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Abstract. The driving safety of autonomous vehicles will strongly depend on their ability to recognize road sur-
face conditions such as dry, wet, snowy and icy road. Currently, the existing investigations to detect road surface
conditions still have limitations in daytime and nighttime conditions. The objective of this paper is to propose
and develop a new system with three near-infrared (NIR) LED sources. This choice is based on the advantages
of LED sources over laser diodes. They are less sensitive to temperature and have lower costs. Considering these
advantages, the feasibility of the LED system to recognize road surface conditions is investigated. For this, the
appropriate wavelengths of the LED tri-wavelength source are first computed from experimental data taking into
account the specific LED spectral shape. In addition, the effect of the spectral bandwidth of the LED sources
on the system performance is theoretically studied. Finally, the NIR LED system with the LED sources at 970,
1450 and 1550 nm is experimentally tested and validated with an incident angle from 78.7 to 86.2◦. According
to the results of the experiments, the accuracy of the classification of snow, wet and water can reach 97 %, while
the accuracy of the dry and wet road surface conditions is respectively 73 % and 68 %.

1 Introduction

In recent years, autonomous driving technology has devel-
oped rapidly (Anderson et al., 2014; Faisal et al., 2019). In
order to ensure the passenger has a safe and comfortable ex-
perience in autonomous vehicles (AVs), advanced obstacle-
detection systems have to be implemented. Current solutions
for detecting obstacles in AVs have led to a relatively good
performance. However, there is potential for improvement
for increased safety of AVs on the road, both in daytime and
nighttime conditions. In particular, the calculation of braking
distance for AVs is currently based on road adhesion without
taking into account the road surface conditions (Zhang et al.,
2021). However, AVs in real life may encounter ice, snow or
water puddles, which may be the cause of severe traffic acci-
dents. Thus, the detection systems must enable the detection
of changes in weather-induced road surface conditions to an-
ticipate the vehicle reaction and/or deactivate the automated
functions in the case of ice, snow and puddles with aquaplan-

ing risk. Today, more and more information about the envi-
ronment can be obtained by vehicles, especially AVs. If in-
formation about the road conditions could be classified, this
information would be helpful for AVs but also for advanced
driver-assistance systems (ADAS) in vehicles with a low au-
tomation level, to clarify the position of slippery parts and to
plan the trajectory so as to avoid slippery roads or decrease
the speed of the vehicle in advance. A key point is the detec-
tion range, since the autonomous system should have enough
reaction time to make a decision. For a speed of 60 km h−1

and a reaction time of 2 s, the detection range should be over
33 m.

For several years, research has focused on new methods to
detect road surface conditions in an attempt to decrease ac-
cidents caused by slippery roads. Today, many remote sens-
ing techniques are investigated, among which some are based
on polarization of light (Yamada et al., 2003; Colace et al.,
2013). However, the main disadvantage of this technique is
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Figure 1. Absorption coefficient of ice and water according to
Irvine and Pollack (1968).

that specular reflection is required, which implies that the
source and the sensor have to be implemented on the oppo-
site sides of the road surface in order to be analyzed. Hence,
the source and the sensor cannot both be implemented on the
vehicles. In Shin et al. (2019), a visible lidar is used to distin-
guish dry, wet and icy road surface conditions. Experiments
were conducted at a fixed distance from the lidar to the road
sample. It was found that the intensity of the signal received
for the wet condition was lower than the dry condition and
that backscattering light for the icy condition was not de-
tectable. However, the limitation is that the intensity could
depend on the distance of detection, and thus the feasibility
of the system for a varied distance needs to be proved.

A more promising technique for classification of road con-
ditions exploits the intensity variation of the scattered near-
infrared (NIR) light from the road surface. The scattering
of light is indeed dependent on the roughness of the illumi-
nated surface and the absorption of the illuminated material.
For smooth surfaces, such as ice and water, the backscat-
tering light also relies on the scattering taking place below
the surface. The scattering hence results in a specific spec-
tral response, which means that the amount of scattered light
from the road material (i.e., asphalt) and from the mate-
rial on the road (i.e., water, ice and snow) depends on the
wavelength of the illumination source. As an example, the
wavelength-dependent absorption coefficients for water and
ice are shown in Fig. 1. It can be seen that in the 1450 nm
band , water absorbs more light than ice, whereas at 1550 nm,
ice absorbs more light.

The general configuration of the NIR system dedicated to
the recognition of road surface conditions is shown in Fig. 2.
It is composed of an NIR source and an NIR detector. The
source illuminates the surface for which the road condition
has to be detected. In this work, the zenith angles of the inci-
dent and observation beams are the same.

Hence, Casselgren et al. (2007, 2012, 2016), Jonsson et al.
(2014) and Ruiz-Llata et al. (2017) demonstrated that by ana-
lyzing ratios based on the amplitude of backscattering signals
at different wavelengths, different road surface conditions

Figure 2. General configurations of NIR systems.

could be discriminated. Furthermore, it was shown by Cas-
selgren et al. (2007) that at least three different wavelengths
in the 900–1700 nm band are required. As can be seen in
Table 1, the NIR recognition of different road surface con-
ditions was successfully achieved using different wavelength
combinations (Casselgren et al., 2007, 2012, 2016; Jonsson
et al., 2014; Ruiz-Llata et al., 2017). For the best classifica-
tion performance of dry, water, ice and snow conditions, the
wavelengths of the NIR sources were calculated and found
to be at 1310, 1490 and 1690 nm, in Casselgren et al. (2007).

To implement this NIR backscattering technique, laser
diodes or halogen lamps with filters were used as the illumi-
nation sources and an NIR camera or NIR photodiodes were
used as the detectors in previous works (Casselgren et al.,
2012; Jonsson et al., 2014; Ruiz-Llata et al., 2017). Halo-
gen lamps have the advantages of high power and low cost,
but they have the disadvantages of short lifetime, low effi-
ciency and generating large amounts of heat. Furthermore,
a fatal point of halogen lamps in such systems is that they
are not suitable for modulation because of the reduced life-
time (Cho and Kim, 2011). Yet, the modulation of the sig-
nals is necessary to compensate for the ambient light (Cas-
selgren et al., 2016). Considering these limitations, the halo-
gen lamp is not an appropriate source for this system. On the
other hand, laser diodes have the advantages of high power
and they can operate under very high modulation frequency.
However, the cost of laser diodes should be taken into con-
sideration for commercial AVs. In addition, according to Ott
(1996), laser diodes are more sensitive to temperature com-
pared with other light sources such as LEDs. Furthermore,
the cases of large incident angles were not investigated in
previous works. The incident angle of the NIR source is a
core parameter that will determine the detection range. As
far as we know, the maximum incident angle assessed in the
literature is 70◦(Casselgren et al., 2007), which would cor-
respond to a detection range of 0.9 m with an NIR system
placed at a height of 0.7 m above the road surface, whereas
a detection range of 40 m would correspond to an incident
angle of 89◦ in such a configuration. Yet, in large incident
angles, the amplitudes of the backscattering signals from the
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Table 1. Characteristics of the NIR systems described in the references.

Reference Sources Sensors Wavelengths Road surface conditions Comments
considered

Casselgren et al. (2007) Halogen lamp Spectrometer 1310 nm Dry, water, ice, snow Optimal wavelengths were calculated
1490 nm based on the spectral responses
1690 nm measured with a spectrometer.

Casselgren et al. (2012) Laser diodes Photo detector 980 nm Dry, wet, ice, snow Theoretical models to estimate
1310 nm the roughness of the road surface
1550 nm were proposed.

Jonsson et al. (2014) Halogen lamp with filters NIR camera 1260–1340 nm Dry, wet, ice, snow Halogen lamp with filters
1350–1450 nm were used to distinguish road
1490–1575 nm surface conditions.
1615–2215 nm

Casselgren et al. (2016) Laser diodes NIR camera 980 nm Dry, moist, wet, frost, ice, Modulation signals were exploited
1310 nm snow/ice, snow to compensate for surrounding light.
1550 nm

Ruiz-Llata et al. (2017) Laser diodes Photodiode 1460 nm Dry, water, ice, The classification was performed
1490 nm melting ice/freezing for an ice-melting procedure.
1550 nm water

smooth surface and rough surface might differ greatly. Ac-
cording to Fresnel equations, the larger the incident angle,
the larger the reflectance. Therefore, in large incident angles,
specular reflection will dominate for smooth surfaces and the
backscattering light will hence be greatly weakened, while
the rough surface can still scatter light back.

With the development of LED sources, today LEDs are
increasingly applied to vehicles. In this paper, we propose
replacing laser diodes by LEDs in NIR backscattering sys-
tems dedicated to the recognition of road surface conditions
to allow for a larger detection area. LEDs can indeed illu-
minate a larger area compared with laser diodes. However,
the possible setback with LED sources compared with laser
diodes could lie in the larger spectral bandwidth. Yet, as far
as we know, the NIR backscattering technique has been in-
vestigated using a tri-wavelength source (three laser diodes),
for which the appropriate wavelength combination was cal-
culated using the monochromatic assumption of each of the
three sources (Casselgren et al., 2007). We hence propose to
investigate the effect of the spectral bandwidth of the LED
sources and assess whether LED sources can be used in
NIR backscattered light systems without impairing the per-
formance of the recognition of the road surface conditions.
To this end, we first investigate the spectral response of an
asphalt sample under NIR illumination with five road sur-
face conditions: dry, wet, water, snow and ice. Based on these
spectral measurements, we propose a classification method
to enable the recognition of the assessed road surface condi-
tions. We then aim to determine the appropriate wavelength
combination of the tri-wavelength LED source to address the
best performance of the road surface conditions classifica-
tion, by taking into account the specific spectra of the LEDs.
Since the LED spectra are broader than those of laser diodes,
we also investigate the influence of the spectral bandwidth

on the classification performance. Furthermore, we test the
designed system composed of a tri-wavelength LED source
and an NIR camera under the different road surface condi-
tions assessed in the laboratory. Additionally, in this work
all experiments are conducted under large incident angles to
assess the behavior of the system for a long detection range.

The paper is organized as follows. In the first part, the NIR
system and its principle are described. Then, the results of
NIR spectral measurements of an asphalt sample are given
and a classification method is proposed. Third, the appro-
priate wavelength combination of the tri-wavelength LED
source is determined using the results of spectral measure-
ments. Fourth, the influence of the spectral bandwidth on
the classification performance is investigated. Then, the de-
signed system is tested with an NIR camera in the laboratory
and results are presented on the feasibility of such a system
to recognize the different road surface conditions under con-
sideration here. Finally, the results of this work are discussed
and conclusions are given.

2 Determination of the wavelength combination of
the three LED sources

In order to determine the wavelength combination, spectral
measurements are first made. For the spectral measurements,
the wavelength combination of three LED sources is then cal-
culated and the full width at half maximum (FWHM) of the
LEDs is investigated as a parameter in the selection of the
wavelength combination.

2.1 Spectral measurements

In the characterization of the spectral response of an asphalt
sample under NIR illumination, measurements were con-
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Figure 3. (a) Picture of the experimental setup. (b) Top view sketch
of experimental setup. The square represents the position of the
spectrometer detector. The circles represent the different positions
of the halogen lamp which were tested. For example, the configura-
tion of (a) is equivalent to the case for which the source is positioned
on the red circle.

ducted using a halogen lamp as an illumination source and an
NIR spectrometer (NIRQuest512 Ocean Optics with a spec-
tral range: 900–1700 nm) as a sensor. The black-body radia-
tion of the halogen lamp allows us to benefit from the whole
spectral range of the spectrometer. The experimental setup is
presented in Fig. 3a. The spectrometer was connected to an
extension lens with a numerical aperture of 0.15 in order to
achieve a sufficient field of view. Measurements were con-
ducted under several configurations to ensure that the system
can adapt to as many configurations as possible. These con-
figurations were obtained by varying the illumination angle
and also, the lateral position of the source compared to the
detector. For this purpose, eight different distance values be-
tween the spectrometer detector and the asphalt together with
five different positions of the halogen lamp compared to the
spectrometer were tested, as illustrated in Fig. 3b. The dis-
tance between the spectrometer detector and the asphalt sam-
ple was made to vary from 25 to 95 cm and the detector was
placed at 6 cm height above the asphalt sample. This corre-
sponds to an incident angle varying from 76.5◦ to 86.5◦. Five
road surface conditions were investigated: dry asphalt, wet
asphalt and asphalt covered with water, ice or snow (Fig. 4).
A plastic box was used to contain the asphalt in order to cre-
ate ice and water surface conditions. The depths of ice and
water were around 1 cm. Snow was artificially made using a
refrigerator. Since the snow melted quickly in the laboratory
environment, the experiment was conducted for only three
distance values to ensure that the asphalt could still be con-
sidered under snow condition. Therefore, for the snow con-
dition, 15 configurations were tested, whereas 40 configura-
tions were tested for the other road surface conditions. The
experiment was conducted in a dark room so that no ambient

Figure 4. Images of the asphalt samples under the different condi-
tions tested.

light would influence the measurements. The only illumina-
tion source was the halogen lamp.

The average backscattering spectra measured are pre-
sented in Fig. 5. It was found that the spectral shapes for dry
and wet asphalt are very similar, which could make it difficult
to distinguish dry and wet road surface conditions. Further-
more, the amplitude of the spectrum in the snow condition
below 1200 nm is very high, whereas it is quite low when
above 1450 nm. As for water, the data presented here were
measured at a short distance (0.25–0.35 m). Indeed, above
0.4 m, only noise could be measured. Therefore, only 10 con-
figurations are taken into account for the water condition in
the following section. In addition, for short distances, one
crucial point is that the backscattering light could only be
detected by the spectrometer until 1350 nm, which may be
caused by the absorption of the water as shown in Fig. 1.

2.2 Classification method for the detection of road
surface conditions

As already proposed by Casselgren et al. (2007), the best re-
sult of the classification is achieved by performing a two-step
discrimination method. In their work, the authors first sepa-
rate dry and snow from water and/or ice, and then they sepa-
rate water from ice. Thus, in their work, the first step is used
to separate three classes, {dry, snow, (water+ ice)}, and the
second step is used to separate {water, ice}.
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Figure 5. Average backscattering spectra measured for different
road surface conditions. The spectra were averaged over all tested
configurations.

Table 2. Classification method for the detection of the road surface
conditions.

Steps Classes Parameter of interest

1 (Dry+wet), ice, snow, water Sλ1/Sλ2
2 Dry, wet Sλ1/Sλ3

In this work, based on the measured spectra, several clas-
sification methods were tested. It was found that the best
method to discriminate the five road surface conditions un-
der consideration should rely on a two-step classification.
In this two-step classification, we first have to separate ice,
snow and water from dry and wet, and then to separate dry
from wet, as shown in Table 2. Therefore, the classification
method will consist in considering four classes in step 1,
{(Dry+Wet), ice, snow, water}, and 2 classes in step 2, {dry,
wet}. This result is consistent with the spectra measured for
dry and wet asphalt, which were shown to be very similar
in Fig. 5. In each step, the ratio of the amplitude of two
backscattering signals at different wavelengths is used as the
parameter to distinguish the road surface conditions, as pro-
posed in Casselgren et al. (2007). In step 1, the ratio of in-
terest is Sλ1/Sλ2 whereas the ratio of interest in step 2 is
Sλ1/Sλ3 , where Sλ1 , Sλ2 and Sλ3 are respectively the ampli-
tudes of detected signals at wavelengths λ1, λ2 and λ3. These
ratios depend on the road surface conditions and thus by eval-
uating them and comparing them with a given threshold, the
road condition can be determined.

2.3 Calculation of the wavelength combination of the
three LED sources

As previously mentioned, the performance of the classifica-
tion depends on the selected wavelengths λ1, λ2 and λ3 of
the tri-wavelength source. These wavelengths to ensure the
best classification of the road surface conditions of dry, ice,
snow and water were calculated by Casselgren et al. (2007)
using the monochromatic assumption. However, in our work,
the LED sources cannot be considered as monochromatic

sources. Thus, the spectral shape has to be taken into ac-
count and the spectral bandwidth will be considered as a
parameter of the calculations, using the FWHM. The LED
spectral shape will be modeled as a normal distribution with
center wavelength varying from 900 to 1700 nm and with an
FWHM of 80 nm. Considering the spectra of the LEDs, the
backscattering signals Sλ1 , Sλ2 and Sλ3 which would be re-
ceived by the NIR sensor can be calculated by the integra-
tion of the product of the spectral response measured with
the spectrometer and the LED spectra:

Sλi =

∫
SLED
λi

(λ)× SSpectro(λ)dλ

with i = 1,2,3, (1)

where SLED
λi

is the normalized emitted spectrum of the LED
with central wavelength at λi , Sspectro is the measured spec-
tral response of the asphalt, and Sλi is the signal which would
be received by an NIR sensor under the illumination of the
LED at a central wavelength of λi . The ratio Sλ1/Sλ2 is then
calculated to be used in step 1 to distinguish {(dry+wet),
water, ice, snow}, and the ratio Sλ1/Sλ3 is calculated to dis-
tinguish {dry, wet} in step 2.

For each road condition, we have a set of 40 values for
Sλ1/Sλ2 and Sλ1/Sλ3 , except for the snow and water con-
ditions for which only 15 and 10 configurations were re-
spectively tested. The sets of values for Sλ1/Sλ2 are used for
step 1 and are labeled asXstep1

Dry ,Xstep1
Wet ,Xstep1

Ice ,Xstep1
Snow,Xstep1

water.
The sets of values for Sλ1/Sλ3 are used for step 2 and are la-
beled as Xstep2

Dry , Xstep2
Wet .

In step 1, the data of interest Xstep1 are {Xstep1
Ice , Xstep1

Snow,
X

step1
Water, X

step1
Dry+Wet} with

X
step1
Dry+Wet =X

step1
Dry ∪X

step1
Wet . (2)

In step 2, the data of interest Xstep2 are {Xstep2
Dry , Xstep2

Wet }.
From Xstep1 (resp. Xstep2), one can build a distribution of

the parameter Sλ1/Sλ2 (resp. Sλ1/Sλ3 ) for each road condi-
tion. Thus, λ1 and λ2 are searched in step 1 to make the
distributions Xstep1

Ice , Xstep1
Snow, Xstep1

Water and Xstep1
Dry+Wet have min-

imum overlap. In the same way, λ1 and λ3 are searched in
step 2 to make the distributions Xstep2

Dry and Xstep2
wet have min-

imum overlap. The algorithms for step 1 and step 2 to make
the overlap minimum are developed and given respectively
in Algorithm 1 and 2. Then intersection of the values of λ1
respectively obtained in step 1 and step 2 is computed. Fi-
nally, corresponding values of λ2 and λ3 are determined. Fig-
ure 6 shows all possible wavelength combinations for λ1, λ2
and λ3. Each wavelength combination found is marked with
an “o”, which forms Fig. 6. Based on Fig. 6, the appropriate
wavelength ranges enabling minimum overlaps are presented
in Table 3.
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Algorithm 1 for step 1

For a certain λ1 and λ2, sort the average value of Xstep2
Dry+Wet,

X
step2
Ice , Xstep2

Snow, Xstep2
Water

Note X
step2
a <X

step2
b

<X
step2
c <X

step2
d

, where a,b,c,d ∈

{(Dry+Wet), Ice,Snow,Water}
First we aim to define the thresholds th1, th2, th3 between
lass a, b, c, d .
The thresholds are defined as

th1 =
argmin

th1

(
sum

(
X

step2
a > th1

)
+ sum

(
X

step2
b

< th1

))
(3)

th2 =
argmin

th2

(
sum

(
X

step2
b

> th2

)
+ sum

(
X

step2
c < th2

))
(4)

th3 =
argmin

th3

(
sum

(
X

step2
c > th3

)
+ sum

(
X

step2
d

< th3

))
.

(5)

Thus, the wrong detection cases in this combination of λ1 and
λ2 in step 1 can be expressed as

P
λ1,λ2
wrong =

(
sum

(
X

step2
a > th1

)
+ sum

(
X

step2
b

< th1

))
+

(
sum

(
X

step2
b

> th2

)
+ sum

(
X

step2
c < th2

))
+

(
sum

(
X

step2
c > th3

)
+ sum

(
X

step2
d

< th3

))
. (6)

λ1 and λ2 are searched to make the Pwrong minimum:

λ1,λ2 =
argmin
λ1,λ2

P
λ1,λ2
wrong. (7)

Algorithm 2 for step 2

For a certain λ1 and λ3, sort the average value ofXstep2
Dry ,Xstep2

Wet

Note Xstep2
a <X

step2
b

, where a,b ∈ {Dry,Wet}
The threshold th to distinguish the two classes is then defined
as

th= argmin
th

(
sum

(
X

step2
a > th

)
+ sum

(
X

step2
b

< th
))
. (8)

Thus, the wrong detection cases in this combination of λ1 and
λ3 can be expressed as

P
λ1,λ3
wrong =

(
sum

(
X

step2
a > th

)
+ sum

(
X

step2
b

< th
))
. (9)

λ1 and λ3 are searched to make the Pwrong minimum:

λ1,λ3 =
argmin
λ1,λ2

P
λ1,λ3
wrong. (10)

Figure 6. (a) Appropriate values of λ1 and λ2 for minimum overlap
between the classes for step 1. (b) Appropriate values of λ1 and λ3
for minimum overlap between the classes for step 2.

Table 3. Appropriate wavelength ranges.

λ Wavelength range

λ1 1170–1250 nm, 1320–1650 nm
λ2 900–1200 nm, 1310–1430 nm
λ3 1200–1260 nm, 1320–1664 nm

In order to determine the center wavelengths of the LED
sources among these ranges, the gaps values between the dif-
ferent classes are analyzed. In step 1, the gaps of interest
are the gaps between the average values of Xstep1

Dry+Wet, X
step1
Ice ,

X
step1
Snow, Xstep1

Water. In step 2, the gap of interest is the gap be-
tween the average value of Xstep2

Dry and Xstep2
Wet . To evaluate the

classification performance, one parameter p is introduced. In
each step, it is calculated for all possible wavelength com-
binations of Fig. 6 and is defined as the minimum value be-
tween the calculated gap values. In step 1, since four classes
are distinguished, there are three gaps between the differ-
ent distributions. Thus, the parameter pstep1 is the minimum
value among these three gaps as Eq. (11) shows.

pstep1
=min

(
|X

step1
i −X

step1
j |

)
,

i,j ∈ {(Dry+Wet), Ice,Snow,Water}, i 6= j. (11)

An illustration of the parameter p for step 1 is given in Fig. 7.
In this example, dry and wet are regarded as one class. The
average values of the distributions of different classes are
presented as dashed lines. The parameter pstep1 is the gap
between water and snow, since it is the minimum gap among
the three gaps. In step 2, the case is simpler. Only two classes,
dry and wet, are distinguished. The parameter pstep2 is hence
considered as the gap between the two distributions of dry
and wet as Eq. (12) shows.

pstep2
= |X

step2
Dry −X

step2
Wet |. (12)
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Figure 7. Illustration of the gaps between classes in step 1 and of
the parameter pstep1. In this example, pstep1 takes the value of the
gap between water and snow classes.

Figure 8. (a) Values of parameter pstep1 as a function of λ1 and λ2.
(b) Values of parameter pstep2 as a function of λ1 and λ3.

The calculated parameters pstep1 and pstep2 are presented
in Fig. 8 for different wavelengths combinations. The value
of pstep2 is much lower than that of pstep1, which implies
that dry and wet are more difficult to be distinguished and
matches our previous observations.

Since dry and wet are more difficult to be distinguished,
λ1 and λ3 in step 2 will first be determined by maximizing pa-
rameter pstep2 in order to benefit from maximum discrimina-
tion. Then, λ2 will be determined in step 1, according to λ1.
In step 2, the calculated parameter pstep2 reaches a maximum
value when λ1 = 1457 nm and λ3 = 1664 nm. In order to de-
termine λ2, λ1 is fixed at 1457 nm. It is hence found that
the value of pstep1 reaches a maximum value at λ2 close to
900 nm. As a summary, the wavelengths calculated for LED
sources with 80 nm FWHM are presented in Table 4.

Table 4. The calculated wavelengths.

λ1 λ2 λ3

1457 nm 900 nm 1664 nm

Figure 9. (a) Calculated wavelengths as a function of FWHM.
(b) Maximum value of pstep2 as a function of FWHM.

2.4 Influence of the bandwidth of the LED

The FWHM of the LED sources is another factor that may
have an influence on the selected wavelength values and the
classification result. In the previous section, the FWHM was
fixed at 80 nm, which corresponds to the average FWHM
of LEDs in the commercial market. In this section, the in-
fluence of the bandwidth of the LEDs is investigated. First,
the selected wavelengths are calculated using different val-
ues of FWHM, in order to investigate the influence of the
FWHM on the wavelength selection. Then the influence of
the FWHM on the performance of the recognition is investi-
gated based on the parameter p. Thus, through this investiga-
tion, the necessity of filters to narrow the bandwidth of LED
sources is discussed.

The method to select the wavelengths is conducted as de-
scribed in the previous section for a varied FWHM from
10 to 200 nm; 10 nm represents the FWHM of common laser
diodes. The obtained wavelengths λ1, λ2, λ3 are presented as
a function of the FWHM in Fig. 9a. One can see from the fig-
ure that below 180 nm, the values of calculated wavelengths
do not fluctuate much. For a 10 nm FWHM, the wavelengths
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calculated are 911, 1441 and 1661 nm, which are very close
to the wavelengths determined for an 80 nm FWHM. How-
ever, for a 200 nm FWHM, the shift of the wavelengths of λ1
and λ3 becomes larger. Indeed, for this FWHM value, the
wavelengths are 900, 1540 and 1593 nm.

In order to further investigate the influence of the FWHM
on the performance of the classification, the parameter p is
exploited. Since the value of pstep2 is smaller than that of
pstep1, it will be taken into consideration and the maximum
value of pstep2 is taken as the critical parameter of interest
and calculated as a function of the FWHM.

The maximum value for pstep2 is presented as a function
of the FWHM from 10 to 200 nm in Fig. 9b. From this fig-
ure, one can see that the trend of max(pstep2) decreases with
the increase of FWHM. When the FWHM is near 200 nm,
the gap is almost non-existent, which will greatly impair
the classification result. In addition, the maximum value of
pstep2 decreases slowly at low FWHM and decreases faster
after FWHM= 80 nm. This indicates that for an FWHM
higher than 80 nm, the gap of the two classes is quickly
narrowed, which will undermine the accuracy of the clas-
sification. It can be found that pstep2 at FWHM= 80 nm is
comparable to pstep2 at FWHM= 10 nm. The classification
performance at FWHM= 80 nm is thus comparable to that
for FWHM= 10 nm. Since the FWHM of the commercial
NIR LEDs (resp. laser diodes) is around 80 nm (resp. 10 nm),
it can be expected that the classification performance with
commercial LED sources is comparable to that with laser
diodes. There is hence no need to add filters to narrow the
spectral bandwidth of LEDs, and the use of LEDs instead of
laser diodes can be feasible and the detection result will not
be weakened.

3 Experimental validation of the selected LEDs

Based on the calculation of the wavelength combinations,
an experimental validation is carried out using three LED
sources and an NIR camera. The data collected are then pro-
cessed and the accuracy of the classification is given.

3.1 Description of the experimental setup

In Table 4, the selected wavelength combination for LED
sources was shown to be at λ1 = 1457 nm, λ2 = 900 nm and
λ3 = 1664 nm. However, considering the commercial mar-
ket, LEDs at 1457 and 1664 nm are not available. As an
alternative, a combination of LEDs at λ1 = 1450 nm, λ2 =

970 nm and λ3 = 1550 nm was used to set up the NIR sys-
tem. First, histograms of Sλ1/Sλ2 and Sλ1/Sλ3 were calcu-
lated using spectral measurements to assess the capacity of
this wavelength combination to achieve a good classifica-
tion performance. The obtained histogram of Sλ1/Sλ2 for the
five road surface conditions (step 1) is presented in Fig. 10a,
whereas that of Sλ1/Sλ3 for dry and wet road surface con-
ditions (step 2) is presented in Fig. 10b. As shown in these

Figure 10. (a) Histogram of Sλ1/Sλ2 of dry, wet, ice, snow and
water conditions with λ1 = 1450 nm and λ2 = 970 nm. (b) His-
togram of Sλ1/Sλ3 of dry and wet conditions with λ1 = 1450 nm
and λ3 = 1550 nm.

Table 5. Characteristics of the camera.

Spectral range 900–1700 nm
Quantum efficiency > 70 % at 1500 nm
Number of active pixels 320× 256

figures, there is sufficient gap between the different classes
to enable the recognition of the different road surface con-
ditions. Therefore, the road surface conditions can be distin-
guished well using this wavelength combination.

The experimental setup to test the designed NIR system is
presented in Fig. 11. The NIR source was built by using al-
ternatively three LEDs at 970, 1450 and 1550 nm. As for the
NIR sensor, a Raptor NIR camera was selected. The charac-
teristics of this camera are shown in Table 5.

The experiments were conducted in the laboratory, in the
dark, with no ambient light. A lens with a numerical aperture
of 0.6 was mounted on the LEDs in order to collimate the
light emitted from the LEDs. The camera was mounted with
a lens with a numerical aperture of 0.33 to capture the im-
ages. The height of both LEDs and NIR camera above the
asphalt was 6 cm. The measurements were performed for
nine experimental configurations, achieved using three dif-
ferent positions of the source compared to the camera, to-
gether with three different distance values (30–90 cm) be-
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Table 6. Characteristics of the LED sources.

Central wavelength/nm 970 1450 1550
Output power/mW 720 30 36
Bandwidth/nm 60 80 102

Figure 11. (a) Picture of the experimental setup. (b) Top-view
sketch of the experimental setup. The square represents the fixed
position of the camera. The circles represent the different positions
of the LED sources. For example, the configuration of (a) represents
the case where the LED sources are positioned on the red circle.

tween the camera and the asphalt sample, as illustrated in
Fig. 11b. These configurations correspond to an incident an-
gle varying from 78.7 to 86.2◦. For each configuration tested
and for each road surface condition tested, the experiment
consisted in alternatively taking a picture of the asphalt sam-
ple with the NIR camera under three different illuminations:
at 970, 1450 and 1550 nm. For one road surface condition,
three pictures were hence taken for each configuration tested.
In addition, for each tested position of the source, the three
LEDs were alternatively placed at the same place and the il-
lumination areas of the LEDs were carefully adjusted to be
consistent. The LEDs were driven so as to achieve the same
output power and to avoid saturation of the camera. Since
the power of the 970 nm LED is much higher than for the
1450 and 1550 nm LEDs (see Table 6), the driving current of
the 970 nm LED was reduced to reach the same output power
level of the 1450 and 1550 nm LEDs.

3.2 Data processing and classification results

For dry, wet, snow and ice road surface conditions, the
NIR signals could be detected for all tested configurations
(3 different distance values× 3 different positions of LEDs),
whereas for water, the signals could not be detected for
distances above 30 cm between the camera and the asphalt
sample, which is consistent with previous observations in
Sect. 2.1. Therefore, in the following, nine configurations

Figure 12. Example of an area of interest (AOI). The AOI is the
area inside the red line.

are taken into account for dry, wet, snow and ice conditions,
whereas only three configurations are taken into considera-
tion for water.

As there are areas which are not illuminated by the LEDs
in the pictures, an area of interest (AOI) has to be defined.
The AOI is manually selected as a polygon of the illumi-
nated area as shown in Fig. 12. Each pixel in the AOI is re-
garded as a detection unit. Two ratios are computed for each
detection unit. The first ratio corresponds to the ratio of the
pixel’s gray levels between pictures taken respectively un-
der LED illumination at 1450 nm and 970 nm (S1450/S970).
The second ratio corresponds to the ratio of the pixel’s gray
levels between pictures taken respectively under LED illu-
mination at 1450 and 1550 nm (S1450/S1550). Thresholds of
the two ratios need to be determined to distinguish the road
surface conditions. In order to find the appropriate threshold,
the histograms of all ratios of S1450/S970 and S1450/S1550 in
the AOI are computed (Fig. 13). As shown in Fig. 13b, the
peak of S1450/S1550 for wet asphalt is around 0.7, whereas
the peak for dry asphalt is around 1. In the histogram, there
is still an overlap between dry and wet road surface condi-
tions, which indicates that it is difficult to set the threshold to
distinguish dry and wet road surface conditions.

In order to distinguish the road surface conditions by
these ratios, we first follow the two-step method described in
Sect. 2.3. Then the result is compared with the Support Vec-
tor Machine (SVM) method, which in Jonsson et al. (2014)
is proved to be a successful method with good performance
in the classification, in order to see if there is any improve-
ment. As for the two-step method, the threshold is set fol-
lowing Algorithms 1 and 2. The threshold is thus set at the
intersection point (dashed lines in Fig. 13b). The ice, water
and snow are distinguished using the ratio S1450/S970. They
are easier to be distinguished than dry and wet, as shown
in Fig. 13a. The thresholds are also placed at the intersec-
tion point between the distributions. The values of the ratios
(Fig. 13) are slightly different from the values obtained by
the calculation (Fig. 10), which may be due to the fact that
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Figure 13. (a) Histogram of S1450/S970. (b) Histogram of
S1450/S1550. Dashed line represents the threshold at the intersec-
tion point of the wet and dry distributions.

the actual LED spectra are not a normal distribution and that
the spectral sensitivity of the NIR camera is different from
that of the spectrometer.

Based on the determined thresholds, data were processed
and classified pixel by pixel. Examples of the classification
results are given in Fig. 14. It can be noted that the dry and
wet road surface conditions can be easily confused. In the
image for the dry condition, some pixels are detected as wet,
and in the image for the wet condition, some pixels are de-
tected as dry. This is due to the overlap of Fig. 13a. For ice,
water and snow conditions, they can mostly be correctly rec-
ognized. To summarize the classification performance of our
algorithm, a confusion matrix was computed, taking into ac-
count all detection units and all configurations tested (see
Table 7). In this matrix, percentages of correct and incor-
rect classification are summarized and broken down into each
class; the diagonal values represent the accuracies of each
class. It can hence be noted from Table 7 that the accuracies
achieved are about 80 %–90 % for ice, snow and water condi-
tions, whereas the accuracies for dry and wet conditions are
about 66 %–70 %, resulting from the observed overlap of dry
and wet classes.

As for the SVM method, the ratios of S1450/S970,
S1450/S1550 and S970/S1550 are taken as the input. The core
function is selected as a Gaussian function. The confusion
matrix is presented in Table 8. Compared with the threshold

Figure 14. Examples of classification results with an NIR camera
and NIR LEDs. The true classes are labeled under each image. The
classification results are presented with colors.

Table 7. Confusion matrix by the threshold.

Detected class

True class Dry Wet Ice Snow Water

Dry 71.87 % 22.59 % 5.52 % 0.02 % 0 %
Wet 28.83 % 66.8 % 3.94 % 0.43 % 0 %
Ice 5.51 % 3.82 % 89.42 % 1.25 % 0 %
Snow 0 % 1.4 % 6.76 % 91.84 % 0 %
Water 0 % 0 % 0 % 18.02 % 81.98 %

methods, the SVM improves significantly the classification
of ice, snow and water, while dry and wet conditions are still
difficult to be distinguished.

4 Discussion

As shown in the previous sections, dry and wet are the two
classes which are more difficult to be distinguished in our
work. However, in the theoretical calculations, no overlap
was observed between the distributions of dry and wet road
surface conditions, whereas the experiments in the labora-
tory showed an obvious overlap. Yet, the calculations were
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Table 8. Confusion matrix of SVM.

Detected class

True class Dry Wet Ice Snow Water

Dry 73.53 % 25.18 % 1.29 % 0 % 0 %
Wet 30.49 % 68.02 % 1.45 % 0.04 % 0 %
Ice 0.54 % 0 % 97.53 % 1.93 % 0 %
Snow 0.11 % 0.05 % 0.91 % 97.17 % 1.77 %
Water 0 % 0 % 0 % 0.61 % 99.39 %

based on data obtained from spectral measurements using a
spectrometer together with a lens to collect the backscattered
light. Thus, the spectrometer collected the light backscattered
from a larger area than that corresponding to one pixel of the
NIR camera. Therefore, the measurement of the spectrome-
ter may be equivalent to an integration of several pixels of the
NIR camera, which could explain the observed difference be-
tween calculations and experiments. In addition, the asphalt
sample is not homogeneous. The surface of the asphalt sam-
ple indeed consists of several grains. This may increase the
random error and, since the gap between the dry and wet road
surface conditions is small, an overlap of their histograms is
hence possible. In a real field test at long distance and with
the same incident angle, the effect of the asphalt inhomo-
geneity may be relatively weakened, since at long distance,
one pixel of the camera would represent a larger area on the
asphalt surface and would hence be an integration of several
grains. Based on what was said previously, the discrimina-
tion of dry and wet may be better for measurements at long
distance.

Another point to be discussed here is that the measure-
ments in the water condition were limited to a distance of
0.3 m between the camera and the asphalt surface. It was
indeed observed that above 0.3 m nearly no light scatters
back for the three wavelengths and that at 0.3 m, only light
backscattered at 970 nm could be detected, which is consis-
tent with the spectral measurements (see Fig. 5). The reason
may be that the water surface is much smoother than the other
kinds of road surface conditions. Indeed, for smooth sur-
faces, specular reflection becomes higher than refraction at
increasing incident angle and, as a consequence, the amount
of backscattered light is very weakened. In addition, wa-
ter greatly absorbs infrared light, which also contributes to
the phenomenon. This may explain why light scattered back
from asphalt in the water condition is not detectable under
a large incident angle. However, since the water condition is
the only condition that is affected by this phenomenon, this
may constitute a supplementary discrimination criterion of
the water condition for large incident angles. This criterion
will be evaluated on a real road for a long distance.

For the ice condition, a backscattering signal was de-
tected, even though an icy surface may also be considered
a smooth surface. The reason might be that the ice as a solid
cannot be as smooth as the water surface. Nevertheless, it

was observed that when ice started to melt, the backscatter-
ing signal behaved like water: light above 1350 nm was un-
detectable, whereas backscattering light could be measured
above 1350 nm for ice which does not melt.

In addition, compared to the literature, the wavelengths
in this work (970, 1450 and 1550 nm) are different from
the wavelengths found by Casselgren et al. (2007) (1310,
1490, 1690 nm). The reason might be that in our work, only
backscattering signal is taken into consideration, while in the
study by Casselgren et al. (2007), the scattering light from all
directions is considered. Moreover, compared to our work,
Casselgren et al. (2007) did not investigate the wet road con-
dition as a condition to be distinguished.

Regarding the bandwidth of the NIR sources, Jonsson
et al. (2014) already used NIR sources with broad spectra
(a halogen lamp with filters) instead of laser diodes and dis-
crimination was shown to be successfully achieved, although
they did not investigate the influence of the broad spectra.
According to our results, the good classification performance
of their system can be explained by the fact that most of their
filters had a bandwidth of 80–100 nm and by the fact that we
showed that the performance of the classification is not sig-
nificantly weakened for an FWHM less than 80 nm.

Last but not least, for a real system to be mounted on AVs,
calibration should be performed in order to determine the val-
ues of the thresholds to be set in the classification algorithm.
Indeed, these values depend on the LED characteristics, but
also on the quantum efficiency of the NIR camera.

Furthermore, on a real road, ambient light can disturb the
collected signal. Examples of such disturbing light sources
could be headlights, street lights and sunlight. The surround-
ing light will increase the intensity level of the NIR light that
the classification depends on. Due to different types of ambi-
ent light sources, the gain will not be constant. One possible
solution was proposed by Casselgren et al. (2016) to elim-
inate the influence of the ambient light by using the mod-
ulation signal to pilot the NIR sources. Since LEDs can be
driven by direct modulation, they are hence compatible with
the method proposed by Casselgren et al. (2016) and, thus,
the modulation of the LED sources can be used to compen-
sate for surrounding light.

However, the limitation of the proposed system with LED
sources lies in the power of NIR LEDs. As far as we know,
the output power of NIR LEDs above 1000 nm on the com-
mercial market today is less than 100 mW, which is too weak
compared to the NIR radiation of the sun. Thus, the LED
NIR system is not applicable for daytime and would be ded-
icated only to nighttime application. Today, with the devel-
opment of the infrared imaging, investigations of NIR LEDs
were conducted. In the work by Pichon et al. (2018), a high-
power LED with a center wavelength at 1550 nm was de-
signed, whose power can be up to 850 mW. Although it is
not yet commercialized, the prospect of the utilization of the
NIR LEDs could be interesting for future applications. In the
meanwhile, a supplementary system based on machine learn-
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ing to detect the road surface in the daytime is possible for
solving the problem. In Roychowdhury et al. (2018); Zhao
et al. (2017), road surface conditions in the daytime were
shown to be well classified and the accuracy could reach
97 %. In addition, the experiments of this work were con-
ducted in the laboratory with a short distance. On a real road,
as a large area of the road surface is illuminated by the LEDs
for a long distance, the power received by the camera will be
greatly decreased. This, in turn, will lead to a decrease in the
signal-to-noise ratio of the system. In this aspect, the power
of LEDs used in the laboratory is not enough for the realistic
case, especially for LEDs at 1450 and 1550 nm, whose power
is about tens of milliwatts. According to our rough estimate,
the required power of the LEDs for a long distance should be
several watt, and this might be solved by using multi-LED
chips.

5 Conclusions

An investigation of the NIR system for AVs using NIR LEDs
combined with an NIR camera was conducted for the recog-
nition of several road surface conditions, namely, dry, wet,
water, ice and snow. Based on the NIR spectral measure-
ments of the backscattered response under different road sur-
face conditions, a classification method was developed and
proposed. Then, the appropriate wavelengths of the LED
sources for best classification performance were determined,
taking into consideration the spectra of the LEDs. In addi-
tion, the influence of the LED spectral bandwidth on the ap-
propriate wavelengths and on the classification performance
was investigated. According to our calculations, the central
wavelengths of the LED sources are relatively unchanged
with the increase of the FWHM until 180 nm and the classifi-
cation performance is relatively not impaired for an FWHM
less than 80 nm compared to the case where the FWHM is
that of usual laser diodes (10 nm). Therefore, commercial
NIR LEDs whose average FWHM is 80 nm can be used in
NIR systems to distinguish road surface conditions. Based
on the calculations, an NIR system was set up, using three
LEDs at 970, 1450 and 1550 nm and an NIR camera, and
experiments were conducted in the laboratory. It was shown
that it is feasible to distinguish the road surface conditions
of dry, wet, ice and snow for an incident angle from 78.7 to
86.2◦. The water condition could be recognized for an inci-
dent angle of about 78.7◦. The accuracy of the classification
of snow, wet and water conditions can reach 97 %, while the
accuracy of the dry and wet road surface conditions is re-
spectively 73 % and 68 %. Therefore, it can be concluded that
the classification of different road surface conditions can be
achieved using the proposed NIR system with LEDs as the
NIR sources. In the future, the system is aimed to be tested
on a real road at nighttime to evaluate its performance for a
long detection distance.
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