only
in the case that the global best particle is obtained by the
swarm to verify the solution stability. As most of the opti-
mization process performs the sinusoidal response, this re-
sults in further reduction of automation time (roughly 3 times
less) as compared to our previous work presented in Zaman
et al. (2020b); Kammara et al. (2016). In the former work,
we followed the classical optimization approach (Vural and
Yildirim, 2012), in which an algorithm runs through multi-
ple tests to meet each design specification. The spared time
in the newly suggested methodology is especially important
for calibrating sensory electronics where tuning time is criti-
cal. From the hardware perspective, the potential of our pro-
posed methodology can be further counted due to the relax-
ation of the measurement setup required for the calibration
procedure. Practically, amplifier AC characteristic measure-
ments and data extractions are not a simple task, and they are
successfully excluded in our method.

As done with the BMFs, the optimization process is re-
peated over 10 independent runs, and the statistical opti-
mization information is graphically illustrated using error bar
graphs in Fig. 8. In this test, the performance characteris-
tics of the CFIA are extracted from multiple optimization re-
sults based on the specified THD value. In order to emulate
both the static and dynamic variations’ impact on the sensors
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Figure 7. Optimization convergence curves for (a) Griewank function f1(x), (b) Rastrigin function f2(x), (c) Ackley function f3(x),
(d) Rosenbrock function f4(x), (e) Schwefel 1.2 function f5(x), (f) Schwefel 2.22 function f6(x), (g) Levy function f7(x), and (h) Sphere
function f8(x).
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Table 3. Comparison of different PSO algorithms on six optimization BMFs.

PSO SPSO LDW-PSO LAC-PSO ERPSO

f1(x)

Min 0.00 0.00 0.00 9.20× 10−6 0.00
Mean 1.95× 10−2 2.40× 10−2 2.26× 10−2 3.40× 10−1 7.48× 10−14

SD 2.77× 10−2 2.75× 10−2 2.34× 10−2 5.90× 10−1 6.44× 10−13

Ratio 100 % 96 % 97 % 37 % 100 %

f2(x)

Min 1.89× 101 9.95× 100 8.95× 100 6.10× 101 0.00
Mean 4.22× 101 3.06× 101 1.03× 101 3.08× 101 4.83× 10−15

SD 1.43× 101 1.11× 101 2.34× 10−2 1.68× 101 1.34× 10−14

Ratio 0 % 0 % 0 % 0 % 100 %

f3(x)

Min 4.44× 10−15 7.99× 10−15 4.40× 10−15 1.80× 100 8.88× 10−16

Mean 2.60× 10−1 3.16× 10−14 9.91× 10−15 1.68× 100 1.36× 10−14

SD 5.91× 10−1 6.99× 10−14 3.44× 10−15 1.68× 101 8.63× 10−15

Ratio 82 % 100 % 100 % 0 % 100 %

f4(x)

Min 6.50× 10−3 1.90× 10−1 1.67× 10−1 7.58× 100 3.17× 10−3

Mean 1.85× 103 4.57× 103 4.77× 103 1.22× 103 1.89× 101

SD 1.26× 104 1.97× 104 1.96× 104 9.01× 103 1.79× 101

Ratio 4 % 0 % 0 % 0 % 7 %

f5(x)

Min 0.00 3.81× 10−22 3.81× 10−14 4.20× 10−1 0.00
Mean 4.92× 10−14 1.00× 100 2.42× 10−12 1.69× 101 1.44× 10−15

SD 8.84× 10−13 1.00× 101 1.04× 10−11 2.22× 101 1.23× 10−14

Ratio 100 % 99 % 100 % 0 % 100 %

f6(x)

Min 8.12× 10−65 1.05× 10−17 1.98× 10−28 2.84× 100 0.00
Mean 2.20× 101 6.11× 101 7.30× 101 2.82× 102 4.88× 10−13

SD 4.83× 101 7.23× 101 8.39× 101 1.51× 102 2.56× 10−12

Ratio 81 % 51 % 48 % 0 % 100 %

f7(x)

Min 1.49× 10−32 1.50× 10−32 1.47× 10−32 2.41× 100 4.13× 10−31

Mean 2.08× 100 2.91× 10−18 3.44× 10−14 9.28× 100 1.22× 10−15

SD 2.05× 100 1.96× 10−17 1.30× 10−12 4.26× 100 1.10× 10−14

Ratio 23 % 100 % 100 % 0 % 100 %

f8(x)

Min 0.00 0.00 0.00 0.00 0.00
Mean 2.90× 10−45 4.11× 10−27 2.90× 10−40 5.51× 10−8 1.58× 10−13

SD 2.01× 10−44 4.10× 10−26 1.97× 10−39 1.16× 10−7 9.16× 10−12

Ratio 100 % 96 % 99 % 100 % 100 %

Table 4. Optimized CFIA characteristics results, VDD = 3.3 V, VCM = 1.65 V.

CFIA design parameter
Temperature

T =−40 ◦C T = 27 ◦C T = 85 ◦C

Differential DC gain (AVD) 95.12 dB 98.50 dB 95.62 dB
Gain bandwidth product (GBW) 78.43 MHz 94.77 MHz 103.41 MHz
Phase margin (PM) 66.74◦ 67.94◦ 67.07◦

Slew rate (SR) ±207.61 V µs−1
±240.87 V µs−1

±211.67 V µs−1

Differential input linear range (VID) 2.22Vp-p 2.40Vp-p 2.08Vp-p
Total harmonic distortion (THD) −85.88 dB −95.80 dB −82.81 dB
Static power dissipation (PD) 16.61 mW 8.10 mW 17.83 mW
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Figure 8. Box plots of the ERPSO algorithm over 10 independent runs on CFIA.

Table 5. CFIA performance under worst-case process corners of the AMS 0.35 µm technology. Where VDD(typ)= 3.3 V,
VDD(max)=+10 % VDD(typ), VDD(min)=−10 % VDD(typ), Tmin =−40 ◦C, Tmax =+85 ◦C, typ: typical, WP: worst-case power,
WS: worst-case speed, WO: worst-case one, and WZ: worst-case zero.

Case Process Condition CFIA characteristics

No. MOS RES CAP TEMP VDD AVD PM GBW SR THD PD
(dB) (deg) (MHz) (V µs−1) (dB) (mW)

1 TM TM TM typ typ 98 95 68 241 −96 8.10
2 WP WP WP min max 90 75 95 112 −102 5.38
3 WS WS WS min min 102 61 77 186 −76 5.80
4 WS WS WS max min 98 61 79 298 −77 25.94
5 WO WP WP min max 98 66 83 155 −78 5.711
6 WO WS WS max min 93 73 90 280 −74 26.04
7 WZ WP WP min max 97 71 88 122 −106 5.41
8 WZ WS WS max min 88 66 84 267 −75 9.00

electronics, the CFIA is subjected to the extreme process,
voltage, and temperature (PVT) corners as recommended by
AMS foundry and given in Table 5. The ERPSO algorithm
upgraded the reconfigurable design for every corner to cali-
brate for the targeted THD specifications as summarized in
Table 5.

The non-ideality of the measurement assessment unit is
nevertheless essential to be considered. It is because the ac-
curacy of the optimized SSE is limited to the precision of
this unit. Therefore, a non-ideality of the sinusoidal test sig-
nal is being studied by modeling of real sine (voltage) source
with an output temperature-dependent resistor. In this exper-
iment, the change of the resistor was 20 % from the nominal
value (50�), and the optimization results are summarized in
Table 6. It can be concluded that as long as the test sine sig-
nal has the THD value above the threshold value, it does not
affect the optimization performance.

4 Summary and conclusions

In this research paper, a novel ERPSO algorithm is pre-
sented and successfully deployed to improve the optimiza-
tion performance of the complex objective space of CFIA.
The ERPSO algorithm is increasing the exploration capabil-
ities of the classical PSO algorithm by introducing the ERB.
It is worth mentioning that the ERB contained the previ-
ously visited global best positions. The preponderance of the
proposed ERPSO algorithm is validated over four classical
PSO algorithms on eight benchmarking functions. Finally,
the proposed ERPSO has been successfully applied for the
extrinsic evaluation of the CFIA circuit. For the later expe-
rience, a new design approach is introduced based on THD
analyses that vary from the traditional calibration approach
intended for a particular characteristic of DUT. Instead, the
proposed calibration methodology optimizes all characteris-
tics of the reconfigurable SSE at once. Therefore, the DUT
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Table 6. Optimized CFIA characteristics results with non-ideal sinusoidal voltage source, VDD = 3.3 V, VCM = 1.65 V.

CFIA design parameter
Source resistance

R = 40� R = 50� R = 60�

Differential DC gain (AVD) 97 dB 97 dB 99 dB
Gain bandwidth product (GBW) 52 MHz 57 MHz 98 MHz
Phase margin (PM) 74◦ 73◦ 68◦

Slew rate (SR) ±107 V µs−1
±110 V µs−1

±261 V µs−1

Differential input linear range (VID) 2.6Vp-p 2.7Vp-p 2.5Vp-p
Total harmonic distortion (THD) −81 dB −83 dB −86 dB
Static power dissipation (PD) 5.34 mW 6.50 mW 8.94 mW

can preserve the optimum performance characteristics even
in the presence of severe PVT variations and aging effects.
The effectiveness of the proposed design methodology is
demonstrated by the achieved performance characteristics of
the CFIA, hence, offering a flexible and efficient scheme for
optimizing reconfigurable sensory electronics systems with
self-X properties in industry 4.0 domain. The future work
plan can be outlined into four perspectives: (a) performing
the intrinsic evaluation that includes the implementation of
optimization algorithm and sensor signal processing unit for
the FFT and THD measurements, we are going to use the
wired sensor platform with Mini PC (R-Pi family), which is
an optimal choice for the proof of principle (Picaut et al.,
2020); (b) applying the methodology to other sophisticated
systems in particular filter optimization and tuning; (c) mod-
eling the dynamic drift of the test stimuli properties and non-
idealities of the observer; and (d) integrating low-cost power
measurements to supply optimization units with a power con-
straint.
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