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Abstract. The number of sensors used in modern devices is rapidly increasing, and the interaction with sen-
sors demands analog-to-digital data conversion (ADC). A conventional ADC in leading-edge technologies faces
many issues due to signal swings, manufacturing deviations, noise, etc. Designers of ADCs are moving to the
time domain and digital designs techniques to deal with these issues. This work pursues a novel self-adaptive
spiking neural ADC (SN-ADC) design with promising features, e.g., technology scaling issues, low-voltage
operation, low power, and noise-robust conditioning. The SN-ADC uses spike time to carry the information.
Therefore, it can be effectively translated to aggressive new technologies to implement reliable advanced sen-
sory electronic systems. The SN-ADC supports self-x (self-calibration, self-optimization, and self-healing) and
machine learning required for the internet of things (IoT) and Industry 4.0. We have designed the main part of
SN-ADC, which is an adaptive spike-to-digital converter (ASDC). The ASDC is based on a self-adaptive com-
plementary metal–oxide–semiconductor (CMOS) memristor. It mimics the functionality of biological synapses,
long-term plasticity, and short-term plasticity. The key advantage of our design is the entirely local unsupervised
adaptation scheme. The adaptation scheme consists of two hierarchical layers; the first layer is self-adapted, and
the second layer is manually treated in this work. In our previous work, the adaptation process is based on 96 vari-
ables. Therefore, it requires considerable adaptation time to correct the synapses’ weight. This paper proposes a
novel self-adaptive scheme to reduce the number of variables to only four and has better adaptation capability
with less delay time than our previous implementation. The maximum adaptation times of our previous work
and this work are 15 h and 27 min vs. 1 min and 47.3 s. The current winner-take-all (WTA) circuits have issues, a
high-cost design, and no identifying the close spikes. Therefore, a novel WTA circuit with memory is proposed.
It used 352 transistors for 16 inputs and can process spikes with a minimum time difference of 3 ns. The ASDC
has been tested under static and dynamic variations. The nominal values of the SN-ADC parameters’ number
of missing codes (NOMCs), integral non-linearity (INL), and differential non-linearity (DNL) are no missing
code, 0.4 and 0.22 LSB, respectively, where LSB stands for the least significant bit. However, these values are
degraded due to the dynamic and static deviation with maximum simulated change equal to 0.88 and 4 LSB and
6 codes for DNL, INL, and NOMC, respectively. The adaptation resets the SN-ADC parameters to the nominal
values. The proposed ASDC is designed using X-FAB 0.35 µm CMOS technology and Cadence tools.
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1 Introduction

In the last few years, both diversity and the number of de-
ployed sensors have significantly increased due to the rapid
advancement of artificial intelligence and machine learn-
ing in the internet of things (IoT) and Industry 4.0 (Werth-
schützky, 2018; Meijer, 2008). The performance of the intel-
ligent sensor faces a lot of issues due to static and dynamic
variations. These issues are effectively addressed by using
reconfigurable structures with the self-X (self-calibration,
self-optimization, and self-healing) properties (Alraho et al.,
2020; Zaman et al., 2021; Aamir et al., 2018; Jo et al., 2019;
Lee et al., 2018b; Lu et al., 2013; Koenig, 2018). However,
reconfigurable structures are still utilizing amplitude-coded
signals that face issues with downscaling technologies. These
advocate the design of an electronic sensor system robust to
technology scaling and self-x properties to compensate for
the static and dynamic variations implemented by a time-
coded signals system with self-x properties. This motivated
a spiking neural network (SNN) concept inspired by the bio-
logical neural network, where the information is encoded by
spike timing and will not be vulnerable to the issues concern-
ing technology scaling (Guo et al., 2021; Henzler, 2010a;
Staszewski et al., 2005). A key mandatory element of the
SNN is the synapse which can be emulated by the memris-
tor, and the memristor can considerably improve SNN (Lv
et al., 2018; Zhang et al., 2020). The memristor can thrust
new computing systems beyond Moore’s law (Mehonic et al.,
2020; Zidan et al., 2018). The memristor enhances the capa-
bility of the self-adaptive analog frontend sensory electron-
ics, especially for the application design with advanced-node
complementary metal–oxide–semiconductor (CMOS) tech-
nology (Zidan et al., 2018). The memristor architectures sup-
ply a small on-chip footprint (Graves et al., 2020), low power
profile (Graves et al., 2020; Shchanikov et al., 2021), ma-
chine learning, and artificial intelligence (Kim et al., 2021;
Krestinskaya et al., 2019; Li et al., 2020; Midya et al., 2019;
Manouras et al., 2021; Shchanikov et al., 2021). Machine
learning supports the configurable electronic circuits to have
self-x properties and a flexible platform for IoT and Indus-
try 4.0 (Koenig, 2018).

Numerous researchers have concentrated on implemented
emulating biological synapses to implement a neuromorphic
system that performs closer to biological neural network sen-
sors (Berdan et al., 2016; Burr et al., 2017; Covi et al., 2019;
Kim and Lee, 2018a; Ohno et al., 2011; Yang et al., 2017).
Recently, some researchers concentrated on achieving the
synapse function by memristor (Kim et al., 2018; Park et al.,
2020). In biological synapses, two types of synaptic plastic-
ity, namely long-term plasticity (LTP) and short-term plas-
ticity (STP; Kandel, 2000; Martin et al., 2000), are observed.
Kim et al. (2015), Li et al. (2013), Mannan et al. (2021),
Wang et al. (2017), Wu et al. (2021), Zhang et al. (2017),
Yang et al. (2018), and Ren et al. (2018) constructed mem-

ristors to emulate both long-term plasticity (LTP) and short-
term plasticity (STP) adaptation functions of the synapses.

There are several challenges to implementing the SNN in-
spired by biological neural sensors systems based on mem-
ristor as a synapse, such as reliability, compatibility with
CMOS technology, the fabrication complexity of memristor
systems, the lifetime of memristor devices, the finite number
of resistance levels, and resistance level stability (Krestin-
skaya et al., 2019; Zhang et al., 2020). Therefore, one more
class of researchers have focused on memristor emulators
to implement memristor SNN architectures on contemporary
chips (Babacan et al., 2017; Cao and Wang, 2021; Kanyal
et al., 2018; Prasad et al., 2021; Sánchez-López et al., 2014;
Yadav et al., 2021; Abd and König, 2020, 2021b). Compared
to the CMOS-based memristor, the material-based type of-
fers more advantages beyond Moore technology to support a
much more compact design and less power consumption.

State-of-the-art designs have complex circuits, utilize a
large number of active and passive components, and demand
an external device. Babacan et al. (2017) proposed a mem-
ristor with a multi-output operational transconductance am-
plifier (MO-OTA), multiplier, capacitor, and resistor. Also,
in Cao and Wang (2021), they proposed a memristor circuit
using an operational amplifier, multiplier, sine converter, re-
sistor, and capacitor. Additionally, Kanyal et al. (2018) pro-
posed a memristor circuit utilizing two operational transcon-
ductance amplifiers (OTA) and one capacitor. Similarly, in
Prasad et al. (2021), they proposed a memristor circuit
built with a Z-copy current follower transconductance am-
plifier (ZC-CFTA) and capacitor. Likewise, Sánchez-López
et al. (2014) proposed a memristor emulator with a sin-
gle multiplier and four second generation current convey-
ors (CCII). Yadav et al. (2021) also proposed a memristor cir-
cuit utilizing a fully balanced voltage differencing buffered
amplifier (FB-VDBA) and capacitor. They emulated the LTP
function by utilizing external memory, digital-to-analog con-
verter (DAC), and a big external capacitor. Yadav et al.
(2021) detached the information processing and memory that
sent back the design to the restriction of the Von Neumann
(1945) computing architecture. It needs a shuttling of infor-
mation between two units, consuming more power, and is a
slow process. Shuttling becomes a severe problem when an
extensive system is implemented. In contrast, the biological
nervous system combines memory and information process-
ing, and consequently, it can process complex information
and have ultralow power consumption (Berdan et al., 2016).
Artificial synapses that mimic STP and LTP of the biolog-
ical synapses are required to implement neuromorphic sys-
tems, mimicking the biological nervous system (Kim and
Lee, 2018b).

This work represents one building block of our concept on
robust adaptive spiking sensor systems, focusing in this paper
on the adaptive spike-to-digital conversion. This concept, as
already indicated in our previous work, needs a prior stage
denoted as sensor-to-spike conversion (SSC; Kammara and
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Figure 1. (a) Acoustic localization model. The brain uses the interaural time differences (ITDs) between the two signals arriving at the ears,
t1−t2, to locate the voice’s position, where t2 and t1 are the times of the voice arriving at the left and right, respectively. (b) Neuromorphic
signal conditioning architecture. Sensor-to-spike conversion (SSC) transfers the sensor signal into two spikes at different times, depending
on the sensor signal. The adaptive spike-to-digital converter (ASDC) block generates digital code based on this time difference between the
spikes. The ASDC has two main blocks, namely adaptive coincidence detection (ACD) and winner-take-all (WTA), with memory.

König, 2016, 2014b; Kammara and Koenig, 2014a; König
and Kammara, 2017; Subramanyam and Chandra, 2017).
Early work done by the second author is on a light-to-
frequency or light-to-spike-code converter in the CMOS im-
age sensor (Doge et al., 2002). In the latter case, and in sim-
ilar work following up on ours in the literature, the incident
light information was transduced to rate code representation.
In more recent work by Kammara and König (2016), Kam-
mara and König (2014b), Kammara and Koenig (2014a),
König and Kammara (2017), and Subramanyam and Chan-
dra (2017), this was extended to further sensor modalities
and the time to the first spike coding and its extension to dif-
ferential representation.

2 Biological sensory systems inspirations

Living beings own a remarkable sensing capability for phys-
ical and chemical quantities (Leitch et al., 2013; Stieve,
1983). They also possess an adaptability according to en-
vironmental conditions and occurring faults or lesions. The
neural network creates the key to this regulation. The sensory
systems in living beings concentrate on possessing thousands
of sensors linked to peripheral neural ensembles.

The acoustic localization is an exception to that. It lo-
calizes the objects, predator, prey, water, or food by spa-
tially detached paired sensors (Ashida and Carr, 2011; Carr
and Konishi, 1988, 1990; Grothe et al., 2010; Seidl et al.,
2010; Carr and Christensen-Dalsgaard, 2015). Living beings
use the time difference between signals arriving at the two
ears, which we call interaural time differences (ITDs) to lo-
cate the sound source, and it can be represented in an ar-

ray of nerve cells as a place. The place theory was pre-
sented by Jeffress (1948). Jeffress (1948)’s theory builds on
the following three essential assumptions (Ashida and Carr,
2011): (1) an orderly arrangement of ascending nerve fibers
in the conduction times which act as delay lines, (2) then
an array of coincidence detectors convert input synchroniza-
tion to output spike rates, and, finally (3), form a neuronal
place map within the cell array by using systematic variation
in spiking rates. The architecture and design of neuromor-
phic systems try to emulate the biological nervous system
structures. Delay lines in acoustic localization are an explicit
model of adaptive SNN architecture, as shown in Fig. 1a.
It can be utilized for spiking neural analog-to-digital con-
version (SN-ADC). The implementation of an SN-ADC in-
spired by human hearing acoustic localization demands two
segments, i.e., the sensor-to-spike converter (SSC) and spike-
to-digital converter (SDC) (Kammara and König, 2016). The
SSC transforms the sensor signal into two spikes with the
time difference. Based on this time difference between the
spikes, the SDC block generates digital code. The prior im-
plementation of the ADC did not make use of adaptivity as
desired, e.g., to transact with static and dynamic variations
and technology scaling issues (Kammara and König, 2016).
Dynamic and static variations forcefully challenge the per-
formance of the sensor (Lee et al., 2018a; Lin et al., 2019).
Static variations are due to processed parameter deviations,
mechanical stress due to packaging, and lithographic uncer-
tainties, while the dynamic variations are due to the dynamic
operating condition of the circuit with the supply voltage
variation and the ambient temperature. On the other hand,
the long-term aging effect on the circuit elements adds a shift
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to the circuit performance with the passage of time (Alraho
et al., 2020).

We proposed a system in Fig. 1b to mimic the model
of sound localization proposed by Jeffress (1948). The first
block in Fig. 1b, SSC, transfers the sensor signal into two
spikes with ITDs, where the value of the ITDs will de-
pend on the sensor signal. The second block in Fig. 1b, the
adaptive spike-to-digital converter (ASDC), has the three es-
sential assumptions of Jeffress (1948)’s theory. Where the
weights of the synapses implement the first one, the sec-
ond is implemented by an array of the adaptive coincidence
detection (ACD), which converts the ITDs of the two in-
put pulses to the rank spike code, and the third is imple-
mented by winner-take-all (WTA) with memory, which con-
verts the rank spike code to the digital code. The primary
goal of this work is to implement the ASDC, which is the
fundamental building block of SN-ADC, to demonstrate that
the conceived structure and adaptation algorithm can cope
with the worst-case deviations of the regarded implementa-
tion technology. In this design, we used the MOSFET 3.3 V
main model of the 0.35 µm CMOS technology by X-FAB.
The novel contributions of our work are the (1) implemen-
tation of an adaptive spike-to-digital converter (ASDC) in-
spired by acoustic localization, (2) design of an adaptive
spike-to-rank coding (ASRC) encoded by time to the first
spike, (3) design of an adaptive coincidence detection (ACD)
with self-adaptive properties, (4) realization of an adapta-
tion method to adapt all ACDs at the same time, (5) im-
plementation of CMOS memristors emulating the short- and
long-term plasticity of biological synapses, (6) realization
of the leaky integrate-and-fire (LIF) neuron with more cost-
effective design and producing the ACD properties, (7) im-
plementation of the winner-take-all (WTA) circuit and mem-
ory with a more efficient design, and (8) proposition of an
algorithm to convert the rank code to binary code.

3 Proposed ASRC structure

Recently there has been a high demand for ADC in Indus-
try 4.0 and IoT to perform under a dynamic environment and
overcome the issues of the conventional ADC in the ampli-
tude domain. The implementation of ADC in the time do-
main can overcome these issues (Henzler, 2010a; Staszewski
et al., 2005). The implementation of ADC in the spike repre-
sentation (time domain) has a high variance in its parameter
due to static and dynamic variations. Therefore, it is essen-
tial to implement the ADC with adaptation to compensate for
the deviation. Therefore, we propose the design of SN-ADC
based on time coding with self-adaptation.

The proposed SN-ADC has two parts, SSC and ASDC,
as shown in Fig. 7. The ASDC is based on the ACD, which
has two parts adaptive synapse (AS) and neuron. In total, our
designed SN-ADC has 32 synapses and 16 neurons. Every
synapse has an 8 bit binary digitized transistor and vg vari-

Figure 2. CMOS memristor mimics the synaptic plasticity, long-
term plasticity (LTP), and short-term plasticity (STP) of biological
synapses. This circuit represents the adaptive synapse (AS) of our
proposed structure (sizes of the transistors are in µm).

able to control its weight, as shown in Fig. 2. Also, every neu-
ron has two adaptation variables. In total, the current work
has 96 variables. We have built the SN-ADC with two layers
of the adaptation hierarchy, as shown in Fig. 7. The first layer
is at the level of ACD, and the second layer is at the level of
ASDC.

The first layer of the adaptation hierarchy is designed and
presented in this work. In this layer, the adaptation circuit au-
tomatically adapts the synapses’ weight and reduces it from
96 variables to only four variables, i.e., VLEAK, VRFR, vg1,
and vg2. In the first layer, the adaption runs simultaneously
for all ACD in parallel; hence, the number of exposed vari-
ables for each individual synapse and neuron is equivalent
to one ACD, where the ACD has four variables, i.e., VLEAK,
VRFR, vg1, and vg2. Those four variables in the current stage
of development of our design have been adapted manually.
In the future, machine learning can automatically help us to
control the four voltage variables. Alternative to software im-
plementation, the design of a circuit to control these variables
could be considered a second layer of the adaptation hierar-
chy. Hence, the whole circuit can be automatically adapted
by using only those four variables instead of 96 variables.
This would help to reduce the complexity of the adaption
circuit and require less adaptation time. The second top adap-
tation layer runs over the first layer, and it is responsible for
changing only the variables of VLEAK, VRFR, vg1, and vg2.
For every change in those variables, the first layer took part
in the adaptation process, and the second layer waited until

J. Sens. Sens. Syst., 11, 233–262, 2022 https://doi.org/10.5194/jsss-11-233-2022



H. Abd and A. König: Design of a CMOS memristor-based self-adaptive spiking ADC 237

the first layer finished with the solution. If the solution suc-
ceeds in correcting the synapse weight, then the adaptation
process ends; otherwise, the second layer updates the vari-
ables (VLEAK, VRFR, vg1, and vg2) and runs the adaptation
for the next round and so on.

3.1 Adaptive synapse (AS)

This work presents an adaptive synapse that mimics the LTP
and STP of biological synapses. These are established on the
CMOS memristor presented in Fig. 2. Transistors from M5 to
M12 perform the LTP, and the transistors from M1 to M4
perform the STP. M2 and M3 transistors work as feedback
circuits and control the voltage across M4. The M4 transistor
operates as a capacitor by tying together the source, drain,
and bulk. The voltage current characteristic of the proposed
memristor in shown Fig. 35 for 4 MHz frequency.

3.2 Neuron

There are various biological neuron models with numerous
properties. We look at the features required for our proposed
coincidence detection to work as a neural network time de-
lay with an inverse relationship between the magnitude of
incoming charge and the time to the first spike. These are
essential features provided with any spiking neuron model.

To meet the requirements of this work with a lower num-
ber of adaptation variables and transistors, we modified and
removed the unnecessary components of the LIF neuron (In-
diveri, 2003) for this work. Indiveri’s LIF analog neuron
model has elements for setting an arbitrary refractory period,
spike frequency adaptation, modulating the neuron’s thresh-
old voltage, positive feedback, membrane capacitor, a tran-
sistor for a current leak, and a digital inverter for generat-
ing a pulse. This neuron circuit appears to be very flexible;
the focus of this design was to mimic biological neurons. It
results in many adaptation variables and a high number of
transistors.

The element for modulating the neuron’s threshold volt-
age in the Indiveri model is used to control the threshold
voltage of the neuron. On the other hand, the threshold pro-
vided by CMOS transistors (M3 and M4) obtains the desired
results for this work. Therefore, this element is removed to
minimize the number of adaptation variables and transistors.
The element for spike frequency adaptation is used to control
the frequency of the spikes for continuous inputs (or for the
same signal). However, this work does not require a spike fre-
quency adaptation property. This work looks at the features
required for our proposed coincidence detection to function
as a neural network time delay with an inverse relationship
between the magnitude of the incoming charge and the time
to the first spike. Therefore, this element is removed to min-
imize the number of adaptation variables and transistors.

The element of positive feedback increases the potential
membrane speed, leading to reaching the neuron threshold in

Figure 3. Proposed circuit of analog leaky integrate-and-fire (LIF)
neuron (sizes of the transistors are in µm). It is simplified from In-
diveri’s neuron by removing the unnecessary components for the
target of this work. It is used to implement adaptive coincidence
detection (ACD) block.

a shorter time. Therefore, it makes the inverter (M3 and M4)
switch rapidly and reduces the power dissipation. However,
this affects the features of this work, which is an inverse re-
lationship between the magnitude of the incoming charge
and the time to first spike. Therefore, this element is also
removed.

Our proposed neuron circuit has 16 transistors and two
variables compared to the Indiveri model, which has 20 tran-
sistors and four variables. Therefore, this simplifies our pro-
posed neuron’s adaptation process compared to the adapta-
tion with four variables for the Indiveri model. This results
in a speed gain of eight, a power consumption decrease by
20 %, an area decrease by 30 %, and a spike rate increase by
8 times, compared to the Indiveri model.

The modified model circuit shown in Fig. 3. The mem-
brane capacitor C is charged by the current from the
synapses. When the voltage of the capacitor is higher than the
crossing point voltage of the inverter (M3 and M4) transis-
tors, it triggers the second inverter (M6 and M7). The VRFR
controls the pulse width of the neuron output and the in-
verter (M6 and M7), which is used to produce the output and
discharge the capacitor, respectively.

Meanwhile, the M1 is leaking the capacitor based on the
VLEAK value. The transistor sizes are tuned during the design
process of ASRC to produce the spike order codes that still
function correctly against the process, voltage, and tempera-
ture (PVT) corners listed in Table 3. The transistors sizes are
shown in Fig. 3.

3.3 Adaptive coincidence detection (ACD)

The primary portion of the ASRC is the ACD implemented
by one neuron and two adaptive synapses, as presented in
Fig. 4. In the prior implementation of the ACD, the weight of
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Figure 4. The proposed adaptive coincidence detection (ACD) scheme is implemented with two adaptive synapses (ASs) and one neuron.
The control circuit implements the self-adaptive method for the weights of the synapses. The transmission gates T1–T5 are used to connect
and disconnect the ASs during the adaptation of their weights.

the synapse was adaptive by an up–down counter (Abd and
König, 2021a). The adaptation time increases exponentially
with the increase in the synapses number. In this work, we
have introduced a self-adaptive method for the synapses. It
adapts the weights of the synapses of all ACDs at the same
time. The adaptation time is exponentially decreased com-
pared with the previous work.

The proposed ASRC is implemented by 16 ACDs, as
shown in Fig. 5. The ASRC has two symmetrical parts, i.e.,
the upper and lower parts. The upper part ACDs produce the
ASRC outputs from Out1 to Out8, while the lower part ACDs
produce the ASRC outputs from Out9 to Out16. The ASRC
has two inputs, namely in1 and in2. The in1 in the upper part
is connected directly to the ACDs’ first input, while the in2 is
passed through the ACDs, one by one, representing the upper
part’s delay chains. The lower part, in2, is connected directly
to the ACDs’ first input, while the in1 passed the ACDs one
by one, representing the lower part’s delay chains.

The time of the delay chain unit is determined by the time
of the neuron fire, which is controlled by the input current
of the neuron. Nevertheless, the input current of the neuron
is adapted by synapse weight. Consequently, the synapses’
weights adapt to the unit delays throughout the delay chain
despite deviations occurring.

3.4 Operation modes of ASRC

The ASRC has two operation modes; the first is the normal
mode, when both synapses of the ACD are connected to the
neuron. The second mode is the adaptation mode and has
two states. The first state is for adapting the first synapse’s
weight, where only the first synapse is connected to the neu-
ron, as indicated in Fig. 6. The second state adapts the sec-
ond synapse’s weight, where only the second synapse is con-
nected to the neuron, as indicated in Fig. 6. In the adaptation
mode, the transmission gate (T8) connects in1 to in2, as dis-
played in Fig. 6. Therefore, in1 is used to adapt the weights
of the synapses. In the first state of the adaptation mode, the

first synapses of all ACDs are connected in parallel (one col-
umn) to the in1 and adapt their weight simultaneously. In the
second state of the adaptation mode, the second synapses of
all ACDs are connected in parallel to the in1 and adapt their
weights simultaneously. After the adaptation process is fin-
ished, the T8 is turned off, as shown in Fig. 6.

3.5 Adaptation process

The weight of the synapse determines the time of neuron fire.
Therefore, the timing of the neuron’s firing is proportional to
the weight of the synapse. There are two pulses that check
the time of neuron fire before and after the rising edge of
the neuron pulse, P _d pulse, and in1 pulse, respectively. The
output of the first AND gate (left) presented in Fig. 9 should
be 0 if the neuron’s output did not shift to the left, as shown
in Fig. 10. The output of the second AND gate (right), shown
in Fig. 9, should be 1 if the neuron’s output did not shift to
the right, as shown in Fig. 10. The D flip-flop 1 (DFF1) and
DFF2 save the first and second AND gates’ outputs (left and
right shift). The first and second counters adapt and save the
weights of the first and second synapses, respectively. The
Clear input is used for several tasks. First, it is used to clear
the DFF1 and DFF2 outputs and prepare them for the next
weight check. Second, it is used to discharge the neuron ca-
pacitor. Third, it is used as a clock of the counter after in-
verting it. The multiplexer is used to pass the output of the
AND3 gate at the specific time by setting the Read signal
(selected from the multiplexer) to zero. The selection signal
of the multiplexer becomes active after finishing the com-
parison of the signals (P _d, in1, and Out_N) and saving the
results (left and right) on the DFF1 and DFF2.

The reset in the control circuit, indicated in Fig. 9, is used
to reset the DFF3, DFF4, and DFF5. The Reset signal acti-
vates the adaptation mode. The DFF3 and DFF4 are used to
save the adaptation weights of the first and second synapses.
The output Adaptive signal of the first NOR gate is utilized
to indicate the ACD is under self-adaptation when it is 0.
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Figure 5. Proposed scheme of adaptive spike-to-rank coding (ASRC). Adaptive coincidence detection (ACD) is the essential block of the
ASRC. The ASRC generates spikes that order codes according to the difference in time amount between the two spikes at its inputs.

3.5.1 Adaptation mode: first state (adapting the weight
of the first synapse)

The flow diagram of the ASRC models is displayed in
Fig. 11. The adaptation starts by resetting the control cir-
cuit, and it starts adapting the weight of the first synapse.
After the reset, counters are zero, and the Adaptive, Start3,
and Start1_inv signals are 0, while the Start1 and Start2 sig-
nals are 1. These signals control the transmission gates (T1,
T2, T3, T4, T5, T6, and T7), as illustrated in Figs. 4 and 9.
Therefore, the T4 and T1 are on while T2, T3, and T5 are off.
They connect the neuron to the first synapse and disconnect
the second synapse. T1 passes the in1 to the first synapse.
T2 disconnects in1 from the second synapse, and T3 discon-
nects in2 from the second synapse, as shown in Fig. 6. The
Enable of the up_counter_1 and up_counter_2 are 1 and 0,
respectively. T6 is on, and T7 is off. T6 connects the multi-
plexer output to the DFF3 clock, and T7 disconnects it from
the DFF4 clock.

At the start of the adaptation process, a pulse signal is ap-
plied on the Clear input to clear the DFF1, DFF2, and dis-
charge neurons capacitors and increase the counter_1 by one.
Next, pulses are applied to the in1 and P_d inputs. Then, the
neuron spike is checked by AND1 and AND2 gates to see if
it has shifted to the left or right, and the result will be saved
on DFF1 and DFF2, respectively. The negative output of the

DFF1 and theQ output of DFF2 pass through the AND3 gate
to the multiplexer.

After that, if the AND3 output gate is 0, the neuron’s out-
put shifts to the right or left, which means that the weight
of the synapse did not reach the target weight. As a result,
the adaptive weight of the first synapse continues, and the
output of the AND3 gate passes through the multiplexer and
transmission gate (T6) to the clock of the DFF3. In addition,
Start1_inv and Start1 remain 0 and 1, respectively. Also, the
transmission gate (T6) keeps connecting the output of the
multiplexer to the DFF3. Moreover, the up_counter_1 En-
able input remains 1, and the counter continues increasing
with the next pulse on the Clear input. Furthermore, Start3
remains 0 with the next pulse on the in1, and the output of
the multiplexer does not connect to the DFF4.

The ASRC remains in the first state of the adaptation
mode, as shown in Fig. 6, until we reach the first synapse
target weight. It makes the neuron fire between the P _d and
in1 signals, and consequently, the AND3 gate becomes 1.
After that, the outputs of DFF3 Start1_inv and Start1 be-
come 1 and 0, respectively. As a result, they disconnect
the multiplexer output from the DFF3 by turning T6 off.
Also, they stop changing the synapse weight by disabling
the up_counter_1, which means the adaptive weight of
the first synapse is finished. In addition, they enable the
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Figure 6. This figure shows that the ASRC has a normal and adaptation mode. In the normal mode, both synapses of the ACD are connected
to the neuron. The switching state of the transmission gates in the normal mode, T1, T3, T4, and T5, are on, and T2 and T8 are off. The
adaptation mode has two states. Only the first synapse is connected to the neuron in the first state. The switching state of the transmission
gates in the first state of the adaptation mode, T1, T4, and T8, are on, and T2, T3, and T5 are off. Only the second synapse is connected to the
neuron in the second state. The switching state of the transmission gates in the second state of the adaptation mode, T2, T5, and T8, are on,
and T1, T3, and T4 are off.

Figure 7. Neuromorphic signal conditioning architecture. The spiking neural analog-to-digital data conversion (SN-ADC) has a two-
part sensor-to-spike converter (SSC) and adaptive spike-to-digital converter (ASDC). The ASDC consists of adaptive spike-to-rank cod-
ing (ASRC), a winner-take-all (WTA) circuit with memory, and a circuit to control the variables VLEAK, VRFR, vg1, and vg2. The ASRC
has 16 adaptive coincidence detections (ACDs), and every ACD has two adaptive synapses (ASs) and one neuron (N), as well as a circuit for
the adaptive algorithm.
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Figure 8. This figure shows the adaptation work of the first layer. The weight of the first synapse of the first ACD is adapted until it reaches
the target weight. The variables VLEAK, VRFR, vg1, and vg2 of the second layer are fixed to 700 mV, 800 mV, 1.8 V, and 220 mV, respectively.
Circuit conditions are Vdd = 3.3 V, and temperature is 27 ◦C and on the nominal process. The value can be different, depending on the present
perturbation of the regarded corner.

Figure 9. The control circuit of adaptive coincidence detection (ACD). It implements the self-adaptive method for the synapses’ weights
and saves the synapses’ weights on the up_counters.

up_counter_2. Moreover, they turn T1, T3, and T4 off and T2
and T5 on, as shown in Fig. 6, which leads to shifting the
ASRC adaptation mode from the first state to the second
state. Furthermore, Start3 becomes 1 with the next in1 pulse,

connecting the multiplexer output to the DFF4 clock by turn-
ing T7 on.
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Figure 10. The timing chart of adaptation synapse. There are two
pulses that check the time of the neuron fire before and after the
rising edge of the neuron pulse, i.e., P_d pulse and in1 pulse, re-
spectively. If the neuron fires at a specific time, the right and left
signals are 1 and 0. The Read signal is used to read after a specific
time.

3.5.2 Adaptation mode: second state (adapting the
weight of the second synapse)

Similarly, the second synapse is adapted in the same way that
the first synapse was adapted. Equally, the weight continues
to change until the AND3 output becomes 1, which passes
through multiplexer and T7 to the DFF4 clock. The nega-
tive output of DFF4 Start2 becomes 0. Then the output of the
NOR gate, denoted Adaptive in Fig. 6, obtains the value 1. As
a result, the Adaptive output shifts the ASRC from the adap-
tation mode second state to the normal mode by turning T1,
T3, T4, and T5 on and T2 off, as shown in Fig. 6.

4 The experimental results

4.1 Adaptive coincidence detection (ACD)

The proposed ACD mimics three different states that gener-
ally occur in the biological neural systems, as displayed in
Fig. 12. The first state produces an output spike if the input
spikes occur at the same time. The second state produces an
output spike if the input spikes occur slightly delayed. How-
ever, the output of the second state will produce a spike with
a delay in contrast to the first state without a delay. The third
state exhibits no spike when the two input spikes arrive with
considerable delay. These states are the basis of acoustic lo-
calization in humans (Tavolga et al., 2012).

4.2 First layer

In this layer, the synapses’ weights are automatically
adapted. For the first layer, the up-counters start searching
for the solution from zero until they find the solution. In or-
der to show the adaptation of this layer, the variables VLEAK,
VRFR, vg1, and vg2 of the second layer are fixed to 700 mV,

800 mV, 1.8 V, and 220 mV, respectively. Figure 8 shows how
the first layer adapts the weight of the synapse until it reaches
the desired weight. In Fig. 8, the y axis represents the con-
ductance weight of the synapse, and the x axis shows the
input pulse. It shows the adaptation of the first synapse of
the first ACD. The results of the adaptation weights values of
other synapses are shown in Table 5.

Figure 25 shows the difference between the desired and the
actual value of the first synapse for the first ACD. The y axis
represents an error. In the beginning, the error is 85.611 µS.
It decreases with the passage of iterations until it reaches
the desirable weight, with a residual error of 0.601 µS after
63 cycles. The number of cycles required by the adaptation
process depends on the PVT conditions, while the upper limit
of the number of cycles is 256.

4.3 Second layer

In the current work for the second layer, we do several man-
ual iterations until we find the nominal solution, and this ap-
proach is working predictably. In the future, we will use ma-
chine learning or design a circuit to automate the second level
of adaptation, so that the voltage values are no longer man-
ually found and vulnerable in that sense. However, it will be
instance specific and dynamically adapted in the wake of the
automated correction procedure. Therefore, it will have in-
vulnerability to process deviations and drift phenomena. The
principle of the second adaptation layer is to fit the full-scale
window of the 8 bit counter to the border of variation re-
lated to the PVT condition. In this way, the counter step sizes
will be minimized, reducing the error representing the dif-
ference between the targeted value and the achieved level by
the counter adaptation. It might be possible to think that one
can fix the value of vg1 and vg2 to the maximum expected
drift. However, this will increase the counter step size; hence,
the error will be more significant for less PVT drift. In short,
the purpose of the second adaptation layer is to smooth the
counter step, where the latter one does the main optimization.

Figures 26–29 show the effect of vg1 and vg2 on the range
of synapse weight, where vg1 influences the first synapse of
all ACDs and vg2 has a same influence on the second synapse
of all ACDs. However, those ranges will have the same num-
ber of steps in the first layer.

Synaptic LTP behaviors in Figs. 26–29 are achieved by
256 input pulses applied to the 8 bit counter, whose outputs
control the 8 bit binary digitized transistor of the synapse.
The LTP displays 256 states, and the LTP stays permanently,
as long as the weight addressed by the counter does not
change.

The variables VRFR and VLEAK affect the target weight of
the synapse. In order to show their effect on the weight cor-
rection, we have fixed other variables and changed them, as
shown in Figs. 30–34.
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Figure 11. Flow diagram of the adaptation layers’ hierarchy. The first layer represents the adaptation work of adaptive ACD. The
up_counter_1 and up_counter_2 save the 8 bit binary digitized transistor of the first and second synapses, respectively. Start1, Start1_inv,
P_d, Start2, Start3, Adaptive, and Clear are signals used inside the control circuit of adaptive coincidence detection (ACD).

Figures 30 and 31 show the effect of the VRFR on the tar-
get weight. The target weight changed from 54.5 to 64 µS by
changing VRFR from 600 to 800 mV.

Figures 32, 33, and 34 show the effect of the VLEAK on the
target weight. The target weight changed from 64 to 76.5 µS
by changing VLEAK from 500 mV to 1.5 V.

4.4 Adaptive spike-to-rank coding (ASRC)

The ASRC will tend to generate spike orders that reflect the
difference in time amount between the two spikes at its in-
puts. Spike order codes are coding schemes that use the pat-
tern of spikes across a population of neurons. It depends on
the order in which the neurons fire (Thorpe and Gautrais,
1998; Thorpe et al., 2001).

The proposed ASRC can achieve up to 16 different output
spike orders. The time difference steps between in1 and in2
are from −120 to 120 ns in steps of 15 ns. Figure 13 dis-
plays the first eight time intervals where in2 precedes in1.
Figure 14 displays the second eight time intervals where in1
precedes in2.

The implemented ASRC realizes up to 16 different output
spike orders, as illustrated in Tables 1 and 2. It represents
4 bits in the binary code, with a sample rate of 2.85 × 106

samples per second. The operational capability of the ASRC
under static and dynamic variations is proved by simulation-
based validation under extreme process, voltage, and temper-
ature (PVT) corners determined by the used X-FAB technol-
ogy in this paper (Technology Xfab, 2022). The orders of the
output spikes vary with PVT, as shown in Fig. 15. Figure 15
shows the simulation of ASRC rank coding, with in1 preced-
ing in2 for corner no. 2 in Table 3. It shows that the spike
order codes vary with PVT, where four output spikes orders
have been changed. Figure 15 shows the change in one pos-
sible corner, and other corners are listed in Table 3 for gen-
eralization. By adapting the variables vg1, vg2, VLEAK, and
VRFR, shown in Table 3, together with running the automatic
adaptation of the first layer, the deviations are compensated
for in every corner, where the adaptation tunes the time of
neuron fire in the range between 2.3 and 9.3 ns and a resolu-
tion of 0.027 ns. The output spike orders reset to their origi-
nal statuses, as shown in Fig. 14. The capability of measur-
ing time intervals between in1 and in2 is raised by cascading
more ACDs. Every ACD adds 15 ns to the delay chain and
represents the least significant bit (LSB). Therefore, a cor-
responding number of ACDs is required to measure a maxi-
mum time interval (Tmax).
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Figure 12. Simulation of adaptive coincidence detection (ACD). It shows the concept of ACD. The timing of the generated output spike
depends on the difference between the input pulses. When there is a considerable difference, then there will be no spike at the output.

Table 1. ASRC output spike orders for the first eight steps.

Steps 1 2 3 4 5 6 7 8

Binary output 0000 0001 0010 0011 0100 0101 0110 0111
Out1 1 1 1 1 1 1 1 1
Out2 2 2 2 2 2 2 2 3
Out3 3 3 3 3 3 3 4 5
Out4 4 4 4 4 4 5 6 7
Out5 5 5 5 5 6 7 8 9
Out6 6 6 6 7 8 9 10 11
Out7 7 7 8 9 10 11 12 13
Out8 8 9 10 11 12 13 14 15
Out9 9 8 7 6 5 4 3 2
Out10 10 10 9 8 7 6 5 4
Out11 11 11 11 10 9 8 7 6
Out12 12 12 12 12 11 10 9 8
Out13 13 13 13 13 13 12 11 10
Out14 14 14 14 14 14 14 13 12
Out15 15 15 15 15 15 15 15 14
Out16 16 16 16 16 16 16 16 16

Number of ACDs=
Tmax

TLSB
(1)

Number of levels of ADC= 2NOB (2)

Number of levels of SN-ADC=
Tmax

TLSB
. (3)

Therefore from Eqs. (1) and (2), we determine the following:

The number of ACDs= 2NOB. (4)
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Figure 13. The simulation of adaptive spike-to-digital converter (ASRC) rank coding, with in2 preceding in1. It represents the outputs of the
ASDC at circuit conditions, where Vdd is 3.3 V, and temperature is 27 ◦C and on the nominal process. They are coded by spike order codes.
Every column represents a different code and reflects the difference in time amount between the two spikes at inputs.

The number of bits (NOB) is computed as follows:

NOB=
ln(number of ACDs)

ln2
. (5)

The time difference between the two input spikes of ASRC
is changed from 120 to −120 ns for the current design. Fig-
ure 16 shows the transfer function of our SN-ADC, where
the vertical axis represents the output of SN-ADC, and the
horizontal axis represents the time difference between in2
and in1. There is an equivalent binary code at the SN-ADC
output for each time interval in the SN-ADC input. The ideal
step width of the SN-ADC should be 1 LSB. The variance in
the step width between the ideal and the actual value is de-
fined as the differential non-linearity (DNL) error. The inte-
gral non-linearity (INL) is the maximum deviation of the ac-
tual curve from the ideal curve (Henzler, 2010b). We slowly
changed the time difference between in1 and in2 by a step
of 0.01 LSB (0.15 ns) to measure the DNL. Figure 16 shows
the transfer function of our SN-ADC under corner case no. 5
in Table 3. It has 10 steps; therefore, there are six miss-
ing codes (number of missing codes – NOMCs). The DNL

and INL are 0.88 and 4 LSB, respectively, as illustrated in
Fig. 16. By adapting the variables vg1, vg2, VLEAK, and
VRFR, as shown in corner no. 5 in Table 3, together with run-
ning the automatic adaptation of the first layer, the deviations
are compensated, as shown in Fig. 17. After adaptation, the
SN-ADC parameters NOMC, DNL, and INL are no missing
code (Henzler, 2010b), i.e., 0.22 and 0.4 LSB, respectively,
as shown in Table 4. The simulation test is performed for the
remaining corners given in Table 3.

4.5 Adaptation time

Due to the hardware restrictions of our previous paper, which
presents a first-cut and not-too-practical solution, we used
an up–down counter to control the weight of the synapse,
and the ACDs did not connect in parallel for the adaptation.
We started searching for the synapse weight from zero (for
the up-counter) or maximum (for the down-counter) until we
reached the target weight.
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Figure 14. The simulation of ASRC rank coding, with in1 preceding in2. It represents the outputs of the ASDC at circuit conditions, where
Vdd is 3.3 V, and temperature is 27 ◦C and on the nominal process. They are coded by spike order codes. Every column represents a different
code and reflects the difference in time amount between the two spikes at inputs.

The theoretical value of the maximum adaptation time is
equal to (1/fclock)× 2m× 0.5× half the number of ACDs.
m=N ×X, where N is the number of bits of the vari-

ables, X is the number of variables, and 0.5 represents half
the number of the counter steps because of the up–down
counter. The adaptation time for 4 bit was 15:27 h, and the
number of ACDs increases with the number of bits, as shown
in Eq. (4). Therefore, the adaptation time will become infea-
sible for 12 bits of a practical state-of-the-art ADC, for ex-
ample.

In this work, we have two layers of the adaptation. In
the first layer, the adaptation time is limited by the state’s
synapse weight and the input pulse frequency. The weight is
adapted by the input pulse with a frequency of 5 MHz. The
first synapse of all ACDs is adapted simultaneously; there-
fore, the adaptation time of all first synapses is 256 mul-
tiplied by 0.2 µs, which equals 51.2 µs. Equally, the second
synapses take the same adaptation time. As a result, the theo-
retical value of the maximum adaptation time of all synapses
is 102.4 µs so that, depending on the present perturbation
of the regarded corner, the value can be much less than

102.4 µs. The mean value over the 3σ corner process vari-
ation is 34.8 µs, and the maximum is 77.2 µs. The adaptation
time will not increase with the synapse number because all
the synapses are adapted simultaneously. Consequently, ev-
ery change in the variables VLEAK, VRFR, vg1, and vg2 has to
wait for 102.4 µs to make the following change. The theoret-
ical value of the maximum adaptation time of our proposed
scheme is (1/fclock)× 2m.

Each variable, VLEAK, VRFR, vg1, and vg2, has sizes of
5 bits. Therefore, the theoretical value of the maximum adap-
tation time of our proposed scheme is as follows:

= 102.4µs× 25× 4= (102.4× 220)µs = 107.3s.

However, this time will not increase with the number of
ACDs. Therefore, for 12 bits, the adaptation time will remain
the same.

5 Rank binary code conversion (RBCC)

The output of the ASRC is sparse rank coded spikes. An
ADC chip would need a lot of output pins to read the output
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Figure 15. The simulation of ASRC rank coding, with in1 preceding in2 for corner no. 2 in Table 3 at circuit conditions, where Vdd is 3.6 V,
temperature is −40 ◦C, and the process corner is the WO (worst-case one). It shows that the spike order codes vary with PVT.

Figure 16. The transfer function of SN-ADC for both ideal and before adaptation at corner no. 5 in Table 3, at the following circuit
conditions: Vdd is 3 V, temperature is 85 ◦C, and the process corner is the WO (worst-case one). Before adaptation, the SN-ADC parameters
NOMC, DNL, and INL are six missing codes, i.e., 0.88 and 4 LSB, respectively.
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Table 2. ASRC output spike orders for the second eight steps.

Steps 9 10 11 12 13 14 15 16

Binary output 1000 1001 1010 1011 1100 110 1110 1111
Out1 2 3 4 5 6 7 8 9
Out2 4 5 6 7 8 9 10 10
Out3 6 7 8 9 10 11 11 11
Out4 8 9 10 11 12 12 12 12
Out5 10 11 12 13 13 13 13 13
Out6 12 13 14 14 14 14 14 14
Out7 14 15 15 15 15 15 15 15
Out8 16 16 16 16 16 16 16 16
Out9 1 1 1 1 1 1 1 1
Out10 3 2 2 2 2 2 2 2
Out11 5 4 3 3 3 3 3 3
Out12 7 6 5 4 4 4 4 4
Out13 9 8 7 6 5 5 5 5
Out14 11 10 9 8 7 6 6 6
Out15 13 12 11 10 9 8 7 7
Out16 15 14 13 12 11 10 9 8

Figure 17. The transfer function of SN-ADC for both ideal and after adaptation at corner no. 5 in Table 3, at the following circuit conditions:
Vdd is 3 V, temperature is 85 ◦C, and the process corner is the WO (worst-case one). After adaptation, the SN-ADC parameters NOMC,
DNL, and INL are no missing code, i.e., 0.22 and 0.4 LSB, respectively.

of the ASRC. The current design of the ASRC has 16 out-
puts. It is possible to readout from the chip. However, 8 bits
and more ADC would have 2number of bits outputs, which is
more than feasible for a simple chip. Häfliger and Aasebø
(2004) presented an electronic circuit that encodes an array
of input spikes into a digital number. They performed the
rank order encoder by cascaded columns timing the WTA
circuits. However, that scheme consumes a massive area.

Kammara and König (2016) have designed a circuit that
converts the rank order code to digital numbers by one
column in the WTA circuit. It consumes a much smaller

area in comparison with the design in Häfliger and Aasebø
(2004). They used a mechanism to determine one spike after
the other by repeated sensor readout. Kammara and König
(2016) assumed that the sensor output did not change. How-
ever, this structure requires many measurements to take out
the rank codes.

In this work, we design a circuit that converts the rank or-
der code to digital numbers by one column of the WTA cir-
cuit without repeating sensor readout, as shown in Fig. 18.
The design in Häfliger and Aasebø (2004) used 7965 transis-
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Figure 18. Proposed ASDC and memory. The ASDC block generates a digital code and saves it in the memory, based on the time difference
between the spikes on its inputs. Every output of ASRC is connected to a single cell of the winner-take-all (WTA) circuit. There is a position
in the memory for every cell of the WTA to save its order among the other ASRC outputs.

Table 3. The performance of ASRC under worst-case process
corners, where Tmin is −40 ◦C, Tmax is +85 ◦C, VDD(typ) is
3.3 V, VDD(min) is −10 % VDD(typ), and VDD(max) is +10 %
VDD(typ). WS is the worst-case speed, WP is the worst-case power,
WZ is the worst-case zero, and WO is the worst-case one.

Corner Process Temp VDD vg1 vg2 V_leak V_ref
no. (V) (V) (V) (V)

1 TM Typical Typical 1.8 220 m 700 m 800 m
2 WO Min Max 1.8 220 m 700 m 800 m
3 WO Min Min 2.1 0 700 m 700 m
4 WO Max Max 1.8 200 m 700 m 750 m
5 WO Max Min 2 30 m 700 m 590 m
6 WP Min Max 1.8 750 m 700 m 750 m
7 WP Min Min 1.8 500 m 700 m 750 m
8 WP Max Max 1.8 500 m 700 m 750 m
9 WP Max Min 1.8 100 m 700 m 750 m
10 WS Min Max 1.8 100 m 700 m 820 m
11 WS Min Min 2.5 200 m 700 m 760 m
12 WS Max Max 2 200 m 700 m 760 m
13 WS Max Min 2.1 200 m 700 m 650 m
14 WZ Min Max 1.8 200 m 700 m 800 m
15 WZ Min Min 1.8 200 m 700 m 800 m
16 WZ Max Max 1.8 200 m 700 m 800 m
17 WZ Max Min 1.8 220 m 700 m 670 m

Table 4. The parameter values of SN-ADC before and after adap-
tation.

Parameters Before After
adaptation adaptation

NOMC 6 codes 0 codes
INL 4 LSB 0.4 LSB
DNL 0.88 LSB 0.22 LSB

Table 5. The achieved and targeted values of the synapses weight
when the variables VLEAK, VRFR, vg1, and vg2 of the second layer
are fixed to 700 mV, 800 mV, 1.8 V, and 220 mV, respectively.

The conductance of ACDs µS

First synapse Second synapse

Number Achieved Targeted Achieved Targeted
of ACDs weight weight weight weight

ACD1 85.01 85.611 93.23 93.64
ACD2 85.26 85.611 93.48 93.89
ACD3 85.26 85.611 93.48 93.89
ACD4 85.26 85.611 93.48 93.89
ACD5 85.26 85.611 93.48 93.89
ACD6 85.03 85.16 82.85 82.96
ACD7 85.03 85.16 91.23 92.21
ACD8 83.8 83.92 82.85 82.96
ACD9 85.03 85.16 91.23 92.21
ACD10 85.03 85.16 86.26 86.93
ACD11 85.03 85.16 91.23 92.21
ACD12 85.03 85.16 91.23 92.21
ACD13 85.03 85.16 91.23 92.21
ACD14 85.03 85.16 91.23 92.21
ACD15 84.05 84.53 83.07 83.48
ACD16 83.8 83.92 91.23 92.21

tors for 16 inputs, while in our work, we used only 352 tran-
sistors for 16 inputs.

Every output of ASRC is connected to a single cell in the
WTA circuit. There is a position in the memory for every
cell of the WTA to save its order among the other ASRC out-
puts. The schematic of the WTA is shown in Fig. 19. The
write outputs of the WTA cells are connected to the mem-
ory. They write the counter output on their position on the
memory when they change from zero to one.

The current design of the ASRC has 16 outputs. There-
fore, we have designed memory with the 16 address words, as
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Figure 19. The schematic of the winner-take-all (WTA). It is used
to determine the winner among the ASRC outputs.

shown in Fig. 20. Every address is located for one output of
the ASRC to save its order. The decoder is used to select the
address memory to read it. The inputs, Write_1 to Write_16,
are used to write on the memory, and they are connected to
the WTA cell write outputs (Write_1 to Write_16), respec-
tively. It is written on the address when its input (Write_1 to
Write_16) changes from zero to one.

All the outputs of the WTA cells are combined by an
OR gate, as shown in Fig. 18. The output of the OR gate is
connected to the clock of the counter. The counter increases
by one when the output of the OR gate changes from zero to
one. The WTA cells determine the winner among the ASRC
outputs. The first WTA cell that receives a spike on its in-
put (In_spike) declares itself the first winner. It passes the Vdd
to its output. This brings the output of the OR gate to one
and increases the counter from zero to one. Also, it brings its
write output to one, and this writes the output of the counter
(in this case, one) on its position on the memory, representing
its order among other ASRC outputs.

The buffer on the write output of the WTA circuit is used
to delay the counter output reading. It makes sure that the
counter was changed to a new value before reading it (in
this case, from zero to one). The OR gate output is sent back
through the inverter to the WTA cell input Clear_out, which
reset their outputs and brings the output of the OR gate back
to zero, making them ready to check the second winner. Se-
quentially, the cell that receives a spike declares itself the
second winner. It also changes its output to one. This brings
the write output and the output of the OR gate to one. Also,
it changes the counter output from one to two and saves its
value on its memory (in this case, two).

The circuit shown in Fig. 18 has the capability of distin-
guishing between the spikes that happen with a time differ-
ence of at least 3 ns. If two WTA cells are clocking the OR
gate at the same time, or less than 3 ns, then one of them will
have the wrong order among other ASRC outputs. In this
case, the adaptation variables vg1, vg2, VLEAK, and VRFR are
adapted to compensate for the deviation to recover the time

difference between the ASRC outputs spikes to more than, or
equal to, 3 ns.

Figure 21 shows the outputs spike orders of the ASRC
when two pulses are applied to the inputs of the ASRC in1
and in2 with a different time of 15 ns.

The ASRC outputs from out1 to out16 shown in Fig. 21
go to the WTA cells inputs from In_spike1 to In_spike16,
respectively, as shown in Fig. 18. The WTA cells produce
pulses with the same orders as the ASRC output orders, as
shown in Fig. 22. These orders are saved on the memory.
The data on the memory are read by changing the word ad-
dress, as shown in Fig. 22. The word addresses from 0 to 15
are located for Out1 to Out16, respectively. For example, the
word address 0 is located for Out1, and it saved its order, in
this case, as 2. The word address 1 is located for Out2, and it
saved its order, in this case, as 4, as shown in Fig. 22.

The circuit in Fig. 18 is tested under a temperature of 85 ◦C
by applying two pulses on the in1 and in2, with a time differ-
ence of 15 ns. Also, the ASRC produces output spikes with
similar orders, as shown in Fig. 21. In addition, the output
orders of the WTA cells are shown in Fig. 23. They have
different orders from Fig. 22, although their inputs have the
same orders. This happens because the time difference be-
tween Out6 and Out15 of the ASRC becomes less than 3 ns
at 85 ◦C. The WTA Out2_6 changes the OR gate’s output
from zero to one, and this output goes back through the in-
verter to reset the outputs of all WTA cells. It needs 3 ns to
finish the reset process. Also, since the WTA Out2_15 comes
during the process, this output does not generate a pulse to
increase the counter, and the counter is increased by the fol-
lowing winner (Out2_7). Also, since the Write_15 output of
the WTA cell remains zero, its word address remains zero
too, as shown in Fig. 23.

The adaptation variables vg1, vg2, VLEAK, and VRFR are
adapted to compensate for the deviation that backs the time
difference between the ASRC outputs spikes to more than
3 ns. They reset the output spike orders of the WTA cells to
their original orders, as shown in Fig. 22.

We have used the algorithm in Fig. 24 to decode the rank
codes in Figs. 13 and 14 to binary codes.

6 Conclusions and future work

In this work, we proposed the implementation of the ASDC,
which is the prime segment of the adaptive SN-ADC. The
ASDC has two parts, namely the ASRC and the RBCC. A
novel ACD based on a CMOS memristor is proposed to build
the ASRC. We have introduced a self-adaptive method to
adapt all the ACDs simultaneously. This leads to an aggres-
sive decrease in the adaptation time of the ASRC. In con-
trast to the our previous implementation, the adaptation time
would not be changed with the ACDs numbers where the
maximum adaptation time is 107.3 s.
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Figure 20. Schematic of the memory. It is used to save the order of the ASRC outputs. The decoder is used to select the word address.

Figure 21. Simulation of the ASRC, with a difference of 15 ns between in1 and in2. They are coded by spike order codes.
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Figure 22. Simulation of the WTA and memory. The terms out2_1 to out2_16 represent the outputs of the WTA cells. The decoder changes
the address of the memory. The data represent the order of the outputs of the WTA cells, which are saved in the memory.

We have built the SN-ADC with two layers of the adapta-
tion hierarchy. The first layer of the adaptation hierarchy is
designed and presented in this work. In this layer, the adapta-
tion circuit automatically adapts the synapses’ weight and re-
duces the optimization problem to only four variables. Those
four variables in the current stage of development of our de-
sign have been adapted manually as a second layer of the
adaptation hierarchy, where the first layer depends on the
second layer variables’ values. Also, additional ACDs can in-
crease the capability of measuring time intervals between in1
and in2. The number of bits for the current stage of devel-
opment is 4 bits. The INL, DNL, and NOMC are 0.4 and
0.22 LSB and no missing code, respectively, from a perfor-
mance parameter perspective. These parameters change with
deviations, and the adaptation resets them to the best possible
values. In addition, we introduced the RBCC circuit that can
convert the output of the ASRC rank orders codes to the dig-
ital codes, and it has the capability of distinguishing between
the spikes that happen with a time difference of 3 ns. From
the energy consumption perspective, when there is no spike,
the consuming energy of the ACD is 25 pJ per 1 µs; however,
when there is a spike, it consumes 51 pJ per spike. On the
other hand, the consuming energy of ASRC is 1.212 nJ per
conversion. From the speed perspective, the conversion time

is 350 ns for the ASRC. Finally, the proposed SDC is im-
plemented utilizing X-FAB 0.35 µm CMOS technology. We
plan to raise the resolution and design the remaining parts of
the spiking neural SN-ADC in future work. We will develop
an SSC unit which is essential for the presented work. More-
over, our future investigation intends to consider closed loops
for synaptic adaptation, without bulky conventional digital
components/units, to improve the next design generations by
reducing sensitivities and introducing fault tolerance.

After chip fabrication, the adaptation process is mainly re-
quired to compensate for the static process variation. In con-
trast to costly trimming or calibration steps in the wake of
the fabrication process sequentially for each separate sample
chip, here, each chip self-adapts in place, i.e., all manufac-
tured chips will adapt concurrently. Later on, the adaptation
can/should be activated to cope with the dynamic variation
or better drift effect, particularly the temperature drift, and
aging or other sources of influence, which are usually chang-
ing on a moderate timescale and need less frequent updates.
The overall sampling rate of the ADC is 2.85 MHz. After the
initial static compensation by adaptation, the adaptation for
dynamic effects can be executed either by interleaving con-
tinuously, with the conversion going on at its full rate but
with possibly compromised accuracy, or with an interrupted
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Figure 23. Simulation of the WTA and memory at 85 ◦C. The terms out2_1 to the out2_16 represent the outputs of the WTA cells. The
decoder changes the address of the memory. The data represent the order of the outputs of the WTA cells, which are saved in the memory.

Figure 24. Algorithm for decoding rank codes. It is used to decode the rank codes to binary codes.
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Figure 25. This graph shows the error between the desired and the actual value of the first synapse of the first ACD. The variables VLEAK,
VRFR, vg1, and vg2 of the second layer are fixed to 700 mV, 800 mV, 1.8 V, and 220 mV, respectively. Circuit conditions are Vdd of 3.3 V,
and temperature equals 27 ◦C and on the nominal process.

Figure 26. The synaptic weight behavior LTP at vg1 equals 0 V, which is achieved by 256 input pulses applied to the 8 bit counter, whose
outputs control the 8 bit binary digitized transistor of the synapse. Circuit conditions are Vdd of 3.3 V, and temperature equals 27 ◦C and on
the nominal process. The vg2 has a same influence on the second synapse of ACD.
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Figure 27. The synaptic weight behavior LTP at vg1 equals 500 mV, which is achieved by 256 input pulses applied to the 8 bit counter,
whose outputs control the 8 bit binary digitized transistor of the synapse. Circuit conditions are Vdd of 3.3 V, and temperature equals 27 ◦C
and on the nominal process. The vg2 has a same influence on the second synapse of ACD.

Figure 28. The synaptic weight behavior LTP at vg1 equals 1 V, which is achieved by 256 input pulses applied to the 8 bit counter, whose
outputs control the 8 bit binary digitized transistor of the synapse. Circuit conditions are Vdd of 3.3 V, and temperature equals 27 ◦C and on
the nominal process. The vg2 has a same influence on the second synapse of ACD.
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Figure 29. The synaptic weight behavior LTP at vg1 equals 1.5 V, which is achieved by 256 input pulses applied to the 8 bit counter, whose
outputs control the 8 bit binary digitized transistor of the synapse. Circuit conditions are Vdd of 3.3 V, and temperature equals 27 ◦C and on
the nominal process. The vg2 has a same influence on the second synapse of ACD.

Figure 30. Target weight at VRFR equal to 600 mV, vg1 and vg2 equal to 1 V, and VLEAK equal to 700 mV. Circuit conditions are Vdd of
3.3 V, and temperature equals 27 ◦C and on the nominal process.
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Figure 31. Target weight at VRFR equal to 800 mV, vg1 and vg2 equal to 1 V, and VLEAK equal to 700 mV. Circuit conditions are Vdd of
3.3 V, and temperature equals 27 ◦C and on the nominal process.

Figure 32. Target weight at VLEAK equal to 500 mV, vg1 and vg2 equal to 1 V, and VRFR equal to 800 mV. Circuit conditions are Vdd of
3.3 V, and temperature equals 27 ◦C and on the nominal process.
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Figure 33. Target weight at VLEAK equal to 1 V, vg1 and vg2 equal to 1 V, and VRFR equal to 800 mV. Circuit conditions are Vdd of 3.3 V,
and temperature equals 27 ◦C and on the nominal process.

Figure 34. Target weight at VLEAK equal to 1.5 V, vg1 and vg2 equal to 1 V, and VRFR equal to 800 mV. Circuit conditions are Vdd of 3.3 V,
and temperature equals 27 ◦C and on the nominal process.

J. Sens. Sens. Syst., 11, 233–262, 2022 https://doi.org/10.5194/jsss-11-233-2022



H. Abd and A. König: Design of a CMOS memristor-based self-adaptive spiking ADC 259

Figure 35. The voltage current characteristics of the proposed memristor for 4 MHz. Circuit conditions are Vdd of 3.3 V, and temperature
equals 27 ◦C and on the nominal process.

or slowed down measurement interleaving with a repeated
complete adaptation in one go. A tradeoff of the sampling
rate and accuracy is possible by this adaptive spiking sen-
sor electronics concept. In future work, we will extend the
adaptation concept to a completely automated adaptation and
conceive a physical implementation of the proposed adaptive
spiking ADC to validate the simulation results by measure-
ments.
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