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Abstract. Acceptance and reverification testing for industrial X-ray computed tomography (CT) is described in
different standards (E DIN EN ISO 10360-11:2021-04, 2021; VDI/VDE 2630 Blatt 1.3, 2011; ASME B89.4.23-
2020, 2020). The characterisation and testing of CT system performance are often achieved with test artefacts
containing spheres. This simulative study characterises the influence of different geometrical error sources – or
geometrical misalignments – on these sphere measurements. The two measurands on which this study focuses
are the sphere centre-to-centre distances and the sphere probing form errors.

One difference between the current draft of the ISO 10360-11 standard (E DIN EN ISO 10360-11:2021-04,
2021) and the VDI/VDE standard 2630 part 1.3 (VDI/VDE 2630 Blatt 1.3, 2011) as well as the ASME standard
B89.4.23 (ASME B89.4.23-2020, 2020) are the differences for the sphere centre-to-centre distances that need to
be measured. The VDI/VDE standard and the ASME standard require measurements of these kinds of distances
of up to 66 % of the possible maximum distance within the measurement volume, while the ISO draft asks for
measurements of up to 85 % of the possible maximum distance. This requirement needs to be considered in
connection with the maximum permissible error (MPE) specification for these sphere distance measurements.
This MPE should be specified as a linear function of the nominal distance or a constant value or a combination
thereof (compare definition 9.2 of ISO 10360-1:2000+Cor.1:2002 (DIN EN ISO 10360-1:2003-07, 2003)), and
thus, the linearity of the length-dependent maximum measurement error of the sphere distance measurements
is of interest. This simulative study inspects to what extent this linearity can be observed for CT measurements
under the influence of different geometric errors. Further, the question is whether measurement lengths above
66 % necessitate a change in the MPE specification. Thus, an automatic identification of cases that might affect
the MPE specification is proposed, and these cases are inspected manually.

A second aspect of this study is the impact of geometrical misalignments on the probing form errors of a
measured sphere. The probing form error also needs to be specified. Thus, whether and how it is influenced by
the misalignments is also of interest.

Based on our simulations, we conclude that probing form errors and sphere centre-to-centre distances of up to
66 % of the maximum possible measurement length within the measurement volume are sufficient for acceptance
testing concerning geometrical misalignments – each geometrical misalignment can be detected well with at least
one of these two measurands.
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1 Introduction

Acceptance and reverification testing for industrial X-ray
computed tomography (CT) is important for users and man-
ufacturers alike as it is used to test technical specifications
that are contractually guaranteed. The testing procedure is
described in different standards (E DIN EN ISO 10360-
11:2021-04, 2021; VDI/VDE 2630 Blatt 1.3, 2011; ASME
B89.4.23-2020, 2020). The characterisation and testing of
CT system performance are often achieved with test arte-
facts containing spheres. Measurands in acceptance testing
that we inspect in this paper are the errors in centre-to-centre
distances of the spheres (SD errors) as well as the sphere
probing form errors. This simulative study characterises the
influence of different geometrical misalignments of the CT
acquisition geometry on these sphere measurements. One
difference between the current draft of the ISO 10360-11
standard (E DIN EN ISO 10360-11:2021-04, 2021) and the
VDI/VDE standard 2630 part 1.3 (VDI/VDE 2630 Blatt
1.3, 2011) as well as the ASME standard B89.4.23 (ASME
B89.4.23-2020, 2020) are the differences for the sphere
centre-to-centre distances that need to be measured. Both the
VDI/VDE standard and the ASME standard require measure-
ments of up to 66 % of the possible maximum distance within
the measurement volume, while the ISO 10360-11 draft asks
for measurements of longer distances (current draft: mea-
surements of up to 85 %). In the usual case of a cylindri-
cal measurement volume, the maximum distance within the
measurement volume is the diagonal. The requirement to
measure up until certain lengths needs to be considered in
connection with the maximum permissible error (MPE) spec-
ification for these sphere distance measurements. This MPE
should be specified as a linear function of the nominal dis-
tance or a constant value or a combination thereof (compare
definition 9.2 of ISO 10360-1 (DIN EN ISO 10360-1:2003-
07, 2003)), and thus, the linearity of the length-dependent
maximum measurement error of the sphere distance mea-
surements is of interest. This simulative study inspects to
what extent linearity can be observed for CT measurements
under the influence of different geometric errors. Further, the
question is whether measurement lengths above 66 % neces-
sitate a change in the MPE specification. Thus, an automatic
identification of cases that might affect the MPE specifica-
tion is proposed, and these cases are inspected manually.

A second aspect of this study is the impact of geometri-
cal misalignments on the probing form errors of a measured
sphere. The probing form error does also need to be speci-
fied and can also indicate geometrical misalignments. Thus,
whether and how it is influenced by the misalignments is also
of interest. Generally, it will suffice that either probing form
errors or sphere centre-to-centre distances are sensitive to a
specific geometric misalignment.

Similar work has been performed by Muralikrishnan et al.
(2019a, b, c) and Jaganmohan et al. (2020). The differ-
ence between that study and the work presented here is that

the study by Muralikrishnan et al. (2019a) employs a self-
developed geometric forward- backward projection simula-
tion of the sphere centre points, while we use the radio-
graphic simulator aRTist 2 by the German Federal Institute
for Materials Research and Testing (BAM) (see, for example,
Bellon et al., 2012) and simulate realistically sized spheres.
The radiographic approach also means that our simulations
produce projection data which are subsequently processed
with volume reconstruction and surface point determination
the same way real CT data are processed. A further differ-
ence is that Muralikrishnan et al. (2019a, b, c) and Jagan-
mohan et al. (2020) had the goal of finding the most sensi-
tive measurement distances for different single geometric er-
rors, while we want to analyse the distribution of the sphere
centre-to-centre distance errors with respect to the nominal
distance and inspect probing form errors. Another extension
in comparison the work of Muralikrishnan et al. (2019a, b, c)
and Jaganmohan et al. (2020) is that in our analysis, we want
to include simulations with combinations of multiple geo-
metric misalignments as real CT systems will also show a
combination of these.

2 Linearity and MPE-relevant behaviour

The MPE can be specified as a linear function of the mea-
surement length, a constant value or the minimum of both.
In agreement with VDI/VDE 2630 Blatt 1.3 (2011), we dis-
regard the option of constant values for SD errors in dimen-
sional computed tomography. It is well known that transla-
tions of rotary table, source and detector in the beam direc-
tion lead to scaling errors that increase linearly with the nom-
inal length (as shown by simulation results in Sect. 4.1). As-
suming a linear MPE specification, the decision as to whether
long sphere distances need to be measured depends on how
the maximum errors in these distance measurements increase
with the nominal sphere distance. We can imagine four dif-
ferent patterns for the SD errors (compare Fig. 1). First, they
can increase linearly with the sphere distance. Second, they
can increase roughly linearly with the sphere distance, mean-
ing that there are two parallel linear functions within which
all data points lie. Third, they can increase with the nominal
distance less than a linear function would (e.g. with a square-
root behaviour), and fourth, they can increase more than a
linear function would (e.g. with a parabolic increase). Of
these four cases, only the case of “more than linear” increase
needs to be considered relevant in the context of the MPE
specification, as an MPE based on data for lower lengths
might not be valid any more at long lengths. This will not
happen in the other three cases.

In the following, we will often use the Pearson correlation
coefficient ρ (or the square root of the coefficient of determi-
nation R2 of a linear fit to the data; see Fahrmeir et al., 2009)
to gauge linearity. While a value of |ρ| ≈ 1 indicates linear
behaviour, a value below 1 does not allow for any statement
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Figure 1. Four different patterns for the SD errors can be imagined. The pattern in plot (a) illustrates strictly linear behaviour, indicated by
a correlation coefficient of ρ = 1. The pattern in plot (b) illustrates a behaviour that is roughly linear in the sense that there are two parallel
linear functions within which all data points lie. The pattern in plot (c) illustrates an increase that is less than linear; i.e., the increase of
the measurement deviation with the nominal length is less than linear. The pattern in plot (d) indicates more than linear behaviour. This
latter behaviour is the only one we would deem relevant for the MPE specification as an MPE limit constructed using points up to a certain
percentage might easily be exceeded by points at a higher percentage. The plots show that while the correlation coefficient ρ can detect
strictly linear behaviour, it is not sufficient for deciding whether or not a given pattern would be relevant regarding the MPE specification.

about the kind of non-linearity the data exhibit. Therefore,
any value clearly different from 1 does not allow for any con-
clusion on whether the underlying data would be relevant in
the context of a linear MPE specification or not. Therefore,
we propose a further analysis method in Sect. 5 which pro-
vides an automated criterion for cases with |ρ| 6= 1.

3 Simulative setup

Section 3.1 describes the simulation parameters and geome-
try, including the geometric misalignments that can be simu-
lated. Section 3.2 describes the artefact geometry that is used
for this study. Section 3.3 describes the data processing after
the radiographic simulation.

3.1 Simulation parameters and geometry

For the simulation, we used aRTist 2 by the German Fed-
eral Institute for Materials Research and Testing (BAM) (see,
for example, Bellon et al., 2012) in version 2.10.0. To min-
imise the influence of other error sources, the simulations
are monochromatic (200 keV), without scatter, and the detec-

tor is perfectly linear with a maximum grey value of 60 000
at free beam. The simulation artefact material is set to alu-
minium. The detector of the acquisition setup has a pixel
pitch and unsharpness of 0.4 mm and is noise-free. The de-
tector is positioned 1000 mm from the point source and the
object at 250 mm, resulting in a magnification of 4. The
detector is 600 mm wide and 500 mm high (equivalent to
1500 pixels× 1250 pixels). The resulting half-cone beam an-
gle is 16.7◦. A total of 1500 projections on a regular circle
trajectory are simulated. The measurement volume, i.e., the
cylinder whose content is completely projected onto the de-
tector in all projections, has a diameter of 121.27 and a height
of 113.62 mm. Its diagonal (the maximum distance within
the cylindrical measurement volume) is 166.18 mm long. The
STL (Standard Triangle Language file format) model of the
simulation artefact is positioned with its bounding box cen-
tre at x = y = 0 mm and with a distance of 250 mm to the
source along the z axis (see Fig. 2 for the coordinate system
definition). In a real CT, the rotary table should not be pro-
jected onto the detector. The pivot point of the rotation axis
is therefore located 77.125 mm below the central beam axis
(translated downwards in the negative y direction). This will
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become relevant when misalignments are considered. The
acquisition geometry is illustrated in Fig. 2.

aRTist 2 can simulate projection-wise geometric errors of
the acquisition geometry (compare, for example, Wohlge-
muth et al., 2018, 2020). The original implementation of
aRTist 2 was modified slightly for the purpose of this study.
The following modifications are possible for each projection
(in this order):

– Detector position and orientation, source position and
rotation axis position are modified (with respect to their
undistorted value) according to values for this projec-
tion from an input file. If vud is the undistorted (nom-
inal) parameter value (3D vector), then the parameter
value v(j ) for projection j results from a displacement
value δ(j ) according to

v(j )= vud(j )+ δ(j ). (1)

– The value for the direction of the rotation axis for this
projection (again from an input file) is applied. The ro-
tation axis direction is encoded as a 3D unit vector in
aRTist; thus, the input file contains one such unit vector
n(j ) for each projection j which is applied in this step.

– The measurement object is translated and rotated to ac-
count for the movement of the rotation axis (the con-
nection between measurement object and rotary table is
assumed to be rigid). This means that the translation of
the rotation axis position between projection j − 1 and
j is applied also to the object and that the object is then
rotated to account for the different orientation between
rotation axis direction n(j−1) from projection j−1 and
projection axis direction n(j ) from projection j .

– After image acquisition, the object is rotated by the an-
gular increment value for this projection (again from an
input file) around the current rotation axis with direction
n(j ) and position for projection j .

These modifications are used to represent actual possible
geometrical misalignments of an industrial CT, described in
the following. Without reference to the specific machine per-
formance of a specific CT, it is unclear what good numerical
values for these geometrical misalignments are. We used es-
timated values as described below, but we did also vary the
numerical values during the study (see Sect. 4).

– Detector position perpendicular to central beam axis (x
and y axis). For the detector translation perpendicular to
the central beam axis (x and y direction), we assume a
maximum error of 2 mm.

– Detector position along beam axis (z axis). A detector
translation in the beam direction can be detected as a
scaling error. We assume that one of the most simple

calibration procedures is to use two spheres with cali-
brated distance and project these onto the detector. The
distance between the projected sphere centres divided
by the calibrated distance can be used to determine
the magnification. If we assume that the magnifica-
tion is M = 4, the calibrated distance is 10 mm± 1 µm
and the centre-to-centre distance determination on the
projection is possible with half pixel pitch accuracy,
then the relative error of the source detector distance is
around 5× 10−3. Assuming that this is the uncertainty
in source–detector distance, this translates into a maxi-
mum detector misalignment in beam direction (z direc-
tion) of 3.75 mm.

– Detector orientation. With a simple spirit level, a mea-
surement accuracy of 0.057◦ can be achieved. There-
fore, we assume a maximum detector tilt in all direc-
tions of this measurement accuracy.

– Source position. For the translation perpendicular to the
beam axis (x and y axis), we assume – as with the de-
tector – a maximum error of 2 mm. The beam axis (z
axis) translation induces – as with the detector – a scal-
ing error. With the same estimation as for the detector,
we used a maximum error of 0.65 mm in the beam di-
rection.

– Rotation axis tilt. Like Muralikrishnan et al. (2019a) and
Muralikrishnan et al. (2019b), we use a maximum error
of 0.2◦ tilt in all Cartesian directions.

– Rotation axis position. For the beam direction (z axis),
a similar argument as for the source position holds, and
the maximum error we assumed is thus also 0.65 mm.

– Dynamic rotation axis errors. The dynamic rotation axis
errors are the dynamic errors of the rotary table. The
rotary table has different errors in its movement which
can all depend on the rotation angle. For translations,
we model both a dynamic shift in height (y axis) and a
translation in radial (x–z plane) direction. For the direc-
tion of the rotation axis, a wobble is implemented. This
wobble is in radial direction and is characterised by its
angle with the tilted rotation axis. All dynamic errors
depend on the angular position in the same form given
by Eq. (2). In this equation, N is a normalisation factor
given by max

(∣∣fdyn
∣∣), ϕ is the angular step angle of the

projection and 8k denotes phase angles. For each sin-
gle projection step, the amplitude of each dynamic mis-
alignment is modulated by multiplication with this fac-
tor fdyn. The idea behind this approach is to characterise
the dynamic effects by a Fourier series (truncated and
with equal amplitudes for all frequencies). The trunca-
tion at k = 10 was motivated by the works of Muralikr-
ishnan et al. (2019a) and Muralikrishnan et al. (2019b).
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Figure 2. Illustration of the acquisition geometry along with the coordinate system used. The negative z axis is the beam direction, the y
axis is parallel to the axis of rotation and the x axis is the second direction along the detector (besides the y axis). The rotation axis almost
coincides with the axis of the measurement artefact and has its pivot point below the beam cone to model a real CT system realistically. The
source is an isotropic point source.

The inclusion of k = 0.5 is motivated technically as ro-
tary tables often have deviations which repeat every sec-
ond revolution. This two-revolution period is the rea-
son for corresponding testing requirements in techni-
cal standards concerning rotary tables (e.g. VDI/VDE
2617 Part 4 Sect. 3.4 (VDI/VDE 2617 Blatt 4, 2006) or
ISO 10360-3 Sect. 5.3 (DIN EN ISO 10360-3:2000-08,
2000)). For the selection of the phase angles 8k , see
Sect. 4.2.

fdyn (ϕ)=
1
N

10∑
k=0.5,1,2,...

sin(ϕ · k+8k) (2)

3.2 Simulation artefact

An often used standard for acceptance and reverification test-
ing is the so-called multi-sphere standard (see, for example,
Fig. 6.9.b of Carmignato et al., 2018). In the work by Mura-
likrishnan et al. (2019a, b, c) and Jaganmohan et al. (2020)
a 125-sphere standard consisting of five layers of 25 spheres
was used. For this work, we constructed a CAD model com-
bining both ideas. It uses spheres of 4 mm diameter. There are
three layers of 25 spheres, each having a centre sphere, a ring
of 8 and a larger ring of 16 spheres around this central sphere,
equally spaced at radii of 28.25 and 56.5 mm. The layers are
at a height of −10, 42 and 94 mm. Further, the model con-
tains two multi-sphere standards with 27 spheres each, one
of which is upside down. Their base level is 0 and 84 mm re-
spectively. Further, three additional spheres are added close
to the central layer to break spherical symmetry. The total
number of spheres in the artefact is 132 (symmetry-breaking
spheres included).

Figure 3 shows the simulation artefact described and Fig. 4
a histogram of the sphere distances within the artefact. There
is a sufficient number of long sphere distances above 66 %.

Figure 3. Simulation artefact (nominal positions of the sphere cen-
tres) consisting of three layers of 25 spheres in red (inspired by Mu-
ralikrishnan et al., 2019a, b, c and Jaganmohan et al., 2020) and two
multi-sphere standards with 27 spheres (in blue). There are further
symmetry-breaking spheres indicated by stars.

Accounting for the fact that real spheres have a diameter
(and, thus, a measurement distance of 100 % is physically
impossible) and that further, geometrical misalignments can
easily lead to outer spheres leaving the projections if they are
too close to the perimeter (thus causing artefacts), the em-
bodied lengths extend to a reasonable maximum of what can
still be measured.

3.3 Reconstruction and dimensional evaluation

The simulation in aRTist 2 results in flat-field-corrected pro-
jections. To reconstruct these, the ASTRA Toolbox (ver-
sion 1.9.0. dev11 in MATLAB R2021a; see van Aarle et al.,
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Figure 4. Distribution of the nominal sphere centre-to-centre dis-
tances in the simulation artefact. While the range of≈ 35 % to 65 %
is represented by more lengths, there are still a considerable number
of short and long lengths within the artefact.

2016, 2015) was used. For dimensional evaluation, the recon-
structed volumes were batch processed using Volume Graph-
ics GmbH (Heidelberg, Germany) VGSTUDIO MAX ver-
sion 3.4.0 (64 bit).

In the dimensional evaluation, as a first step, the surface
was determined using the Advanced (classic) option with
automatic material definition and starting contour from his-
togram. The search distance was 4 voxels, and the iterative
option for single-material was used. The CAD model of
the part was imported, and a manual pre-registration was
performed using the known acquisition geometry. Then, a
best fit of the determined surface onto the CAD model with
quality level 50 was applied. For this best fit, the options
“consider current transformation”, “consider surface orien-
tation” and “improved refinement” were activated. After the
best-fit registration, a measurement template containing the
132 spheres as Gaussian fits was imported. The Gaussian fit
uses a maximum of 20 000 points and a sampling width of
0.001 mm. Search distance and safety distance were at their
default values of 0.2 and 0.1 mm, respectively. For all spheres
but the symmetry-breaking additional spheres, the probing
form error was evaluated. The probing form error was evalu-
ated as “sphericity” tolerance in VGSTUDIO MAX using the
Gaussian fit. Thus, it corresponds to the “Probing form error
All” according to the current ISO 10360-11 draft (E DIN EN
ISO 10360-11:2021-04, 2021, Definition 6.2.3.4).

Concerning the sphere distances, there are 8646 possi-
ble sphere centre-to-centre distances. Hence, these were not
manually defined in VGSTUDIO MAX but calculated as Eu-
clidean distances in MATLAB R2021a. MATLAB R2021a
was also used for any further data evaluation and plotting.

In this paper, all SD errors are positive; i.e., we inspected
the absolute value of the SD error. The motivation was that
the MPE specification is symmetric for positive and negative
deviations from the calibrated values, and therefore, the sign
does not matter in this context.

4 Simulated misalignment scenarios

Table 1 presents an overview of all simulations conducted
and evaluated for this study. Section 4.1, 4.2 and 4.3 describe
the simulations in detail.

4.1 Static geometric misalignments

A first attempt was to simulate all of the static misalignments
described in Sect. 3.1 combined (each with its value as esti-
mated). The volume thus simulated was obviously degener-
ate. Even reducing all misalignment amplitudes to 20 % did
not yield reasonable volumes (compare Fig. 5) – the spheres
are visibly not spheres any more.

Therefore, we decided to reduce the magnitude of the
static geometry misalignments by simulating only one mis-
alignment at a time and inspecting the measurement errors
produced. We claim that a reasonable dimensional CT sys-
tem should produce errors in the sphere centre-to-centre mea-
surements within 10–20 µm (better values are possible but
defy the purpose of this study). Therefore, we decreased
the magnitude of all static geometry errors iteratively from
100 % to 50 % and continued halving the magnitude until the
single misalignment inspected produced maximum SD errors
within the desired range of 10–20 µm. The single misalign-
ments were always simulated with a positive and a negative
sign (i.e., e.g. for a rotation axis tilt of 0.2◦, both a simula-
tion with the axis tilted by 0.2◦ and one with the axis tilted
by −0.2◦ were conducted).

The resulting misalignment amplitudes are shown in Ta-
ble 2. The misalignments that were most in need of amplitude
reduction were all translations in the z direction (scaling er-
rors) and the rotation axis tilt around the x axis. We want to
model a realistic CT system in this work. It thus makes sense
to assume that misalignments that are adjusted and calibrated
the same way during system setup should not have different
maximum misalignments. Consequently, we grouped all de-
tector tilts to an amplitude of 0.028648◦ and all rotation axis
tilts to an amplitude of 0.0125◦. The reader might notice the
absence of the tilts around the y axis in the table. This is
due to the fact that the detector tilt around the y axis did not
result in any discernible increase of SD errors, while the ro-
tation axis is aligned with the y axis, and its tilt around the
y axis only changes its direction combined with further tilts
around the other axes.

As discussed in Sect. 2, the linearity of the SD errors (indi-
cated by a correlation coefficient) or the linearity of the max-
imum SD errors with the nominal distance is of interest. For
the misalignments producing scaling errors (detector, source
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Table 1. Overview of conducted simulations.

Designation Description

(I) Static misalignments inc. rescaling Simulations with one static geometrical misalignment (see Sect. 4.1). The first
simulations were carried out with the misalignment amplitude initially estimated in
Sect. 3.1, both with positive and negative sign. Subsequently, the misalignment
amplitude was reduced by 50 %, 75 % and further if the resulting SD errors were too
large (both for negative and positive sign).

(II) Dynamic misalignments: phase variation Simulations only with the dynamic misalignments but with random phase angles
(see Sect. 4.2).

(III) Rescaling of chosen phase angles Simulations with one set of phase angles chosen from (II) with decreasing
misalignment magnitudes.

(IV) Combined misalignments: initial estimate Simulations with all misalignments from (I) and (III) with their amplitudes according
to initial estimates (see Sect. 4.3).

(V) Combined misalignments: rescaled Simulation with all misalignments from (I) and (III) with their amplitudes rescaled such
that single misalignments cause SD errors within 10–20 µm (see Sect. 4.3).

Figure 5. 3D views of the determined surfaces of the reconstructed volume data from the simulations with all static misalignments with
initially estimated magnitudes (a) and 20 % of those initially estimated magnitudes (b). The views show that a CT system this heavily
misaligned will not be considered for system verification as it is visually not producing correct measurements. Even with 20 % misalignment,
the spheres have a visible deformation from the spherical form.

and rotation axis translation in beam direction), we obtained
the expected result that ρ ≈ 1. These misalignments, which
in our experience are the dominant error sources in real CT
systems, are therefore completely unproblematic in the con-
text of our study. To suppress the influence of these dominant
geometrical misalignments to the desired value of 10–20 µm
maximum SD errors, we had to scale them down to 3.125 %
of the initial estimate. The rotation axis tilt around the x axis
(axis perpendicular to beam and rotation axis) has a corre-
lation coefficient of ρ ≈ 0.9; all other misalignments have a
correlation coefficient below 0.6. All misalignments but the
scaling sources thus show more complex behaviour that mer-
its a closer analysis, which is presented in Sect. 5.

4.2 Dynamic geometric misalignments

Real rotary tables do not exhibit just one single dynamic de-
viation from the ideal rotation but do rather always show a
combination of different dynamic misalignments. Therefore,
we simulated the combination of these misalignments. As de-
scribed in Sect. 3.1, the Fourier series approach has 11 de-
grees of freedom in the 11 phase angles 8k that need to be
chosen. We generated 50 sets of 11 pseudo-random phase an-
gles in the interval [0,2π ] (uniform distribution) with MAT-
LAB R2021a and simulated 50 CT scans with the resulting
dynamic misalignments modulated according to Eq. (2). Our
initial hypothesis was that the resulting measurement errors
would have a mean value and that the influence of the phase
angles would be a small perturbation. This is however not the
case (compare Fig. 6). The values of the phase angles have a
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Table 2. Overview of decreased amplitudes of static geometrical
misalignments to yield maximum SD errors within 10–20 µm. For
a comment on the omission of the detector tilt around Y and the
rotation axis tilt around Y , see the explanation in Sect. 4.1.

Misalignment Decreased Percentage of
amplitude initial estimate

Detector tilt around X 0.028648◦ 50 %
Detector tilt around Z 0.057296◦ 100 %

Detector translation in X 1 mm 50 %
Detector translation in Y 1 mm 50 %
Detector translation in Z 0.1171875 mm 3.125 %

Rotation axis tilt around X 0.0125◦ 6.25 %
Rotation axis tilt around Z 0.05◦ 25 %

Rotation axis translation in Z 0.0203125 mm 3.125 %

Source translation in X 1 mm 50 %
Source translation in Y 1 mm 50 %
Source translation in Z 0.0203125 mm 3.125 %

deciding influence on the SD errors measured. For no set of
phase angles is there a linearity of the SD errors with respect
to the nominal distance (for all phase angles, the correlation
coefficient is below 0.5). Therefore, a more in-depth analysis
is necessary in Sect. 5.

Based on this result, we needed to select a specific repre-
sentative set of phase angles for further simulations combin-
ing dynamic and static misalignments (Sect. 4.3). A simula-
tion of all 50 phase angles requires multiple days of compu-
tation time – therefore, simulating more phase angles or per-
forming combined simulations with different phase angles
would not have been feasible due to the necessary computa-
tion times. Our intention in selecting a specific set of phase
angles was that it should be an “average” case, containing, at
all nominal measurement lengths, a wide and homogeneous
distribution of low and high SD errors.

Practically, we devised the following selection procedure:

1. For each sphere distance, the maximum value of the
measurement error over all 50 phase angle set simula-
tions was calculated.

2. All measurement errors were converted into percent-
ages of their respective maximum value from the first
step.

3. A bivariate histogram of percentual measurement er-
rors from the second step and their respective nominal
sphere distance was calculated for each phase angle set.

4. To account for the different number of measurement
distances in different nominal distance bins of the his-
togram (compare Fig. 3), the histogram values were nor-
malised by their total counts in each nominal sphere dis-
tance bin (i.e., the number of nominal distances in this
bin). This means that each histogram entry now stands

for the ratio of nominal distances in this nominal dis-
tance bin width that produced an SD error within this
SD error bin. The more homogeneous this number is
across the bins, the more homogeneous the distribution
is. An example for the resulting histogram is shown in
Fig. 7.

5. In each nominal distance bin, the standard deviation of
the ratios in the different SD error bins was calculated.
Then, the arithmetic mean value σ of all these standard
deviations was calculated.

The phase angle simulation with the lowest value of σ is
the simulation that produces the most homogeneous and wide
distribution of SD errors across all nominal distances. Thus,
it is the most relevant phase angle set for this investigation
and was used furthermore for the subsequent simulations.

The simulation with dynamic misalignments using the se-
lected phase angles and the initial misalignment amplitudes
estimated in Sect. 3.1 has a maximum SD error of above
100 µm. As in Sect. 4.1, we again wanted to decrease mis-
alignment amplitudes such as to reach a maximum SD error
between 10–20 µm. Therefore, we reduced all dynamic mis-
alignment amplitudes in steps of 10 % of their initial value.
At 20 % of the initial value, a maximum SD error of 18.3 µm
was reached. We repeated the simulations with negative mis-
alignment amplitudes and obtained approximately the same
result (maximum SD error of 18.8 µm at 20 %).

4.3 Simulations with combined misalignments

We performed two sets of simulations with all static and all
dynamic misalignments (with the phase angle set selected in
Sect. 4.2) combined. In the first set of simulations (IV from
Table 1), we used the misalignment amplitudes that we had
initially estimated (in Sect. 3.1). We think that these simula-
tions represent a CT system which has quickly been aligned
and is “low-effort”. As a second set of simulations (V from
Table 1), for each misalignment, the chosen amplitudes that
produce errors within 10–20 µm were used. This set of pa-
rameters represents a CT system in which dominant geo-
metrical error sources have been characterised and mitigated.
Therefore, it represents a “medium-effort” CT system.

For both parameter sets, the initial misalignment ampli-
tudes in their combination produced unrealistically high SD
errors (or, in the case of set IV, simulations resulting in vol-
umes as seen in Fig. 5). Consequently, all misalignment am-
plitudes were reduced by multiplication with a common fac-
tor. For the low-effort CT system set IV, the factors ±0.2,
±0.15, . . . ,±0.05 were simulated. For the medium-effort CT
system set V, the factors±1,±0.8, . . . ,±0.2 were simulated.

In all simulations with combined misalignments, there is
no linearity of the SD errors with respect to the nominal
sphere distance. For set IV, all correlation coefficients are be-
low 0.8. For set V, all correlation coefficients are below 0.5.
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Figure 6. Histograms of the ratio between standard deviation σ and average value<m> of the measurement deviation in the sphere centre-to-
centre distances. The standard deviation and average are calculated per sphere pair over all 50 different phase angle sets (compare Sect. 4.2).
For these histograms, the signed values of the measurement deviations are used. The left histogram (a) shows the range between the 1st
and the 99th percentile, and the right histogram (b) shows the centre in detail. The histograms show that the different phase angles have a
substantial impact on the measurement deviation and that there is no meaningful “average deviation” for all phase angles (from which the
selection of a specific set of phase angles would only induce a small perturbation).

Figure 7. Renormalised bivariate histogram of SD measurement
errors and nominal sphere distances as explained in Sect. 4.2. The
phase angle set number 29 is the one with the lowest value of σ
(meaning that the error distribution is most wide and most homoge-
neous) and thus the one selected for further simulations.

The difference is noticeable and might be due to the domi-
nating scaling errors in the set IV.

Therefore, it is not possible to conclude that these simu-
lations are not relevant to the question of suitable measure-
ment lengths for MPE determination. However, as discussed
in Sect. 2, this does not allow for any conclusion about these
simulations. For both sets, a further analysis of the behaviour
was necessary and will be described in Sect. 5.

5 (Non-)Linearity

In Sect. 5.1, the automated identification method for non-
linear cases that might necessitate a measurement above
66 % is presented. Subsequently, in Sect. 5.2, the results from
applying this method to the simulations are outlined.

5.1 Automated detection method

In acceptance and reverification testing, calibrated sphere
centre-to-centre distances are measured (compare E DIN
EN ISO 10360-11:2021-04, 2021; VDI/VDE 2630 Blatt 1.3,
2011). The error in measuring these distances needs to be
below the manufacturer-specified maximum permissible er-
ror (MPE). MPEs should be specified as a constant value,
a linear function of the nominal measurement distance or
a linear function limited by a constant value (definition 9.2
of ISO 10360-1 (DIN EN ISO 10360-1:2003-07, 2003)). In
the VDI/VDE standard (VDI/VDE 2630 Blatt 1.3, 2011), the
ISO 10360-2 standard on tactile coordinate measuring ma-
chines (DIN EN ISO 10360-2:2010-06, 2010, Sect. 6.3.2),
the ISO 10360-7 standard on coordinate measuring machines
with imaging probing systems (DIN EN ISO 10360-7:2011-
09, 2011, Sect. 6.2.2) and the ISO 10360-8 standard for
coordinate measuring machines with optical distance sen-
sors (DIN EN ISO 10360-8:2014-03, 2014, Sect. 6.3.2) as
well as the ASME standard on CTs (ASME B89.4.23-2020,
2020, Sect. 7.4.1), distances of up to 66 % of the maximum
measurement distance of the coordinate measuring machine
have to be measured for an acceptance or reverification test.
The current draft of the ISO 10360-11 (E DIN EN ISO
10360-11:2021-04, 2021) requires measurements of sphere
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Figure 8. A scenario in which the convex hulls of the measurement
points below 66 % and of all measurement points (including above
66 %) agree up until 66 %. We assume that an MPE specification ac-
cording to Eq. (3) based on the points below 66 % would encompass
the points above 66 % as well.

distances of up to 85 %. This requirement makes sense if
there are effects between 66 % and 85 % of the maximum
measurement distance that necessitate a different MPE spec-
ification than below. In light of the form of the MPE specifi-
cation, these effects would need to be non-linear in the mea-
surement length. The MPE specification should follow the
form given by Eq. (3).

MPE= A+L/K (3)

Here, the manufacturer can choose A and K freely. The
extreme choices are obviously A= 0 (minimising K) or
K→∞ (maximising A). Any effect necessitating measure-
ments of up to 85 % would therefore mean that the manufac-
turer would need to change their choice of A and K because
of the additional data above 66 %. The choice of the values
for A andK is (and ought to be) at the discretion of the man-
ufacturer – therefore, no clear criterion can be derived from
the standard. We however propose to inspect the convex hull
(see O’Rourke, 1998) of the point set of nominal measure-
ment distances and respective measurement deviations. If the
convex hull below 66 % stays constant no matter whether all
points or only the points up to 66 % are used, there is no rea-
son for a requirement to measure lengths longer than 66 %,
and this simulated case is deemed not relevant for the MPE
question. If however, the convex hull does change, this sim-
ulated case should be inspected as it might be relevant. The
approach is illustrated in Figs. 8 and 9.

In contrast to Figs. 8 and 9, we truncate the bottom part
of the convex hull, using only parts with positive slope. Fur-
ther, we do not consider any decreases in the slope of the
66 % convex hull that happen in the regime between 60 %
and 66 % as relevant as these can be boundary effects, and

Figure 9. A scenario in which the convex hulls of the measurement
points below 66 % and of all measurement points (including above
66 %) do not agree below 66 %. There are points above 66 % whose
increase in measurement deviation is stronger than linear, and thus
we think that in this case, an MPE specification for both point sets
(up until 66 % and all points) could reasonably be different. A MPE
specification for below 66 % might not hold for the points above.
Such an extreme scenario as depicted here could not be observed in
any simulation of this study.

we do not believe a manufacturer would readjust their MPE
specification based on these.

The convex hull criterion as presented here is a worst-case
scenario as there is no safety distance to the measured points,
and the last (and therefore lowest) slope of the 66 % convex
hull is used for comparison. The choice of a higher slope is
legitimate and is an added safety margin for the manufac-
turer. Further, accounting for the test value uncertainty, any
manufacturer will keep a certain distance to all measurement
points when constructing an MPE. We therefore think that
in a real MPE specification scenario, the MPE will be cho-
sen with more of a safety margin. The convex hull criterion
does however allow for the automatic identification of cases
which are definitely not relevant for the question of maxi-
mum length (i.e., those for which the convex hulls agree).
The cases in which the convex hulls do not agree need visual
inspection – the criterion does not allow for an automated de-
cision that, based on this data set, a measurement of lengths
longer than 66 % is necessary. This is again due to the flexi-
bility in the MPE statement and the resulting need for a visual
inspection.

To quantify the difference between both convex hulls (if
there is any), we extend the last clockwise part of the convex
hull with a positive slope into a linear function (representing
a “convex-hull-derived” MPE specification). If both convex
hulls differ below 66 % (as in the Fig. 9), there needs to be
at least one data point above the extended linear function de-
rived from the 66 % convex hull. To quantify the difference,
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we use the maximum distance of all these data points from
this extended linear function. The distance is measured in the
direction of the “measurement deviation” axis only. Return-
ing to the argument of a reasonable MPE specification by a
manufacturer, we quantify this distance as a percentage of
the observed measurement deviation at this data point. The
motivation is that a manufacturer will choose a safety dis-
tance; thus exceeding this worst-case MPE statement by a
few percent is not relevant.

5.2 Results

Out of a total of 164 simulations from Sect. 4.1 and 4.2
(single static misalignments and isolated dynamic misalign-
ments), only seven show a maximum difference that is more
than 5 % of the measured SD error. Two of these are tilts
of the rotation axis around the x axis (axis perpendicular to
beam and rotation axis; see Fig. 2) by −0.0125 and −0.025◦

(see Fig. 10). The data points in those plots follow a roughly
linear trend, and, thus, we expect a human to specify a MPE
following this general linear trend. The other five are dy-
namic simulations with random phase angles from Sect. 4.2
(see Fig. 11 and the first plot of Fig. 12).

For the simulations with the combined errors (Sect. 4.3),
we performed the same analysis. For the initial misalignment
estimate simulations (set IV, eight simulations), no simula-
tion shows a difference above 5 %. For the simulations with
adapted misalignment amplitudes (set V, 10 simulations),
three simulations show a difference above 5 % (see Fig. 12).
This finding agrees with the increase in correlation coeffi-
cient ρ (compare Sect. 4.3) and the hypothesis of dominating
scaling errors for set IV as scaling errors are strictly linear in
the measurement length.

Summarising, from 182 simulations, only 10 are identified
as possibly relevant by the convex hull criterion due to a dif-
ference of more than 5 % between both convex hulls. As dis-
cussed above, this does not necessarily mean that they would
actually fail a manufacturer’s MPE specification above 66 %
due to the freedom in specifying the MPE. Of these 10 cases,
two (the rotation axis displacement) have a general linear
trend that would probably lead to an MPE with a higher slope
in specification (these can visually be classified as “roughly
linear” in the sense of Fig. 1). The other eight cases are five
sets of random phase angles for the dynamic errors (Figs. 11
and 12) and three simulations with combined misalignments
with rescaled amplitudes (set V; see Fig. 12). These cases
will be discussed again in Sect. 6.

6 Probing form errors

As described in Sect. 3.3, probing form errors were also eval-
uated. Besides sphere distances, probing form errors are an-
other important characteristic in acceptance testing (E DIN
EN ISO 10360-11:2021-04, 2021; VDI/VDE 2630 Blatt 1.3,
2011). A complete specification is required to cover at least

probing errors (probing form errors and probing size er-
rors) and the sphere distance errors (Table 3 in E DIN EN
ISO 10360-11:2021-04, 2021). Therefore, these characteris-
tics should be seen as a set of indicators about CT system
performance. It is not necessary that all characteristics de-
tect all possible error sources. We therefore analyse the im-
pact of the geometrical misalignments simulated thus far on
the probing form errors. The rationale behind this is that the
eight cases needing a visual – and thus necessarily subjec-
tive – analysis in Sect. 5 do not need to be analysed further if
the probing form error is very sensitive to them. In the latter
case, the probing form error will detect the underlying geo-
metrical misalignment sufficiently, and therefore, even if the
misalignments are not completely accounted for in the MPE
statement (“not completely accounted for” should be read as
“underestimated by a few percent”), there is no risk that the
misalignment is not detected during acceptance or reverifica-
tion testing.

Within this section, we analyse the sphere-wise increase in
form error in a simulation with misalignment in comparison
to a simulation without misalignment. Further, we report the
maximum increase in form error over all spheres.

For the 50 random phase angle simulations with the dy-
namic misalignments (set II), the probing form error increase
is above 100 µm for all phases and above 200 µm for most.
We claim that these values will not be acceptable to a cus-
tomer and that therefore, the potential that – for 10 % of these
simulations – the MPE specification for sphere distance er-
rors might be too low based on data points up to 66 % (com-
pare Figs. 11 and 12) is not crucial as another part of the
acceptance test will more reliably detect the underlying mis-
alignment.

For the set of combined misalignments based on the
rescaled simulations (set V), all probing form error increases
are above 270 µm. Therefore, the misalignments can well be
detected using the probing form error test, and the potential
that, for some of these simulations, the MPE specification
for the sphere distance errors might be too low based on the
data up to 66 % (compare Fig. 12) can again be neglected as
the probing form error part of the acceptance test will easily
detect the geometrical misalignments.

For the set of combined initial estimate misalignments (set
IV), the probing form errors are above 300 µm for factors
with magnitude greater or equal to 0.1. For the factor ±0.05,
the probing form errors are at approximately 32 µm. This is
still a noticeable probing form error, but it is much more real-
istic. With set IV, we did not identify any potentially relevant
cases in Sect. 5. This simulation shows that different parts of
the acceptance test are sensitive to different misalignments.
Both the lowest factors of set IV and set V lead to compara-
ble SD errors, but their probing form error differs by an order
of magnitude. The scaling errors that are dominant in set IV
thus seem to have a much lower impact on the probing form
errors (see discussion below).
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Figure 10. Convex hull analysis of non-linearity for the rotation axis tilt around the x axis (axis perpendicular to beam and rotation axis;
see Fig. 2) by −0.0125 and −0.025◦. The plots show the data points, both convex hulls (using points until 66 % and using all points) as well
as derived MPE specifications. The 1abs marks the data point with the largest distance to the 66 % MPE specification. The simulations are
part of simulation set I. We are convinced that a human would visually not specify such a low slope for the below 66 % MPE specification as
the automated algorithm used in this study. In this sense, the criterion employed here is, as discussed in the text, a worst-case criterion. We
would expect most MPEs specified based on this picture to follow the general linear trend of the data points.

The static geometry misalignments (simulation set I) merit
a more in-depth discussion:

– Detector position perpendicular to beam axis (x and y
axis). For the detector translations perpendicular to the
beam axis, probing form errors are very high (all above
100 µm). Probing form errors seem very sensitive to this
misalignment.

– Detector position along beam axis (z axis). Only for
a high misalignment of 3.75 mm or −3.75 mm are the
probing form errors above 10 µm (10.5 µm or 15.2 µm).
For all smaller misalignments, the probing form errors
are below 8 µm. The probing form errors are therefore
not very suitable to detect this misalignment that causes
strong scaling errors.

– Detector orientation. For the detector tilt around the x
and y axis, the probing form errors are below 5 µm –
probing form errors are not very sensitive to these mis-
alignments. For the tilt around the z axis, the probing
form errors are higher and reach approximately 17 µm
for a 0.057296◦ tilt.

– Source position. For the translation along the x axis, the
probing form errors are high (all above 340 µm). Along
the y axis, the probing form errors are considerably
smaller, with approx. 18 µm at the setting producing SD
errors within 10–20 µm. The scaling error (z axis trans-
lation) induces small probing form errors below 9 µm.
For the z axis translation of the source that leads to SD
errors within 10–20 µm, the probing form errors are be-
low 2 µm. Therefore, also for this scaling error, probing

form errors are again not very suitable for detecting the
geometrical misalignment.

– Rotation axis tilt. A rotation axis tilt around the z axis
by ±0.05◦ (leading to SD errors within 10–20 µm) pro-
duces probing form errors of 17 µm or 18 µm. The ro-
tation axis tilt around the x axis results in small prob-
ing form errors below 7 µm for absolute misalignment
amplitudes of± 0.025◦ and below. Unlike with scaling
errors, the increase of probing form errors with increas-
ing misalignment amplitude is stronger (15 µm or 14 µm
at± 0.05◦ and 31 µm at ±0.1◦), but the amplitude that
results in SD errors within 10–20 µm does not result in
equally high or higher probing form errors.

– Rotation axis position. For translations along the beam
direction (z axis), probing form errors are below 8 µm.
At the magnitude that leads to SD errors within 10–
20 µm, the form errors are below 2 µm. Again, the scal-
ing error does not impact form errors strongly.

Summarising, dynamic misalignments of the rotation axis
and the rotary table can be detected very well by inspect-
ing probing form errors, while scaling misalignments lead
to negligible probing form errors. Other static misalignments
show a more complex dependence – with some resulting in
large probing form errors, while others have less of an im-
pact. The simulation study clearly shows the need for includ-
ing both probing form errors and sphere distance measure-
ments in acceptance testing as both are sensitive to different
geometrical misalignments.
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Figure 11. Convex hull analysis of non-linearity: the plots show the data points, both convex hulls (using points until 66 % and using all
points) as well as derived MPE specifications. The 1abs marks the data point with the largest distance to the 66 % MPE specification. The
plots are for four of the five simulations with random phase angles from Sect. 4.3 and part of simulation set II (for the last one, see Fig. 12).

The eight cases mentioned at the end of Sect. 5.2 as cases
in which the data points for SD errors above 66 % might ne-
cessitate a different choice for the MPE are all cases in which
probing form errors are very pronounced and furthermore
cases in which misalignments that are very well captured by
probing form errors cause the SD errors. We therefore think
that these cases are negligible for acceptance testing seen as
a whole, as the probing form error will detect the underlying
misalignments reliably, and that these eight cases are thus no
reason for a requirement to measure lengths above 66 % for
the SD errors.

7 Conclusions

We performed a simulative study to investigate sphere dis-
tance and form measurements that are typically used in
acceptance and reverification testing (see, for example, E
DIN EN ISO 10360-11:2021-04, 2021; VDI/VDE 2630 Blatt
1.3, 2011). For this purpose, we designed a virtual simu-
lation artefact and estimated several geometrical misalign-
ments. Our initial estimates of the geometrical misalign-
ments mostly produced unrealistically high measurement er-
rors for the sphere distances. We therefore needed to re-
duce our initial estimates. We discussed the problem of find-
ing a suitable automated identification for whether a simu-
lation would indicate a need for deviating from the estab-
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Figure 12. Convex hull analysis of non-linearity: the plots show the data points, both convex hulls (using points until 66 % and using all
points) as well as derived MPE specifications. The 1abs marks the data point with the largest distance to the 66 % MPE specification. The
plot (a) is the last one for the simulations for the five random phase angles from Sect. 4.3 and part of simulation set II (for the first four, see
Fig. 11). The other three plots (b), (c) and (d) are for simulation set V (see Sect. 4.3).

lished 66 % measurement rule for sphere distances (as in-
cluded in DIN EN ISO 10360-2:2010-06, 2010; DIN EN
ISO 10360-7:2011-09, 2011; DIN EN ISO 10360-8:2014-
03, 2014; VDI/VDE 2630 Blatt 1.3, 2011). We presented a
worst-case criterion based on constructing the convex hull of
the data points collected and used this to evaluate our sim-
ulations. Of a total of 182 simulations, only 10 were iden-
tified based on this worst-case criterion. Two of these were
gauged as having a linear trend and thus being a shortcoming
of the criterion. The other eight are due to simulations with
dynamic rotary table misalignments. In general, the test pro-
cedure in acceptance and reverification testing should charac-
terise CT system performance and thus also detect any geo-

metrical misalignments. It is therefore important that at least
one of the mandatory characteristics (probing error (form
or size) or sphere distance error) of the standardised test is
able to detect each geometrical misalignment. It is however
not necessary that each characteristic does so or that each
characteristic does so with a high sensitivity. We therefore
also inspected the impact of geometrical misalignments on
the probing form errors. This analysis showed that the mis-
alignments that produce the smallest probing form errors are
the scaling misalignments that produce sphere distance er-
rors linear in the nominal measurement distance. All other
misalignments can – to some extent – be detected by probing
form errors as well.
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Even for most geometrical misalignments that are well
detected by probing form errors, there is, according to our
worst-case convex hull criterion, no behaviour that would ne-
cessitate a deviation from the established 66 % requirement.
The dynamic rotary table misalignments result in especially
pronounced probing form errors. In the eight cases in which
dynamic rotary table misalignments are present and the con-
vex hull criterion indicates a possibility for a need to mea-
sure longer lengths, the underlying misalignments can there-
fore be well identified by inspecting the probing form error.
An extension of the measurement lengths for the SD error
to capture these misalignments even better with the SD error
as well would constitute unnecessary additional effort as the
probing form error is clearly more sensitive.

Overall, the highest deviations from the conservative MPE
estimate derived based on the convex hull are 8 % of the mea-
sured SD error – we think that considering test value uncer-
tainty, manufacturer safety margin and freedom of choice in
the MPE specification, the MPE specification will rarely be
below this error. Should it happen, both user and manufac-
turer still have a clear indication for the underlying geometri-
cal misalignment from high probing form errors. Besides the
roughly linear behaviour of the rotation axis tilt around the
x axis which was found by our automated convex hull cri-
terion but which we visually discarded, there is no scenario
in which, due to more than linear behaviour, a geometrical
misalignment can not be detected neither with the SD mea-
surements up to 66 %, nor with the form measurements. As
both are mandatory, no user or manufacturer can perform an
acceptance test without detecting the geometrical misalign-
ments studied in this work.

Based on the simulation study presented here, there is
no technical reason for measuring SD errors with nominal
lengths above the established 66 % of the maximum length
from other comparable standards (DIN EN ISO 10360-
2:2010-06, 2010; DIN EN ISO 10360-7:2011-09, 2011; DIN
EN ISO 10360-8:2014-03, 2014; VDI/VDE 2630 Blatt 1.3,
2011).
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