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Abstract. Process sensor data allow for not only the control of industrial processes but also an assessment
of plant conditions to detect fault conditions and wear by using sensor fusion and machine learning (ML). A
fundamental problem is the data quality, which is limited, inter alia, by time synchronization problems. To
examine the influence of time synchronization within a distributed sensor system on the prediction performance,
a test bed for end-of-line tests, lifetime prediction, and condition monitoring of electromechanical cylinders
is considered. The test bed drives the cylinder in a periodic cycle at maximum load, a 1 s period at constant
drive speed is used to predict the remaining useful lifetime (RUL). The various sensors for vibration, force,
etc. integrated into the test bed are sampled at rates between 10 kHz and 1 MHz. The sensor data are used
to train a classification ML model to predict the RUL with a resolution of 1 % based on feature extraction,
feature selection, and linear discriminant analysis (LDA) projection. In this contribution, artificial time shifts
of up to 50 ms between individual sensors’ cycles are introduced, and their influence on the performance of
the RUL prediction is investigated. While the ML model achieves good results if no time shifts are introduced,
we observed that applying the model trained with unmodified data only to data sets with time shifts results
in very poor performance of the RUL prediction even for small time shifts of 0.1 ms. To achieve an acceptable
performance also for time-shifted data and thus achieve a more robust model for application, different approaches
were investigated. One approach is based on a modified feature extraction approach excluding the phase values
after Fourier transformation; a second is based on extending the training data set by including artificially time-
shifted data. This latter approach is thus similar to data augmentation used to improve training of neural networks.

1 Introduction

In the Industry 4.0 paradigm, industrial companies have to
deal with several emerging challenges of which digitaliza-
tion of the factory is one of the most important aspects for
success. In digitalized factories, sometimes also referred to
as “Factories of the Future” (FoF), the “Industrial Internet
of Things” (IIoT) forms the networking basis and allows
users to improve operational effectiveness and strategic flex-
ibility (Eichstädt, 2020; Schütze et al., 2018). Key compo-
nents of FoF and IIoT are intelligent sensor systems, also
called cyber-physical systems, and machine learning (ML),
which allow for the automation and improvement of com-

plex process and business decisions in a wide range of appli-
cation areas. For example, smart sensors can be used to eval-
uate the state of various components, determine the optimum
maintenance schedule, or detect fault conditions (Schneider
et al., 2018b), as well as to control entire production lines
(Usuga Cadavid et al., 2020). To make full use of the wide-
ranging potential of smart sensors, the quality of sensor data
has to be taken into account (Teh et al., 2020). This is lim-
ited by environmental factors, sensor failures, measurement
uncertainty, and – especially in distributed sensor networks
– by time synchronization errors between individual sensors.
Confidence in ML algorithms and their decisions or predic-
tions requires reliable data and therefore a metrological in-
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frastructure allowing for an assessment of the data quality.
In this contribution, a software toolbox for statistical ma-
chine learning (Schneider et al., 2017, 2018b; Dorst et al.,
2021a) is used to evaluate large data sets from distributed
sensor networks under the influence of artificially generated
time shifts to simulate synchronization errors. One aspect to
address time synchronization problems in distributed sensor
networks is improved time synchronization methods to pro-
vide a reliable global time for all sensors. Many different
synchronization methods are proposed for sensor networks
(Sivrikaya and Yener, 2004). However, improved time syn-
chronization might not be possible or be too costly, especially
in existing sensor networks which were often never designed
for sensor data fusion, so the ML approach can be improved
to achieve a more robust model with acceptable results as
demonstrated in this contribution.

2 Test bed for data acquisition

Predictive maintenance, based on reliable condition moni-
toring, is a requirement for reducing repair costs and ma-
chine downtime and, as a consequence, increasing produc-
tivity. Therefore, an estimation of the remaining useful life-
time (RUL) of critical components is required. Since we are
using a data-driven model, this cannot be done directly with-
out reference data. A test bed for electromechanical cylin-
ders (EMCs) with a spindle drive equipped with several sen-
sors is used. This specific test bed was used as it contains
a large variety of sensor domains and allows for physical
interpretation. Because most industrial ML problems only
use a subset of these sensors, the approaches of the chosen
test bed can be transferred. In this test bed, long-term speed
driving and high load tests are carried out until a position er-
ror of the EMC occurs, i.e., until the device under test (DUT)
fails. Characteristic signal patterns and relevant sensors can
be identified for condition monitoring as well as for RUL
estimation of the EMCs. Figure 1 shows the scheme of the
test bed. Simplified, the setup of the test bed consists of the
tested EMC and a pneumatic cylinder which simulates the
variable load on the EMC in axial direction. All parameters
of the working cycle can be set by using a LabVIEW GUI.

A typical working cycle lasts 2.8 s. It consists of a forward
stroke and a return stroke of the EMC as well as a waiting
time of 150 ms between both linear movements. The move-
ments are always carried out with approximately maximum
speed and maximum acceleration. The stroke range of the
EMC is between 100 and 350 mm in the test bed. The com-
bination of high travel speed (200 mm s−1), high axial force
(7 kN), and high acceleration (5 mm s−2) leads to fast wear
of the EMC. The error criterion for failure of the EMC is
defined as a too large deviation between the nominal and ac-
tual position values; i.e., the test is stopped as soon as the
specified position accuracy (position accuracy< 30 mm) is
no longer fulfilled due to increased friction.

To gather as much data as possible from different sensor
domains for a comprehensive condition monitoring, the fol-
lowing 11 sensors are used within the test bed (Schneider
et al., 2018a):

– one microphone with a sampling rate of 100 kHz;

– three accelerometers with 100 kHz sampling rate, at-
tached at the plain bearing, at the piston rod, and at the
ball bearing;

– four process sensors (axial force, pneumatic pressure,
velocity, and active current of the EMC motor) with
10 kHz sampling rate each;

– three electrical motor current sensors with 1 MHz sam-
pling rate each.

In Fig. 2, the raw data for one cycle and all sensors is shown.
The collected data reflect the functionality of the EMC and
its decrease during the long-term test. For data analysis,
which is described in more detail in the next section, vari-
ous EMCs were tested until the position error occurred. The
typical lifetime of an EMC under these test conditions was
approx. 629 000 cycles corresponding to roughly 20 d and
generated an average of 12 TB of raw data.

3 ML toolbox for data analysis

The ML toolbox developed by Schneider et al. (2018b) is
used for RUL analysis in this contribution. It can be applied
in a fully automated way, i.e., without expert knowledge and
without a detailed physical model of the process. After ac-
quisition of the raw data, feature extraction and selection as
well as classification and evaluation are performed, as shown
in Fig. 3.

3.1 Feature extraction

In the beginning, unsupervised feature extraction (FE) is per-
formed, i.e., without knowledge of the group to which the
individual work cycle belongs, in this case the current state
of aging (RUL). Features are generated from the repeating
working cycles of the raw data. As there is no method that
works well for all applications, features are extracted from
different domains by five complementary methods:

– Adaptive linear approximation (ALA) divides the cy-
cles into approximately linear segments. For each linear
segment, mean value and slope are extracted as features
from the time domain (Olszewski et al., 2001).

– Using principal component analysis (PCA), projections
on the principal components are determined and used
as features, representing the overall signal (Wold et al.,
1987).
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Figure 1. Basic scheme of the EMC test bed (Helwig et al., 2017).

Figure 2. Raw data recorded during one cycle by 11 sensors expressed in SI units.
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Figure 3. Schematic of the automatic toolbox for condition monitoring using machine learning, adapted from Dorst et al. (2019).

– The best Fourier coefficient (BFC) method extracts the
10 % of amplitudes with the highest average absolute
value over all cycles and their corresponding phases as
features from the frequency domain (Mörchen, 2003).

– The best Daubechies wavelet (BDW) algorithm is based
on a wavelet transform, and as for BFC, the 10 % of
the wavelet coefficients with the highest average abso-
lute value over all cycles are chosen as features from the
time-frequency domain.

– In general, information is also included in the statistical
distribution of the measurement values. These features
are extracted from a fixed number of equally sized seg-
ments of a cycle by the four statistical moments (SMs)
of mean, variance, skewness, and kurtosis.

The objective of FE is to concentrate information in as few
features as possible whilst achieving a precise prediction of
the RUL. The FE methods are applied to all sensor signals
and all cycles. This results in five feature sets with a large
number of features in each. However, the number of features
is still too high after performing feature extraction for Big
Data applications, such as RUL estimation of the EMC as
described in the previous section. Due to the insufficient data
reduction in this step, feature selection is carried out with the
extracted features to prevent the “curse of dimensionality”
(Beyer et al., 1999).

3.2 Feature selection

Feature selection (FS) is a supervised step; i.e., the group to
which each cycle belongs is known. In the case of the RUL
estimation of the EMC, the target value is the used lifetime
with a resolution of 1 %. As for feature extraction, no method
alone can provide the optimum solution for all applications,
so three different complementary methods are used for fea-
ture selection in the ML toolbox:

– Recursive Feature Elimination Support Vector Machine
(RFESVM) uses a linear support vector machine (SVM)
to recursively remove the features with the smallest con-
tribution to the group separation from the set of all
features (Guyon and Elisseeff, 2003; Rakotomamonjy,
2003).

– The RELIEFF algorithm is used when the groups cannot
be separated linearly. This algorithm finds the nearest
hits and nearest misses for each point by using k-nearest
neighbors with the Manhattan norm (Kononenko and
Hong, 1997; Robnik-Šikonja and Kononenko, 2003).

– Pearson correlation is used as a third method for feature
(pre)selection because of its low computational cost.
The features are sorted by their correlation coefficient
to the target value. This coefficient indicates how large
the linear correlation between a feature and the target
value is.

Preselection based on Pearson correlation is performed to re-
duce the feature set to only 500 features before applying the
RFESVM or RELIEFF algorithms to reduce the computa-
tional costs. After ranking the features with a feature selec-
tion algorithm, a 10-fold cross-validation (explained later) is
carried out for every number of features to find the optimum
number of features. Thus, the most relevant features with re-
spect to the classification task are selected, and features with
redundant or no information content are removed from the
feature set.

In addition to reducing the data set, this step also avoids
overfitting, which often occurs when the number of data
points for developing the classification model is not signif-
icantly greater than the number of features.
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3.3 Classification

The classification is carried out in two steps: a further di-
mensionality reduction followed by the classification itself.
The further dimensionality reduction is based on linear dis-
criminant analysis (LDA). It performs a linear projection
of the feature space into a g− 1-dimensional subspace for
g groups which represent the corresponding system state.
The intraclass variance, the variance within the classes, is
minimized while the interclass variance, the variance be-
tween the classes, is maximized (Duda et al., 2001). Thus,
the distance calculation in the classification step has only a
complexity of g− 1. The actual classification is carried out
using the Mahalanobis distance; see Eq. (1):

dMahal(x)=
√

(x−m)>S−1(x−m). (1)

Here x denotes the vector of the test data, m the component-
wise arithmetic mean, and S the covariance matrix of the
group. For each data point, the Mahalanobis distance indi-
cates how far it is away from the center of the data group,
taking the group scattering into account. In order to classify
the data, each sample is labeled with the class that has the
smallest Mahalanobis distance. Points of equal Mahalanobis
distance from a center graphically form a hyperellipse in the
g− 1-dimensional LDA space.

3.4 Evaluation

The k-fold stratified cross-validation (CV) is used for eval-
uation (Kohavi, 1995). This means the data set is randomly
divided into k subsets, with k ∈ N. Stratified means that each
of the k subsets has approximately the same class distribu-
tion as the whole feature set. In the ML toolbox, k is usually
set to 10. Thus, one group forms the test data set and nine
groups form the training data set, from which the ML model
is generated.

3.5 Automated ML toolbox

The automatic ML toolbox compares the 15 combinations
that are achieved by combining all feature extraction meth-
ods and all selection methods. The cross-validation error,
i.e., the percentage of misclassified cycles by the 10-fold
cross-validation, is automatically calculated for each of the
10 permutations resulting from the 10-fold cross-validation
and for each of the 15 FE/FS combinations. To compare the
result of the different combinations, the mean of the 10 cross-
validation errors (one cross-validation error per fold) per
combination is used. The minimum value of all the 15 cross-
validation errors (one error per combination) leads to the best
combination of FE/FS method. Thus, finding the best com-
bination of one feature extraction and one feature selection
method for the current application case is a fully automated
process that is performed offline. The actual classification is

Figure 4. Working cycle depicted as position (red) and velocity
(blue) consisting of forward stroke, waiting time, and return stroke,
as well as the period (green) evaluated for estimation of the RUL.

then carried out online by using only the best of the 15 com-
binations, which results in a low computational effort during
application.

4 Application of the ML toolbox on test bed data

The basis for this contribution is a lifetime test of an EMC
which originally lasted 20.4 d and consists of 629 485 cy-
cles. Only 1 s of the synchronous phase of the return stroke
(duration 1.2 s) for each working cycle is evaluated with the
ML toolbox. During this 1 s period, the velocity is constant
and the load is highest as the EMC is pulling against a con-
stant load provided by the pneumatic cylinder; see Fig. 4.
Thus, this 1 s period is suitable for ML problems.

For this full data set, where all sensors have their orig-
inal sampling rate, the minimum cross-validation error of
8.9 % was achieved with 499 features and a combination of
BFC and Pearson correlation together with the previously
described LDA classifier (Schneider et al., 2018c). Pearson
correlation was only used as selector due to the high compu-
tational time of RFESVM and RELIEFF for the full data set
with 629 485 cycles. Feature extraction together with feature
selection leads to a data reduction of approximately a factor
of 60 000 in this case; i.e., the originally recorded 12 TB of
raw data for this EMC is reduced to a feature set of approxi-
mately 200 MB.

To reduce computational costs and to allow us to study var-
ious influencing factors on the classification performance, a
reduced data set with only every hundredth cycle is used in
this contribution. A further reduction of the computational
costs could be achieved by reducing the sampling rate of the
data. To test the influence of lower sampling rates, several
data sets with different sampling rates are used, and it can
be observed that the best results across all used sampling
rates are always achieved with a combination of BFC and
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Figure 5. The 10-fold cross-validation error vs. number of selected
features for data sets with different sampling rate using BFC as ex-
tractor and RFESVM as selector.

Table 1. Cross-validation error for different FE/FS combinations.

FS/FE Pearson RFESVM RELIEFF

ALA 77.84 % 42.53 % 94.06 %
BDW 77.29 % 59.20 % 89.89 %
BFC 36.97 % 18.18 % 90.41 %
PCA 31.06 % 28.56 % 96.82 %
SM 57.91 % 38.89 % 99.05 %

RFESVM. As shown in Fig. 5, the minimum 10-fold cross-
validation error of the EMC data sets with sampling rates of
1 kHz and more is nearly the same. Thus, the quality of the
prediction is not influenced by a lower sampling rate. The
minimum cross-validation error (18.15 %) is achieved with
the 5 kHz data set, but with the 2 kHz version, the cross-
validation error increases only slightly in the second deci-
mal place (18.18 %). Thus, it is not necessary to use a data
set with a higher sampling rate, and due to less computa-
tional costs, the 2 kHz data set is chosen for this contribu-
tion. It seems that several relevant features are in the range
between 250 Hz and 1 kHz and, based on the Nyquist crite-
rion, are thus contained in this data set. All further results in
this contribution are based on the 2 kHz resolution data set of
an EMC with 6292 cycles (1.1 GB) and time-shifted versions
of this data set. The 2 kHz raw data set is available online for
further analysis (Dorst, 2019).

For this data set, the lowest cross-validation error is
reached with features extracted from the frequency domain
with BFC and RFESVM as selector. The cross-validation er-
ror for the 15 FE/FS combinations can be found in Table 1.

The lowest cross-validation error with 18.18 % misclas-
sifications occurs when using only 17 features as shown in
Fig. 6. The large increase of the cross-validation error when

Figure 6. The 10-fold cross-validation error vs. number of se-
lected features for the original 2 kHz data set without time shift us-
ing RFESVM as selector. For a better visibility, only results with
RFESVM as selector are shown.

using 54–56 features or more in Figs. 5 and 6 can be un-
derstood considering the covariance matrices S used for cal-
culation of the Mahalanobis distance. These covariance ma-
trices have a reciprocal condition number of about 10−19 in
1-norm, which means that they are ill-conditioned. A reason
for the ill-conditioned covariance matrices is the low number
of cycles (only 62, which results from the 1 % resolution of
the RUL together with 6292 cycles) per target class and the
nearly equal number of features.

Since 11 sensors are used within the test bed, Fig. 7 shows
which sensors are contributing to the 17 most important fea-
tures for the RUL prediction using BFC as the feature ex-
tractor and RFESVM as selector. It can be clearly seen that
five features each (i.e., 29 %) are derived from the micro-
phone and the active current data. For further analysis, it is
important to note that 12 of the 17 best Fourier coefficient
features represent amplitudes.

To check the plausibility of the results, Fig. 8 shows that
these 17 most relevant features are within the range 0 to
640 Hz. Thus, using the 1 kHz data set would lead to a loss
of relevant features (640 Hz). The dominant frequency here
is 120 Hz (five features) which represents the third harmonic
of the rotation frequency. The explanation for the other fre-
quencies can be found in Table 2 (cf. Helwig, 2018).

5 Synchronization problems and their effects on
machine learning results

Synchronization between different sensors is important to
enable data analysis. Correctly performed data fusion is cru-
cial for applications, e.g., in industrial condition monitor-
ing (Helwig, 2018). Synchronization problems there simply
means that the raw data of the sensors’ cycles are shifted

J. Sens. Sens. Syst., 10, 233–245, 2021 https://doi.org/10.5194/jsss-10-233-2021



T. Dorst et al.: Influence of synchronization within a sensor network on machine learning results 239

Figure 7. The 17 most important features by sensors, selected with
RFESVM. Only 6 of the 11 sensors contribute to the 17 most im-
portant features.

Figure 8. Frequency range of the 17 most relevant features. The
frequencies of all relevant features are ≤ 640 Hz.

against each other. The feature extraction is carried out for
every sensor and all features are packed together in the clas-
sifier. As the temporal localization of effects can play a role
in ML, synchronization problems can lead to poor classifica-
tion results like later shown in this contribution.

To analyze the effects of synchronization problems be-
tween the individual sensors installed within the test bed and
their effect on the lifetime prognosis, time-shifted data sets
downsampled to 2 kHz are used. Thereby, the raw data set
with full resolution, mentioned in Sect. 4, serves as basis to
simulate synchronization errors. These errors are simulated
by manipulating the raw data set with random time shifts
between the individual sensors’ cycles in the 1.0 s window
of the return stroke. The maximum time shift of a cycle is
±50 ms in relation to the original time axis to ensure that
only data from the return stroke are used for all sensors. The

Table 2. Explanation of the frequencies of the 17 most relevant
features. The 17 most relevant features are physically explainable.

Frequency Explanation

0 Hz mean value of the signal
40 Hz mechanical driving frequency
120 Hz third harmonic of the rotation frequency
440 Hz rollover frequency of the ball screw drive
480 Hz damage frequency of the spindle nut
640 Hz mechanical resonance

minimal possible time shift is ±0.1 ms as the lowest sam-
pling rate over all sensors is 10 kHz.

Clock synchronization is a topic of research still today
(Yiğitler et al., 2020). As shown in this contribution, it is
important to think about clock synchronization, because if
not, then there will be serious issues with the results. For
distributed sensor networks, the considered time shifts are
in a range that can be expected (Tirado-Andrés and Araujo,
2019).

After simulating these errors with the raw data set, the dif-
ferent time-shifted data sets are downsampled to 2 kHz to re-
duce computational complexity. Analysis is carried out using
time-shifted data sets with a minimum of ±0.1 ms per cycle
(based on the time axis of the 2 kHz raw data set) and sensor
up to a maximum of ±50 ms per cycle and sensor. The time-
shifted values in every cycle for every sensor are randomly
generated with a discrete uniform distribution. This means
that the time shift for all samples of one single cycle is the
same but not for the same cycle over all sensors. The best
combination of FE/FS algorithm for all five time-shifted data
sets is BFC as extractor together with RFESVM as selec-
tor. An increase in the cross-validation error is observed with
increasing random time shifts for all sensors (cf. Table 3).
For random time shifts between 0.1 and 1 ms, the cross-
validation error is nearly the same; the change is only in the
first decimal place. Using random time shifts with more than
±50 ms leads to a significant decrease of the classification
performance. A likely reason for this decrease is probably
that not only data from the synchronous phase of the return
stroke are used, but also some data from the acceleration or
deceleration phase of the return stroke are included in the
evaluated 1 s period. To depict the effect of increasing ran-
dom time shifts on the prediction performance more clearly,
the cross-validation error using BFC as extractor, RFESVM
as selector, and time shifts from 0.1 to 50 ms between all 11
sensors are shown in Fig. 9 vs. the number of features. Ev-
ery model was trained with the specific time-shifted data set.
It can be clearly seen that small time shifts only have a mi-
nor effect on the cross-validation error, whereas time shifts
of 1 ms or more increase the cross-validation error notice-
ably. One reason is that the variance in the data increases
by increasing random time shifts and makes it harder for the
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Figure 9. Cross-validation errors vs. the number of selected BFC
features for different random simulated synchronization errors us-
ing RFESVM as selector.

Figure 10. Cross-validation errors vs. the number of selected BFC
features for constant shifted time windows with RFESVM as selec-
tor.

model to learn. For constant time shifts, on the other hand,
the cross-validation error is nearly the same as for the raw
data set (cf. Fig. 10), because every cycle is shifted by the
same constant time, which does not affect the Fourier coeffi-
cients. Although, random time shifts have no influence on the
amplitude spectrum in theory, but because of the experimen-
tal setup, there can occur cross-influences that make model
building harder.

Since most of the results resulting from time-shifted data
sets are almost equivalent to those obtained for the 2 kHz
raw data set, not all results are explicitly discussed in this
contribution. Only the data set with time shifts of maximum
±50 ms for all sensors’ cycles is considered in more detail

Figure 11. Cross-validation error vs. number of selected features
for a maximum time shift of ±50 ms and RFESVM as selector. For
a better visibility, only the results with RFESVM as selector are
shown.

Figure 12. Best feature according to RFESVM (120 Hz of the ac-
tive current) for the 2 kHz raw data set and the data set with random
time shift of maximum 50 ms for three different cycles.

here. On the one hand, this time shift is the maximum pos-
sible when taking into account the cycle length of 2.8 s and
evaluating a full second of the return stroke, and on the other
hand, this time shift provides the worst cross-validation er-
ror for the combination of BFC and RFESVM. As shown in
Fig. 11, the minimum cross-validation error is now 29.97 %,
which is significantly worse than for the original data set
without time shifts (18.18 %).

Figure 12 shows the frequency spectra for the 120 Hz fea-
ture of the active current (1 of the 17 most relevant features)
for different cycles of the raw data set and the data set with
random time shift of maximum 50 ms. It can be clearly seen
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Table 3. Cross-validation error for the 2 kHz raw data set and 2 kHz data sets with different time shifts with BFC as extractor and RFESVM
as selector.

Random time Sensors with Min mean of Selected features Frequency range Most relevant sensor (extracted features)
shift per time shift 10-fold CV (thereof of selected
cycle error amplitudes) features

without – 18.18 % 17 (71 %) 0–640 Hz microphone, active current (each 29 %)

≤±0.1 ms all 20.49 % 20 (90 %) 0–640 Hz active current (35 %)

≤±0.5 ms all 20.74 % 15 (93 %) 0–640 Hz active current (27 %)

≤±1 ms all 20.68 % 13 (100 %) 0–640 Hz active current (23 %)

≤±10 ms all 24.09 % 18 (100 %) 0–640 Hz acceleration piston rod (22 %)

≤±50 ms all 29.97 % 15 (100 %) 0–840 Hz microphone, acceleration piston rod,
acceleration ball bearing (each 20 %)

that this amplitude feature changes during the lifetime of the
axis, but for different time-shifted data sets, it is nearly the
same for the same cycle as for the raw data set. This is shown
exemplary here with only one time-shifted data set.

For explanation of this behavior, let x(t) denote the
real-valued time domain signal for which information is
available at discrete time points t0, . . . , tN−1. The discrete
Fourier transform (DFT) for the real-valued sequence X =

(X0, . . . ,XN−1)> is defined as

X̂k =

N−1∑
n=0

Xn exp
(
−j

2πn
N

k

)
for k = 0, . . ., N − 1. (2)

If the DFT of the signal x(t) is given by X̂k , the DFT for the
time-shifted signal x(t − s) is given by

X̂k,shifted = X̂k exp
(
−j

2πn
N

s

)
for k = 0, . . ., N − 1. (3)

The spectrum of the time-shifted signal is thus calculated
from X̂k , where each spectral component k experiences a
frequency-proportional (linear) phase shift of exp

(
−j 2π

N
s
)

.
The amplitude spectrum of the time-shifted signal remains
unchanged. Therefore, the amplitudes are robust against time
shifts as seen in Fig. 12.

In industrial environments, there are often two different is-
sues when using machine learning. First, there are synchro-
nization problems within a sensor network which can be sim-
ulated here by training the model with the raw data set and
applying the trained model on the data sets with different ran-
dom time shifts. Figure 13 shows the classification error us-
ing a 10-fold cross-validation, which means the training per
fold is carried out with 5663 random cycles of the 2 kHz raw
data set; the remaining cycles of different data sets are used
for the testing. It can be clearly seen that the classification
error increases the larger the time shifts get. The classifica-
tion error of 17.33 % is reached when applying the model
only to the raw test data without time shifts. Applying the

Figure 13. Classification error for one fold of the 10-fold cross val-
idation using the raw data set for the model training and applying
this model to data sets with different maximum random time shifts.
Red dots represent models based on both amplitude and phase fea-
tures, while green dots represent models using amplitude data only.

model built only with the raw data to time-shifted data with
±0.1 ms already leads to a significant increase of the classifi-
cation error (48.17 %). Thus, it is crucially important that the
different sensors and cycles are synchronized. But when data
are not well synchronized or if there is no information about
the synchronization, the results can be improved somewhat
by excluding the phase features, which can also be seen in
Fig. 13. For the data set with ±1 ms time shift, the result can
be improved from 95.87 % using the model with amplitudes
and the phases to 44.99 % when removing the phases out of
the model.

The second important issue is the choice of the time frame.
Figure 14 shows that the time frame must be chosen ex-
actly the same for all data sets, because the classification
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242 T. Dorst et al.: Influence of synchronization within a sensor network on machine learning results

Figure 14. Classification error for one fold of the 10-fold cross val-
idation using the 2 kHz raw data set for the model training and con-
stant time-shifted data sets for the application of the trained model.
Red dots represent models based on both amplitude and phase fea-
tures, while green dots represent models using amplitude data only.

Table 4. Classification error for the prediction of the data set with
1 ms time shift by using different models.

Model/prediction Without time shift Without time shift,
with 0.1 ms and
0.5 ms time shift

Amplitudes and phases 95.87 % 41.81 %
Only amplitudes 44.99 % 35.93 %

rate for one fold of the 10-fold cross-validation worsens from
17.33 %, applying the raw data for the testing, to 69.63 %, ap-
plying the data set with a time frame shifted by only 0.1 ms
when using the model trained with the 2 kHz raw data set.
In this case, it is also possible to improve the results by re-
moving the phases from the model. For the data with the con-
stant time shift of 0.1 ms, removing the phases and thus using
only a model with amplitudes leads to a classification error
of 22.26 % instead of 69.63 %.

A further improvement of the classification results can be
achieved by training the model not only with the raw data
but also with synthetically time-shifted data and considering
only the amplitude features within the model (cf. Table 4).

To depict the effect of improving the classification error
more clearly, the ±1 ms time-shifted data set is used for the
testing of the model in all four cases in Fig. 15. Two differ-
ent models are considered here. In the upper subfigures, the
model was trained only with the 2 kHz raw data set, whereas
in the lower ones the±0.1 and±0.5 ms time-shifted data are
used for the model training in addition. The two subfigures
on the left show the prediction of the lifetime with a resolu-
tion of 1 % when using the model, as it is resulting from the

ML toolbox which means using both amplitudes and phases,
whereas in the right ones only amplitudes are used. It can
be clearly seen that the best classification error of 35.93 %
for the±1 ms time-shifted data set is reached with the model
which is additionally trained with time shifts and consists of
only amplitudes.

6 Conclusion and outlook

In this contribution, data sets with time synchronization er-
rors were considered to investigate their influence on results
obtained with a ML software toolbox for condition moni-
toring and fault diagnosis. Minimal synchronization errors
between the individual sensors, when already present in the
training data, only have a small effect on the cross-validation
error achieved with the ML toolbox. However, if ML mod-
els are trained without any synchronization errors, applying
these models to data sets even with minimal time shifts of
0.1 ms results in large classification errors, here for the pre-
diction of the RUL of a critical component. This error can be
reduced by modifying the feature extraction and excluding
phase values after Fourier analysis in a first step. By adding
artificially time-shifted data to the training set, a further
improvement of the classification result is achieved. Thus,
the study presented in this contribution provides important
guidelines for improving the setup of distributed measure-
ment systems, especially about the necessary synchroniza-
tion between sensors. If no information about the synchro-
nization within the network is available, it is suggested to
generate artificially time-shifted data sets from the original
data and use this extended data set for training the ML model.
Note that this is similar to data augmentation suggested for
improving the performance and robustness of neural net-
works (Wong et al., 2016).

It is also important to choose the time frame for the 1 s
period correctly. Applying the model to data even with only
a small shift of 0.1 ms of the time frame in comparison to the
training data already leads to very poor classification results.

For future work, measurement uncertainty should be con-
sidered in addition to time synchronization errors as both
contribute to data quality and are therefore expected to have
a strong influence on ML results for condition monitoring
or fault diagnosis. In the European research project “Metrol-
ogy for the Factory of the Future” (Met4FoF), mathematical
models for the consideration of metrological information in
ML models are developed. For example, the project consid-
ers the classification within the ML toolbox by reviewing the
robustness of the LDA as a classifier when using redundant
features. Specifically, we will study how long the quality of
the LDA results continues to improve with additional fea-
tures and when the point is reached where the LDA fails,
because the covariance matrix becomes singular; i.e., its de-
terminant disappears.
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Figure 15. Predictions (blue) of the used EMC lifetime (steps of 1 %) for one fold of the 10-fold cross validation for the data set with
time shifts of up to 1 ms and the assumed used lifetime target from 1 % to 100 % (red). (a) Model trained with raw data only using both
amplitude and phase features. (b) Model trained with raw data only using only amplitude features. (c) Model trained with raw, 0.1, and 0.5 ms
time-shifted data sets using both amplitude and phase features. (d) Model trained with raw, 0.1 and 0.5 ms time-shifted data sets only using
amplitude features.

The current ML toolbox (see Fig. 3) does not take any
measurement uncertainties into account. To overcome this
limitation, the methods included in the toolbox are extended
to allow for more robust and accurate failure analysis or con-
dition monitoring applications such as predicting the RUL of
components as discussed in this paper. The uncertainty evalu-
ation for the BFC method was already presented by Eichstädt
and Wilkens (2016). The uncertainty evaluation for ALA was
recently published (Dorst et al., 2020). The uncertainty eval-
uation for the remaining three feature extraction methods
is already developed and will be published soon. Thus, the
ML toolbox can then provide features together with their un-
certainty as determined from the uncertainty of the raw sen-
sor data. Furthermore, the three feature selection algorithms
can be replaced by filter-based selection algorithms which
weight the features based on their uncertainties. Finally, the
propagation of the uncertainty values through the LDA clas-
sifier is also completed. Thus, the extended ML toolbox, soon
to be published, will be able to take the uncertainty of mea-
sured data into account to achieve improved models. In the
future, we plan to add wrapper and embedded methods for
the feature selection step of the ML toolbox that also con-
sider uncertainties.

Code and data availability. The paper uses data obtained from
a lifetime test of an EMC at the ZeMA test bed. As the full
data set is confidential, a downsampled 2 kHz version of the data
set is available on Zenodo https://doi.org/10.5281/zenodo.3929385
(Dorst, 2019).

The automated ML toolbox (Schneider et al., 2017, 2018b; Dorst
et al., 2021a) includes all the code for data analysis associated
with the current submission and is available at https://github.com/
ZeMA-gGmbH/LMT-ML-Toolbox (last access: 23 August 2021)
(Dorst et al., 2021b).
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