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Abstract. The geometric calibration of cameras becomes necessary when images should be undistorted, geo-
metric image information is needed or data from more than one camera have to be fused. This process is often
done using a target with a checkerboard or circular pattern and a given geometry. In this work, a coded checker-
board target for thermal imaging cameras and the corresponding image processing algorithm for iterative feature
detection are presented. It is shown that, due in particular to the resulting better feature detectability at image
borders, lower uncertainties in the estimation of the distortion parameters are achieved.

1 Introduction

Infrared (IR) cameras (also called thermal imaging cameras)
are widely used to perform temperature field measurements
by detecting the IR radiation emitted by object surfaces. The
correlation between the detected radiation flux and the in-
ternational temperature scale ITS-90 is obtained through a
radiometric calibration (König et al., 2020). In addition, just
as for cameras that work in the visible (VIS) spectral range,
there is the possibility of a geometric calibration (Luhmann
et al., 2013). This additional calibration is required to com-
pensate for image distortion (intrinsic calibration), to obtain
geometric information from the images (also intrinsic cali-
bration) or to determine the relationships between multiple
camera coordinate systems as part of a sensor data fusion
process (extrinsic calibration).

For this purpose, images of so-called calibration targets
with known geometric dimensions are used. The positions
of the target features in the images are detected in a first
step. The calibration parameters of a camera model are es-
timated so that the calculated Euclidean distances between
the features correspond as closely as possible to the target
dimensions. One problem with commonly used uncoded tar-
gets (those with a checkerboard or circular pattern) is that
the entire target and parts of its border must always be com-
pletely visible in the camera images. This is a limitation in
situations with small fields of view (FOV) (e.g., when only
small parts of the image overlap during the extrinsic calibra-

tion of a multicamera system; Rangel et al., 2021) and when
features should be placed near the image borders. This as-
pect is crucial in any geometric calibration: it will be shown
in the course of this work (Sect. 5) that these features near
the image border have a strong effect on the uncertainty in
the camera’s radial distortion parameters. The target and its
algorithmic evaluation presented in this work are intended to
address this problem. Iterative feature detection in combina-
tion with the presented actively heated calibration target can
thereby reduce the calibration uncertainty compared to the
state of the art.

In this paper, the basic principles of calibration are pre-
sented first, along with related works (see Sect. 2). Subse-
quently, the proposed method is described, whereby the tar-
get design and the iterative calibration algorithm are dis-
cussed (see Sect. 3). The results obtained when the target
was parameterized and compared experimentally with an un-
coded checkerboard target are then described (see Sect. 4).
Finally, the results are discussed (see Sect. 5), and a sum-
mary and outlook are given (see Sect. 6).

2 Fundamentals

In the following, the basic principles of a geometric calibra-
tion will be briefly discussed, with special attention paid to
the determination of the distortion parameters. Subsequently,
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Figure 1. Relationship between a 3D point P (Xc,Yc,Zc) and an
image point p(u,v) in the pinhole camera model with a virtual im-
age plane; based on Ordoñez Müller (2018).

the state of the art regarding coded and uncoded calibration
targets for IR cameras used in related works is presented.

2.1 Calibration

The parameters to be determined with an intrinsic geomet-
ric camera calibration are composed of the camera matrix
K and the distortion coefficients k. The following camera
matrix K contains the components of the idealized pinhole
camera model, which maps a 3D point P (Xc,Yc,Zc) in the
camera coordinate system onto the 2D image plane of the
camera at point p(u,v) (see Fig. 1) if the detector elements
are quadratic (Szeliski, 2010):uv
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Here, fu and fv are the focal lengths in units of px, and cu
and cv are the distances between the point of intersection of
the camera axis with the imaging plane and the upper left
corner of the image (also in units of px). It should be noted
that, to make the unit px describable in the SI system of units,
the size of a px corresponds to the side length of a detector
element (also called the pixel pitch; ≈ 17µm for the long-
wavelength infrared camera used here). However, because of
the camera optics required, a perfect pinhole camera does not
exist. The deviations that occur are described by distortion
models; most commonly, the model of Brown (1971) is used:[
xd,rad
yd,rad

]
= (1+ k1r

2
+ k2r

4
+ k3r

6)
[
x

y

]
(2)

[
xd,tan
yd,tan

]
=

[
x+ (2p1xy+p2(r2

+ 2x2))
y+ (2p2xy+p1(r2

+ 2y2))

]
(3)

with

r2
= x2
+ y2, (4)

where x and y are the undistorted image positions w.r.t.
the principal point (in the camera, not the image coordi-
nate system: x = u− cu,y = v− cv), xd,rad and yd,rad are
the image positions with radial distortion, xd,tan and yd,tan
are the image positions with tangential distortion, and k =[
k1,k2,k3,p1,p2

]T are the model distortion coefficients to
be determined. The distortion corresponds to a local scale
change. In the case of radial distortion, this change depends
on the distance r to the principal point and is caused by the
nonsymmetrical placement of the lens in front of (pincush-
ion distortion, k1 > 0) or behind (barrel distortion, k1 < 0)
the aperture and the spherical shape of the lenses (Luhmann
et al., 2020). Tangential distortion occurs primarily due to
errors in the alignment of the optical components with each
other (Luhmann et al., 2020).

The nine parameters in K and k are optimized using the
algorithm of Zhang (2000). Therefore, points on a planar tar-
get in several (at least four) image poses are needed as input
variables. The cost function of the nonlinear optimization is
based on minimizing the total Euclidean distance (RMSE,
reprojection error) between the given points and their repro-
jection. Schramm et al. (2021) show that the uncertainty in
the calibration depends on the uncertainty in the reference
data, i.e., the quality of the feature localization.

2.2 Related works

The use of different targets for the geometric calibration
of IR cameras is the subject of various publications. In the
vast majority, uncoded targets are used, which are usually
based on the detection of a circle or checkerboard (Soldan
et al., 2011). Features are mostly created by generating a
contrast in emissivity, such as that achieved by applying
paint on aluminum (Lagüela et al., 2011) or copper (Kim
et al., 2015), or by making holes in a high-emissivity ma-
terial with a low-emissivity plate behind (Ordoñez Müller,
2018). These types of targets are heated to generate an image
contrast (see Sect. 3.1). There are also works in which the
target is cooled to reduce the influence of interfering radia-
tion (Herrmann et al., 2020). Furthermore, targets where the
features are maintained at a different temperature (by active
heat sources such as light bulbs or LEDs) from the rest of the
target are also used (Beauvisage and Aouf, 2017). These tar-
gets often achieve very good results in the long-wavelength
infrared (LWIR) and mid-wavelength infrared (MWIR) due
to their high contrast compared to emissivity-based targets,
but they require a complex setup and are thus more expen-
sive and heavier. Also, the results of extrinsic calibrations
with VIS cameras are worse (Schramm et al., 2021). Thus,
the question arises of how to improve the calibration quality
of classical emissivity-based targets compared to the state of
the art.

J. Sens. Sens. Syst., 10, 207–218, 2021 https://doi.org/10.5194/jsss-10-207-2021



S. Schramm et al.: Iterative feature detection of a coded checkerboard target for the geometric calibration 209

The use of coded targets is much rarer. Coded features are
used in Lagüela et al. (2011), Luhmann et al. (2013) and
Schmidt and Frommel (2015) in combination with circular
targets. In Lagüela et al. (2011) and Schmidt and Frommel
(2015), this is primarily necessary to ensure a unique alloca-
tion due to the symmetry of circle features. The disadvantage
of these circle targets is that the complete circle must always
be visible for correct detection and localization. As a con-
sequence, the placement of features close to the image edge
depends on the circle radius. This leads to a trade-off: larger
circles allow a more precise centroid calculation, but at the
same time they increase the distance to the image edge.

Coded markers such as the ArUco markers (Romero-
Ramirez et al., 2018) proposed here are also used for the
calibration of IR cameras. In de Oliveira et al. (2016), a mul-
tispectral camera (VIS to near-infrared, NIR) is calibrated
using ArUco, but the markers are placed on a 3D instead
of a 2D target. Calibration with ArUco marker corners as
data points is not recommended due to the limited corner
detection accuracy of the ArUco algorithm. Therefore, in
the often-used OpenCV framework, an own target design
(ChArUco) is proposed. There, the ArUco markers are in-
tegrated into the white squares of the chessboard. All ArUco
markers surrounding a checkerboard field must be detected,
which again negatively affects the positionability at the im-
age edges. In Aalerud et al. (2019), the intrinsic parameters
of NIR sensors are determined with an uncoded checker-
board, but an extrinsic pose estimation is performed with
ArUco and specially developed retroreflective markers. Also,
in Lin et al. (2019), ArUco is used for pose estimation with
an NIR-sensitive camera. There are clear differences between
the NIR and LWIR ranges in both the camera technology
and the object radiation (reflection of external radiation com-
pared to own temperature radiation).

A combination of AprilTag markers and a checkerboard
for camera calibration in the LWIR spectral range is de-
scribed in Choinowski et al. (2019). Five AprilTag mark-
ers are distributed on the checkerboard pattern and placed
in such a way that they replace individual black squares of
the checkerboard. The algorithm used to detect the corners
(Wohlfeil et al., 2019) also differs from the algorithm pro-
posed here (see Sect. 3.2). In that work, all corners appearing
in the image are initially found using a corner extractor and
filtered according to whether the surroundings of the corner
include the four black-to-white transitions of a checkerboard
corner. The required radius of the surroundings of the cor-
ner in this step (up to 6.5px) limits the search for potential
points at the edge of the image. Unfortunately the authors
do not describe how they address this issue. Afterwards, the
homography determined by the AprilTag is used to calcu-
late where the corners should be positioned on the target, and
the remaining corner points are selected and assigned. Since
the same LWIR camera (and lens) is used in Choinowski
et al. (2019), the results can be compared to some extent (see
Sect. 4.3).

Figure 2. Examples of images of the proposed ArUco coded
checkerboard target.

Furthermore, coded targets are used in the VIS spectral
range. Besides the ChArUco approach mentioned above,
Schops et al. (2020) and the coded target used in the OpenCV
library based on the work of Duda and Frese (2018) (un-
known handling of a coded feature) should be mentioned
here. In Schops et al. (2020), the calculated homography of
an AprilTag is used, and the expected target feature positions
are refined by a cost function that penalizes the gray value
asymmetry in the symmetric target homography. Unlike the
solution from Choinowski et al. (2019), a comparison with
that from Schops et al. (2020) is not feasible because a global
camera parameter model is not used in that work (compare
to Sect. 2.1), and, besides the algorithm, the holistic design
of the target is a crucial influence on the calibration quality
of IR cameras (see Sect. 3.1 and the discussion in Sect. 5).
A similar iterative algorithm approach to that presented in
this work but for the calibration of VIS cameras has not been
reported.

None of the related works report a full solution for the
detection of features close to the image edges by infrared
cameras and how this affects the calibration. For this rea-
son, a novel method involving iterative feature detection (see
Sect. 3.2) in the full image region is proposed in this work.
Combined with an actively heated target (see Sect. 3.1), the
present approach should circumvent the limitations described
above. Experiments (see Sect. 4) demonstrate that the present
method allows improved boundary detection and reduces un-
certainty in the geometric calibration.

3 Approach

In this section, the target and the feature detection algorithm
are presented. The algorithm, a data set used in Sect. 4 and a
target template are available online.1

1The repository is published open source at https://github.com/
mt-mrt/mrt-coded-calibration-target.
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3.1 Target design

The target used in the present work has a centered ArUco
marker (Romero-Ramirez et al., 2018) framed by a checker-
board pattern (see Fig. 2). The sizes of the target and the
features have a crucial impact on the detection. The optimal
checkerboard target size in relation to the camera’s FOV is
discussed in Schramm et al. (2021). The size of the centered
ArUco marker is also a trade-off. On the one hand, increasing
the size of the marker increases the relative resolution of the
marker in the image and thus the detectability and accuracy
of the pose estimation. However, increasing the number of
squares of the checkerboard background that the marker ex-
tends over decreases the number of data points, and the data
points are used to optimize the final calibration parameters.

For better comparability with the uncoded checkerboard
target from Schramm et al. (2021), the same target dimen-
sions (600mm× 450mm) and checkerboard side lengths
(50mm) were used in the present work. This meant that a
white border and full-length checkerboard squares at the tar-
get border were not needed for detection, allowing another
line of checkerboard corners to be used at the outermost
edge. At the same time, 23 features in the center were re-
placed by the ArUco marker. The total number of checker-
board corners in the coded target was 76. This is more than
in the uncoded checkerboard target (54), but all features of
an uncoded target must always be visible. In contrast, in the
images of the coded target, a number of the features were
often outside the image field. Since only one ArUco marker
was needed, with individual elements that should be as large
as possible, a marker with a coarse 3× 3 dictionary was se-
lected (ID= 1). The edge length of the marker was 160mm.
The size was chosen based on the camera used (see Sect. 4)
and the maximum calibration distance of 2m, which resulted
in an ArUco marker block length of ≈ 7px×7px. The value
decreased when the target was rotated relative to the image
plane. ArUco marker detection was performed without any
problems in the experiments described in Sect. 4.

To detect these features using an LWIR camera, they were
printed on an Alu-Dibond plate with a heated back (achieved
using a self-adhesive, electrical heating foil manufactured by
Thermo Technologies). Alu-Dibond plates have the advan-
tage that they can be ordered very easily and inexpensively
from many online printing companies as wall posters. The
complete target (plate, heating mat and custom-made frame)
weighed less than 1.8kg.

The gray value Ucam of an image pixel is obtained accord-
ing to the radiometric chain from the emissivity of the mea-
surement spot ε as well as the corresponding temperature-
dependent gray values UBB

obj and UBB
amb of an object and the

environment using the black body assumption:

Ucam = εU
BB
obj − (1− ε)UBB

amb . (5)

The relationship between the black body equivalent gray
valueUBB

obj and the object temperature Tobj is determined dur-

ing the radiometric calibration of the camera. If the target
has two different surface types (painted and blank aluminum)
with two different emissivities ε1 and ε2, this leads, accord-
ing to Eq. (5), to a gray value contrast (1U = U1−U2) of

1U =
(
UBB

target−U
BB
amb

)
(ε1− ε2) . (6)

To maximize the first part of the equation, the temperature
difference must be large and/or the sensitivity of the cam-
era (which affects the radiometric calibration parameters)
must be high. This means, for example, that a much smaller
temperature difference is required for feature detection us-
ing high-sensitivity MWIR cameras with InSb detectors than
when using microbolometer LWIR cameras, given that a
typical InSb (indium antimonide) MWIR camera is a fac-
tor of approx. 100 more sensitive (Vollmer and Möllmann,
2017). This difference is manifested in the heating foil re-
quired: while a heating foil with an electrical power density
of M = 0.154Wm−1 is sufficient for a typical MWIR cam-
era (InfraTec ImageIR 8300 hp), a heating foil with an elec-
trical power density of M = 41.8Wm−1 is required to reach
an adequate feature contrast when using an LWIR camera
(Optris PI 450). Since an LWIR camera was considered in
this work, the more powerful heating foil was used. It should
be ensured that the size of the heating mat is similar to the
size of the target, since a homogeneous temperature distri-
bution on the front of the target supports the feature detec-
tion process. Due to the Dibond between the two aluminum
layers, the temperature uniformity is not ideal. In the exam-
ined application, the temperatures at the target center and the
target corners deviated from each other by less than 10 ◦C.
Instead of a heating foil, the target could also be placed on
the ground outdoors (Choinowski et al., 2019) and the low
self-radiation of the sky can be used as reflected ambient ra-
diation, although this is done at the expense of operational
flexibility.

To further increase the contrast and to reduce the influ-
ence of the nonuniform temperature distribution on the tar-
get surface, it is recommended that an adaptive contrast
adjustment (CLAHE) should be performed (Pizer et al.,
1987). Its parameters should be determined empirically for
the particular data set by observing the detection rate. For
the detection of the coded target with the camera used
in this work, the parameters were set to clipLimit=
5.0,tileGridSize= (16,12). Even if the features are
found without contrast enhancements, this preprocessing
step can have a positive effect on the results and should there-
fore be considered.

3.2 Feature detection and calibration algorithm

Since the final RMSE of a good calibration is below 1px (and
often in the range 0.1–0.4 px), the feature positions must also
be found to the subpixel level. To find these features in such
an accurate manner, an iterative calibration algorithm was
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implemented according to the schematic process flow shown
in Fig. 3. The code was written in Python and was based on
the functions of the OpenCV library (Bradski, 2000).

First, the ArUco markers of the image data set were de-
tected (step 1). The 3D translations t tar and rotations Rtar of
the target center poses relative to the camera were estimated
from the ArUco marker. The translations t tar→feat,i between
each checkerboard corner i and the target center were given
by the target design (as the target is planar, z= 0m). The
position of a checkerboard corner in the camera coordinate
frame was calculated via

t feat,i = t tar+Rtar · t tar→feat,i . (7)

Furthermore, an initial geometric calibration was performed
by detecting the ArUco corners in all images (step 2). Using
the function projectPoints, the 3D points tcam→feat,i
were mapped to image coordinates (step 4). However, since
ArUco corners can only be localized imprecisely (no sub-
pixel refinement), the rotation and translation components
and the initial calibration parameters contain large uncertain-
ties. As a result, the deviation of the projected features in-
creases significantly as a function of the distance to the tar-
get center (see Fig. 4a). Therefore, an iterative function was
used to gradually increase the accuracy of the calibration.
After the ArUco calibration, only the checkerboard features
around the target center were evaluated, and the number of
corner columns nu and number of rows nv were increased
stepwise. At the same time, the search radius sr within which
the corner positions were refined by OpenCV was reduced
(step 3). The projected points from step 4 were then filtered
(points outside the FOV were removed), and corner refine-
ment was performed (step 5). Since this led to an increase in
the precision of the feature positions (see Fig. 4b), the cal-
ibration parameters were re-estimated (step 6), and then re-
quired target poses were calculated using solvePnP (step
7). The algorithm iterated until the maximum number of fea-
tures were used (nu,nv: the target feature grid size) and the
search radius was minimized. The parameterization is dis-
cussed in Sect. 4.1.

4 Performed experiments

In this section, the experimental results from the coded target
presented above and the uncoded checkerboard target from
Schramm et al. (2021) are compared. In our experiments, an
LWIR camera (Optris PI 450) was used, which is sensitive
to radiation in the spectral range from 7.5 to 13µm. Its res-
olution of 382px× 288px is low compared to common VIS
cameras. This camera has a wide-angle lens with an FOV of
53◦× 38◦.

For the experiments, 60 images of each target were ac-
quired. After switching on the heating foils, it was necessary
to wait for about 15min for the plates to reach thermal sta-
tionarity. To make the underlying optimization problem solv-
able, it was important to change the target pose (the target

position in the image and the rotation of the target) from im-
age to image. Instead of performing a single calibration with
all 60 images, a multicalibration was performed withM sub-
sets of N images. While multicalibration is more common
in the photogrammetry community (Luhmann et al., 2013;
Wohlfeil et al., 2019) than in the computer vision commu-
nity, an advantage of it is that statistical parameters such as
the standard deviation can be calculated and outliers can be
excluded. For a recorded data set, the standard deviation can
be used to assess the quality of a calibration in terms of pa-
rameter uncertainty. This provides another quality measure
beyond the reprojection error RMSE, whose absolute value
depends on the camera characteristics. Outliers can be treated
using the RMSE percentiles. If the subset’s RMSE is signif-
icantly higher than the mean RMSE, it can be assumed that
the subset is not suitable for calibration because, for exam-
ple, images with similar target poses were selected from the
data set. If the RMSE exceeds the relative measure of the se-
lected percentile, the calibration parameters of the subset are
not included in the calculation of the mean µ and the stan-
dard deviation σ . For each of the results presented below,
information on whether the limit was set and, if so, the value
at which it was set is provided in each case.

4.1 Parameterization

The parameterization effects of the number of checkerboard
feature rows nu, nv as well as the search radius sr on the cal-
ibration results were then examined. The results were based
on an obtained data set consisting of 60 images (the maxi-
mum number of images is not important negligible as long
as it is significantly greater than the number of images per
subset N ).

Admissible values for the number of feature rows were
odd and ranged between one frame around the ArUco marker
and the maximum target dimensions nu = {7,9,11}, nv =

{7,9}. As can be seen in Fig. 4, the minimum values (7× 7)
should be chosen for the first run. If larger values are used,
features may be placed in other corners if the search radii
are too large. This leads to wrong calibration parameters,
which will project the corners to false positions in the next
iteration step. The search radius sr must be selected such
that the corner to be found is always present within the ra-
dius but adjacent checkerboard corners are not. By iteratively
improving the projection of the features, the search radius
can be reduced as the number of iteration steps increases.
The best results are achieved when the search radius ends
at its minimum value sr= 1. If a corner is not refined by
CornerSubPix (e.g., due to noise), the influence of mis-
localization can be limited to the search radius. An exam-
ple of wrong corner refinement due to wrong parameters is
shown in Fig. 5. If the smallest number of features is used,
it is possible to use all features with a smaller search radius,
since the reprojection improves significantly in the first step
(see Fig. 4). The maximum search radius should be smaller
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Figure 3. Schematic process flow of the feature detection algorithm.

Figure 4. Increased projected corner precision after the initial calibration with an ArUco marker (a) and with the center 7× 7 checkerboard
corners (b).
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Figure 5. Incorrectly refined corners (yellow circles) due to the
direct use of all target features in the first iteration step (nu = 11,
nv = 9). Reprojected corners in blue, refined corners in red.

than half of the smallest recorded width or height (in px) of
a checkerboard side length to avoid false assignments.

To test the parameterization, four different test scenarios
were examined (see Table 1). In Scenario 1, four iteration
steps were performed according to the description. In Sce-
nario 2, the test was terminated at a minimum search radius
of sr= 2. In Scenario 3, all existing target checkerboard fea-
tures were used directly after the ArUco step. In Scenario 4,
a larger initial search radius was used.

As can be seen in Fig. 6, the median, the mean and the
scatter of the RMSE were lowest for the parameter set of Sce-
nario 1. The results of Scenario 3 did not differ much from
those of Scenario 1, implying that the search radius sr has
a greater influence on the result than the number of feature
columns and rows nu and nv. Even though the basic influence
of the parameterization is shown here, it should be noted that
the specific parameters to use depend in particular on the side
length of a checkerboard square.

4.2 Minimal border distance

To determine the extent to which the detection ability is in-
creased at image borders, the uncoded checkerboard target
and the coded target were mounted on a linear drive and
moved out of the camera’s FOV at a speed of less than 1px
per image. The last image in which the outermost corner was
detected is shown in Fig. 7. The minimal border distance db
was 8.5px for the uncoded target and 1.6px for the coded
target. The influence of this characteristic on the distortion
precision (Sect. 4.3) is discussed in Sect. 5.

Figure 6. RMSE histograms resulting from the utilization of the
different parameter sets in Table 1 for the multicalibration of N =
15, M = 10000 without data filtering. The red line indicates the
mean and the blue line the median value. The x axis is limited to
0.5px to allow better visualization of the distribution; the truncated
maximum values are max(RMSES1)= 0.59px, max(RMSES2)=
0.98px, max(RMSES3)= 0.82px and max(RMSES4)= 4.21px.
Due to the presence of a few comparatively large outliers in Sce-
nario 4, the mean value deviates significantly from the median.

4.3 Distortion precision

First, the relationship of the precision (standard deviation) of
each calibration parameter to the number of images per cal-
ibration N was examined. To remove outliers from the data,
only calibration runs with an RMSE within its 90th percentile
were included in the analysis. Figure 8a and b show the re-
sults for the camera matrix parameters K (see Eq. 1) and the
distortion parameters k (see Eqs. 2 and 3), respectively. As
expected, the uncertainty in a parameter estimate decreased
with the number of data points. For all distortion parameters
and for the center point distances cu and cv, the parameter
uncertainty was lower when the coded target was evaluated.
The uncertainty was only lower with the uncoded target for
the scaling factors fu and fv when N ≥ 11. This was also re-
flected in the RMSE and its standard deviation (see Fig. 8c).
For each N , calibration with the coded target led to better
results. The mean RMSE over all numbers of images was
0.282px for the coded target (with a mean standard devia-
tion of 0.013px) and 0.334px for the uncoded target (with a
mean standard deviation of 0.053px).

To perform a comparison with the calibration results de-
noted sep20 in Choinowski et al. (2019), a multicalibration
was performed using identical parameters (N = 20, M =
1000, no percentile filtering). The results are shown in Ta-
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Table 1. Test scenarios for the parameterization of nu, nv and sr.

Iteration
Scenario 1 Scenario 2 Scenario 3 Scenario 4

nu nv sr nu nv sr nu nv sr nu nv sr

1 7 7 6 7 7 6 11 9 6 7 7 10
2 11 9 4 11 9 4 11 9 4 11 9 4
3 11 9 2 11 9 2 11 9 2 11 9 2
4 11 9 1 11 9 1 11 9 1

Figure 7. Smallest border distance at which features are detected.

ble 2. Note that the mean values µ are not comparable due
to manufacturing tolerances and potentially different focus
settings. Hence, only the given standard deviations σ can be
compared. In addition, no information on the uncertainty in
the distortion parameters is provided in Choinowski et al.
(2019). The parameter precision was higher for both of the
targets used in this paper. The results were validated by mul-
ticalibrations with N = 10 and 30, both of which gave the
same results as the previous multicalibration.

Besides the three columns allowing a comparison of the
three target types, Table 2 has two additional columns, Coded
8.5 px border and Coded 20 px border. The images of the
ArUco target were also used in these calibrations, but all fea-
tures with a distance to the border db of < 8.5px or < 20px,
respectively, were excluded from the calibration (see Fig. 9).
These two values were chosen because 8.5px corresponds to
the theoretical limit from Sect. 4.2 and, when viewing the
data from the uncoded checkerboard target, the border dis-
tance seen in the heat maps is approx. 20px (compare Fig. 9c
and d). The use of the two additional data sets allows the edge
feature detection effect to be separated from other possible
dissimilarities between the different targets or the respective
data sets. Although the RMSE is slightly reduced, the uncer-
tainty in the parameters increases significantly (by a factor of
≈ 8 for k3).

A comparison of the radial distortion parameters of the
data set presented in Table 2 is shown as a boxplot in Fig. 10.
Here, in addition to the expected smaller span, it can also be

seen that the distribution is more symmetric for the ArUco
target. When the p-value from a Shapiro–Wilk test (Shapiro
and Wilk, 1965) is higher than 0.05, the test indicates that the
set of values tested are normally distributed. This test was
performed on 100 randomly selected values from Fig. 10.
All ArUco radial distortion coefficients were normally dis-
tributed for the coded target (pk1,ArUco = 0.853, pk2,ArUco =

0.336 and pk3,ArUco = 0.273), while k2 and k3 were not nor-
mally distributed (Wk1,Uncoded = 0.401, Wk2,Uncoded = 0.004
and Wk3,Uncoded = 8.18× 10−6).

4.4 Target detection time

Another advantage of using coded targets is that the detection
of these marker libraries is optimized for performance. This
is especially helpful when the target needs to be detected in
real time to check if an image can be used for calibration
(and thus the image is included in the data set). This is not
an explicit advantage of the presented algorithm, but it is a
fundamental advantage when using coded targets.

To examine this, the image series was extended by
including the images in which the target was not de-
tectable. The specific values depend on the computer
used (CPU: Intel i7-10510U, 1.8GHz), but their ratios
demonstrate the differences. Table 3 shows the max-
imum and average durations of target detection using
the OpenCV methods detectMarkers for ArUco and
findChessboardCorners for the uncoded target, re-
spectively. There is an extra setting for quickly finding targets
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Figure 8. Logarithmic plots of the individual calibration parameter standard deviations σ (a, b) and the resulting RMSE standard deviation
σ and mean value µ (c) as functions of the number N of images per subset for M = 10000 calibration runs and RMSE filtering at the 90th
percentile. To improve visualization of the trends in the data shown, high values for the uncoded target at smallN (e.g. σ (fv,N = 4)= 143.3,
σ (k3,N = 4)= 1071) were truncated.

Table 2. Results of the intrinsic camera calibrations with N = 20, M = 1000 and no percentile filtering. CH: values from the data set sep20
in Choinowski et al. (2019); not comp.: mean value µ is not comparable due to manufacturing tolerances and potentially different focus
settings. The best values for each parameter are shown in bold.

Parameter
Coded Coded 8.5 px border Coded 20 px border Uncoded Coded CH

µ σ µ σ µ σ µ σ µ σ

fu (in px) 374.0 1.724 374.8 1.801 375.3 1.813 374.9 1.517
not comp. 5.500

fv (in px) 373.9 1.696 374.7 1.786 375.1 1.817 373.9 1.440
cu (in px) 207.6 1.747 206.8 1.747 206.0 1.930 208.9 1.915 not comp. 2.320
cv (in px) 148.8 1.471 148.8 1.433 149.0 1.865 151.2 2.292 not comp. 3.140
k1 (−) −0.4478 0.007062 −0.4516 0.007347 −0.4561 0.01080 −0.4428 0.009636 − −

k2 (−) 0.3426 0.02681 0.3662 0.03045 0.3924 0.04830 0.3293 0.05364 − −

k3 (−) −0.1835 0.03102 −0.2124 0.03984 −0.2576 0.06544 −0.1869 0.1056 − −

p1× 10−3 (−) 0.9398 0.6868 0.9993 0.6581 0.8100 0.7378 −0.7504 0.8544 − −

p2× 10−3 (−) 0.5676 0.6599 1.1572 0.6909 1.4166 0.7515 0.8953 0.9189 − −

RMSE (in px) 0.2853 0.01175 0.2774 0.01179 0.2729 0.01202 0.3497 0.04489 − −

in images with findChessboardCorners, but no target
was detected in any image when this flag was used. This was
probably due to the significantly lower signal-to-noise ratio
compared to VIS images. It is noticeable in Table 3 that there
are only small differences between detection and nondetec-
tion for ArUco markers (−14% on average), but the image
processing time increases significantly for the checkerboard
algorithm in the case of nondetection (+262% on average).

Thus, in the case of nondetection, processing took a factor
of 32 longer for the uncoded target. Given that the maximum
frame rate for the Optris PI 450 is 80Hz, image data for the
uncoded target could not be processed on the computer in
real time.

The duration of the actual calibration, which is not usually
performed in real time during the measurements, is approx-
imately the duration of the uncoded target calibration mul-
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Figure 9. Heat maps of the feature positions for the evaluated vari-
ants in Table 2 with N = 50.

Figure 10. Boxplot comparing the radial distortion parameters k1,
k2 and k3 obtained with the coded and uncoded targets.

tiplied by the number of iteration steps (see Sect. 4.1) com-
pared to the uncoded target.

5 Discussion

It should first be noted that both targets used in this work
had lower standard deviations for fu, fv and cv compared
to those reported in Choinowski et al. (2019), and the coded
target also had a lower standard deviation for cv. Thus, in
this comparison, the advantage exhibited by the targets used
in this work is not solely due to the use of a coded target
and iterative evaluation. The active heating of the target as
well as the use of the CLAHE algorithm yielded an increased
contrast-to-noise ratio, which in turn led to better feature lo-
calization (compare to Schramm et al., 2021). Unfortunately,
the sizes of the features in the coded circle targets used in the
related works (Lagüela et al., 2011; Luhmann et al., 2013;

Table 3. Comparison of the detection times required when using the
ArUco marker and the chessboard with OpenCV 4.4.0 for Python.
In each case, 40 images were evaluated. The shorter of the two cal-
culation durations (for the coded and uncoded targets) in each case
is shown in bold.

Parameter Coded Uncoded

Target detected

µ(t) in s 0.007 0.053
max(t) in s 0.008 0.154

Target not detected

µ(t) in s 0.006 0.192
max(t) in s 0.008 0.234

Figure 11. Sensitivity analysis of radial distortion parameters as a
function of radius r from the image center. The dashed lines illus-
trate the r values at the image edges and corners.

Schmidt and Frommel, 2015) were not described in the im-
ages in those works, so a quantitative comparison of border
detectability was not possible. To achieve a minimal image
border distance db of 1.6px (as shown in Sect. 4.2) with a
circle feature target, the circle radius must be the same size.
In the calibration images shown in those works, the circles
are resolved more finely. Especially in the results presented
in Schmidt and Frommel (2015) (Fig. 8, left), it can be seen
that features at the border are not detected.

The relative decrease in parameter uncertainty obtained
with the coded target as compared to the uncoded target was
strongest for the radial distortion parameters. At the same
time, it was shown that feature positions closer to the im-
age edge can be localized. According to the Brown model,
the displacement of a point increases at the edge of the im-
age (differentiate Eq. 2 with respect to k1, k2 and k3, respec-
tively). Figure 11 shows a sensitivity analysis based on the
parameters shown in Table 2. A point at radius r (see Eq. 4)
from the center of the image (cu, cv) is transformed inversely
to a 3D point (independent of the distance to the camera co-
ordinate system Zc) with these parameters. This world point
is then mapped back with a single investigated parameter off-
set by 10% of its value. The Euclidean distance between the
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original and the reprojected point indicates the effect of the
parameter change. It is clear that as the power of the param-
eter increases, the influence on the calibration occurs closer
to the edge. This demonstrates the relevance of detecting fea-
tures at image edges to the uncertainty in the calibration pa-
rameters. At the same time, it means that the correct parame-
terization of k2 and k3 becomes more important when infor-
mation from the image edges needs to be used.

At the same time, the features at the image edges have
only a small influence on the principal point position cu, cv
and the tangential distortion parameters p1 and p2. The data
set obtained without the 8.5px border features (see Table
2) presents higher (σ (p2)=+4.7%), equal (σ (cu)) and even
slightly lower (σ (cv)=−2.7% and σ (p1)=−4.3%) stan-
dard deviations for these parameters. Even though the distor-
tion model is the standard model for the parameterization of
IR and VIS cameras, it does not seem to perfectly describe
the distortion that occurs due to the slightly increased RMSE
when all points at the border are considered (+4.5% com-
pared to the 20px border data set; see Table 2).

The normally distributed parameter estimates obtained
with the coded target allow the derivation of direct statements
about the uncertainty in the calibration from the empirical
standard deviations σ . This can be advantageous if the geo-
metric properties of the calibrated camera are expected to lie
within a certain confidence interval.

Furthermore, Sect. 4.4 indicates that the use of rapidly de-
tectable features (independent of the calibration algorithm
used) can have advantages for real-time target detection.

Due to the lack of a checkerboard corner detector (aside
from during the refinement step), the target may not be oc-
cluded during calibration. While it may be partially outside
the FOV, the features located in the image FOV must be vis-
ible. If, for example, a feature is occluded by the operator’s
hand, a checkerboard corner is also searched for in this area,
and the point with the highest local derivative is returned.
Although the effect of a few occluded corners on the over-
all result is small, these images should be excluded from the
data set beforehand. In the case of an uncoded target, an oc-
cluded corner will cause the entire target to be undetected
and thus automatically excluded. The algorithm presented in
Choinowski et al. (2019) avoids the use of such hidden fea-
tures.

6 Conclusions

Within the scope of this work, a coded target for the geomet-
ric calibration of an LWIR camera was developed and evalu-
ated using an iterative feature detection algorithm. Compared
to the state of the art, the combination of this target and the
algorithm allowed improved feature detection at image bor-
ders. This improves the estimation of radial distortion param-
eters, as indicated by the distortion parameter uncertainty and
a sensitivity analysis.

Future work could address the automated preprocessing
of the calibration images. Both the ArUco detection of the
coded target algorithm and the checkerboard detection of the
uncoded target depend on the adaptive contrast enhancement
parameters. Currently, the algorithm does not have the ability
to identify whether a feature of the target is occluded by an-
other object. A filtering step such as that applied in Wohlfeil
et al. (2019) would be useful, but consideration must be given
to the issue of whether the feature neighborhood cannot be
evaluated entirely at image borders. In addition, extending
the calibration from well-known global camera models to lo-
cal models, as in Schops et al. (2020), could also lead to good
results for infrared cameras.

Code and data availability. The latest code and the main
image data set are available via https://github.com/mt-mrt/
mrt-coded-calibration-target (Ebert and Schramm, 2021). The ver-
sion of the code on which the publication is based on is also avail-
able via DOI at https://doi.org/10.5281/zenodo.4596313 (Schramm
and Ebert, 2021).
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