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Abstract. Bees are recognized as an indispensable link in the human food chain and general ecological system.
Numerous threats, from pesticides to parasites, endanger bees, enlarge the burden on hive keepers, and frequently
lead to hive collapse. The Varroa destructor mite is a key threat to bee keeping, and the monitoring of hive
infestation levels is of major concern for effective treatment. Continuous and unobtrusive monitoring of hive
infestation levels along with other vital bee hive parameters is coveted, although there is currently no explicit
sensor for this task. This problem is strikingly similar to issues such as condition monitoring or Industry 4.0
tasks, and sensors and machine learning bear the promise of viable solutions (e.g., creating a soft sensor for the
task). In the context of our IndusBee4.0 project, following a bottom-up approach, a modular in-hive gas sensing
system, denoted as BeE-Nose, based on common metal-oxide gas sensors (in particular, the Sensirion SGP30
and the Bosch Sensortec BME680) was deployed for a substantial part of the 2020 bee season in a single colony
for a single measurement campaign. The ground truth of the Varroa population size was determined by repeated
conventional method application. This paper is focused on application-specific invariant feature computation
for daily hive activity characterization. The results of both gas sensors for Varroa infestation level estimation
(VILE) and automated treatment need detection (ATND), as a thresholded or two-class interpretation of VILE,
in the order of up to 95 % are presented. Future work strives to employ a richer sensor palette and evaluation
approaches for several hives over a bee season.

1 Introduction

Major issues from environmental pollution to invasive
species are threatening our ecological system and the hu-
man food supply. Insects – honey bees in particular – play
a decisive role (e.g., for pollination) in maintaining this sys-
tem. The Varroa mite is a parasite that poses a major threat
to bee keeping and is the cause of many bee colony losses.
The monitoring of the Varroa infestation level is one im-
portant task of conventionally operating bee keepers. Al-
though there is a community practicing treatment-free bee
keeping (Hudson and Hudson, 2020) or chemical-free al-
ternatives like thermal treatment (Wimmer, 2020), the ma-
jority of bee keepers follows standard treatment practice
(e.g., employing formic acid) and needs to know the right

time to start treatment based on the hive infestation level.
In general, access to information on the current hive in-
festation level without having to disturb the bees would be
of high value, independent of the treatment method. Sen-
sors and automation (Werthschützky, 2018), like in home au-
tomation (Eric Mounier, 2017), automated agriculture (Rem-
bert, 2020), condition monitoring (Lee et al., 2011; IEEE,
2015; Zhang et al., 2017; Weckbrodt, 2019), and Industry
4.0 (Kagermann et al., 2011; Kohlert and König, 2016), can
both alleviate hive keeping and make it much more effec-
tive. Thus, over the last 10–15 years, numerous approaches
to digital bee keeping have been observed (e.g., Ohashi et al.,
2009; Cecchi et al., 2020; Gil-Lebrero et al., 2017; Kulyukin
et al., 2018; Nolasco et al., 2018; Wallich, 2011; Suta, 2014;
Bromenschenk et al., 2007; König, 2019). In our Indus-
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Bee4.0 project, small, effective, and affordable cognitive in-
tegrated sensor systems (i.e., acting as a soft sensor) for con-
tinuous in-hive monitoring and state estimation (e.g., mon-
itoring and reporting the Varroa infestation level) are pur-
sued. In particular, affordable integrated gas sensors, namely
SGP30 (SENSIRION, 2022; Rüffer et al., 2018) or BME680
(Bosch, 2020) sensors, and suitable domain-specific features
are of interest here. Although individual sensor readings can
already provide meaningful information on the Varroa in-
festation level estimation (VILE) and the automated treat-
ment need detection (ATND), the focus of this paper is on
the investigation of increasingly invariant feature computa-
tion based on a phase space abstraction to hive activity over
day cycles. The approach, the most meaningful features, and
possible recognition rates will be presented and compared to
the individual sensor readings.

2 Ground truth determination by conventional
Varroa monitoring

There are several standard methods available for conven-
tional VILE. A common feature of these methods is that
they all imply substantial effort for the bee keeper and de-
liver results only at larger time steps. The analysis of hive
debris, including mites dropping from the hive bottom that
are collected on a slider or Varroa board, is the most com-
mon technique (Bayerische Landesanstalt für Weinbau und
Gartenbau, 2021). Usually, a probing time (tp) of 3 days
is expended until a manual (or more recently (semi) auto-
mated vision-based) analysis of the debris for the number
of dropped Varroa (Nd) can be conducted. The ground truth
of the hive infestation level (GT) or current Varroa popula-
tion size can be estimated from this count (Bayerische Lan-
desanstalt für Weinbau und Gartenbau, 2021; König, 2019)
by employing a scaling factor, e.g., Fs = 150:

GT= Fs×
Nd

tp
. (1)

Another common approach, also denoted as the flotation
method, extracts a bee sample from the hive and submerges
the sample in water (drowning the bees) to separate the bees
and Varroa mites. The powdered sugar and CO2-based se-
dation methods are two alternative, more bee-friendly vari-
ants. Again, the hive infestation level can be estimated from
a count, but the sample adequateness will probably depend
on the location of extraction in the hive. More recent princi-
ple approaches try to scrutinize in- and outgoing bees at the
flight hole for Varroa mites clinging to them (e.g., Chazette
et al., 2016; König, 2019); however, all methods based on
the count of mites clinging to bees are not able to give an
immediate reckoning of the mite population in the brood.

Thus, in this work, standard counting on a Varroa board
was applied to obtain the required GT for VILE and ATND,
but a higher-than-standard inspection frequency was used

(approximately twice on average throughout the bee season)
in order to obtain an improved temporal analysis of the hive
infestation state.

3 Measurement approach and system

With regard to the objective of finding a solution that is un-
obtrusive to bees, a compact realization is aspired to, even
for the first prototype, for the hive monitoring system: it
should not consume significant volume in the supporting
comb nor significantly limit hive traffic routes and air ventila-
tion. Limited power consumption and cost were further sen-
sor selection criteria. The block diagram of the IndusBee4.0
apiary hive monitoring system is given in Fig. 1, which
enumerates the current sensor palette: the standard DHT22
T /RH (temperature and relative humidity) sensors (Adafruit,
2021); the HX711 (AVIA Semiconductor, 2020) weight sen-
sor module with four standard weight cells for hive, honey
storage, or feeder module scale implementation; a Knowles
SPH0645 MEMS (micro-electromechanical system) micro-
phone (Knowles, 2021) for vibration and sound recording;
and the SGP30 (SENSIRION, 2022) and BME680 (Bosch,
2020) gas sensors. One SmartComb unit with the number
and placement of the named sensor types is shown in Fig. 2.
This instrumented comb is placed in the center (slot 5 of
10) in the middle or center super of the regarded three-super
hive. This placement situated the sensors close to the cen-
ter of breeding activity and associated Varroa occurrence.
The measurement system was programmed in Python, em-
ploying existing libraries for the sensors where possible:
the Adafruit library for the DHT22 (Adafruit, 2021); the
HX711 library (Zak, 2020) in its Python 2 version; the Pi-
moroni libraries for the SGP30 (Pimoroni, 2020b), employ-
ing the DHT22 RH reading and the required absolute humid-
ity (AH) computation algorithm from Mander (2021), and
the BME680 (Pimoroni, 2020a); and the scikit-learn pack-
age (Pedregosa et al., 2011) in Python for the machine learn-
ing part. Recently, much more efficiently integrated universal
sensor platforms (USePs) have emerged, such as the USeP
research platform and the follow-up Sensry platform (Sensry,
2021), which have quite similar sensor portfolios. Basic in-
vestigations in the past have revealed that both the sound pat-
terns emitted by bees and the air composition inside the hive
host information that correlates with the Varroa infestation
level, as determined by the conventional methods outlined
in the previous section. Hive sound patterns also allow one
to detect information on factors such as a “missing queen”
or the development of “swarming mood”. Thus, in our work
and in many previous studies, microphones and signal pro-
cessing analysis have been applied (Kulyukin et al., 2018;
Nolasco et al., 2018; Bromenschenk et al., 2007; König,
2019). MEMS microphones deliver the acoustic information
on the hive state in our Pi-Zero-W-based SmartComb in-hive
measurement system, including continuous cues for VILE
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in a multi-sensor or soft sensor approach. Recent intriguing
work, based on a set of Figaro gas sensors and an external
measurement system, confirmed the existence and useful-
ness of a correlation between hive air analysis results and the
Varroa infestation level (Szczurek et al., 2019, 2020a; Ba̧k
et al., 2020). With the advent of highly integrated gas sensing
systems, such as the Sensirion SGP30 multi-pixel gas sen-
sor system1 (SENSIRION, 2022) or the BOSCH Sensortec
BME680 (Bosch, 2020), the possibility for VILE using an
in-hive low-cost gas sensing system and (in)direct indicators
from hive air analysis over the bee season was added to our
IndusBee4.0 system. Numerous projects exploiting these and
other sensor chips have recently been carried out; these stud-
ies have predominantly focused on air quality issues (e.g.,
Arroyo et al., 2020), but breath analysis (Jaeschke et al.,
2019) has also been carried out and inspired the use case in
this work. The BME680 allows for the control of a sensor
hot plate or the heating of the single gas sensor pixel, i.e.,
it can be modulated for temperature cycles (Lee and Reedy,
1999; Jaeschke et al., 2019) in measurement. One significant
advantage of a hive-integrated solution is measurement in the
stable “bee climate”, which avoids numerous issues such as
those related to the dew point that have been reported for ex-
ternal measurement setups (Szczurek et al., 2020a; Ba̧k et al.,
2020).

4 Feature computation

Although instantaneous sensor readings can already be use-
ful, as will be outlined in the following section, several is-
sues with regard to sensor nonuniformity, drift, dynamics, or
other temporal dependencies can advocate for the calculation
of meaningful invariant features, as common in most pat-
tern recognition applications. In gas sensing, normalization
of sensor readings to a baseline value and/or compression
by logarithm computation are the most common steps. Other
techniques are the calculation of statistical or frequency do-
main features, such as the mean value, standard deviation,
or spectral features. In particular, the dynamics of gas sen-
sors under temperature modulation inspired the use of a tech-
nique from general systems theory related to the concept of
phase space (PS) and features calculated from the resulting
trajectories. There is an interesting relationship between es-
tablished blob analysis and blob description by features in
vision problems (e.g., lucidly described in Mallick, 2021)
and phase space trajectory analysis and description by re-
lated features. The concept of phase space trajectory compu-

1The SGP30 contains four gas sensor pixels on a common hot
plate, and control of the hot plate for temperature modulation as
well as individual pixel access is feasible if additional programming
information is provided by the manufacturer; however, the issued
request in 2019 to access this information was not successful and
unfortunately constrained the reported work to the standard SGP30
functionality.

tation and description by meaningful compact features can
be found in studies such as Martinelli et al. (2003) and Penza
et al. (2009), where it serves to generate features from sensor
dynamics observed for appropriately thermically modulated
gas sensors.

This proven approach, employing, for instance, so-called
dynamic moments (DM) (Penza et al., 2009) or energy vec-
tors (EV) is very attractive, and it inspired the investigation
of the abstraction of the concept to the observable dynamics
of a bee hive (e.g., Khoury et al., 2013; Russell et al., 2013),
associating the dynamics of a daily activity cycle with the
temperature modulation cycle of a sensor. With this aim, the
data reported in the next section will be grouped into 24 h
cycles, from midnight to midnight, and an abstraction of the
phase space concept and related features will be computed.
In the simplest case, a phase space can be generated by the
temporal measurement series and its derivative (Penza et al.,
2009). A plot of these two quantities will return trajectories
reflecting hive activity, which is assumed here to be affected
or modulated by the Varroa infestation level, and descrip-
tive features can be calculated for ensuing classification. This
will reduce the weaknesses of instantaneous sensor readings,
and, in contrast to the “real-time” character of bee swarm in-
dication, the VILE or ATND can be reported on a less chal-
lenging timescale. The heuristic finding of the following de-
scriptive features for the resulting trajectories in the phase
space abstraction was inspired by standard blob analysis fea-
tures (e.g., centroid and area, circumference) and Penza et al.
(2009), leading to the ensuing list:

The first feature, d i Norm, is the daily mean of the sensor
reading di normalized by the mean number of days (NoD) in
the campaign (which is calculated as Cm =

1
NoD

∑NoD
i di):

d i Norm =
d i

Cm
. (2)

The second feature, ddi Norm, is the daily mean of the sen-
sor reading derivative ddi normalized by the campaign maxi-
mum value of the derivatives, Cdm =maxNoD·ddci

i=1 ddi , where
ddci is the number of derivative values per day:

ddi Norm =
ddi
Cdm

. (3)

The third feature, tlength, is the length of the daily trajectory
normalized by the number of measurements of the regarded
day, dci , in phase space:

tlength=
1

dci

dci∑
i=2

(|di − di−1| + |ddi − ddi−1|). (4)

The fourth feature, tangle, is the accumulated angle of the
daily trajectory:

tangle=
dci∑
i=2

(
arctan

(di − di−1)
(ddi − ddi−1

)
. (5)
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Figure 1. Overview of the IndusBee4.0 apiary monitoring system with SmartComb units including BeE-Nose for VILE (adapted from
König, 2021a).

The fifth feature, dmaxr
i Norm, is the ratio of the maximum sensor

reading and the maximum derivative ddi , each normalized as
given in Eqs. (2) and (3), respectively:

dmaxr
i Norm =

dmax
i /Cm

ddmax
i /Cdm

. (6)

The sixth feature, dminr
i Norm, is the ratio of the minimum sensor

reading and the minimum derivative ddi , each normalized as
given in Eqs. (2) and (3), respectively:

dminr
i Norm =

dmin
i /Cm

ddmax
i /Cdm

. (7)

The respective seventh and eighth features, dspanC
i and

ddspanC
i , give the span center of the sensor readings and sen-

sor readings’ derivative displaced by the respective minimum
value:

d
spanC
i =

dmax
i −d

min
i

2 + dmin
i

Cm
, (8)

ddspanC
i =

ddmax
i −ddmin

i

2 + ddmin
i

Cdm
. (9)

Features 9 to 13 correspond to the dynamic moment calcu-
lations given in Penza et al. (2009), denoted as DM2, DM3X,

DM3Y, DM3PB, and DM3SB, respectively:

DM2=
1

dci

dci∑
i=1

(di × ddi), (10)

DM3X =
1

2× dci

dci∑
i=1

(di3− 3× di × ddi2), (11)

DM3Y =
1

2× dci

dci∑
i=1

(d3
i − 3× di2× ddi), (12)

DM3PB =

√
2

dci

dci∑
i=1

(di2× ddi − di × ddi2), (13)

DM3SB =

√
2

dci

dci∑
i=1

(2× d3
i + 3× (di2× ddi − di × ddi2)). (14)

Feature 14, NoSC, adds information on the number of di-
rection changes derived from the angle sign changes accord-
ing to feature 4 (Eq. 5):

αi = arctan
(

(di − di−1)
(ddi − ddi−1)

)
, (15)

NoSC=
dci∑
i=2

(Sign(αi) 6= Sign(αi−1)). (16)

Features 15 and 16 add information on the daily span of
original and derived signal normalized by the respective nor-
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Figure 2. The SmartComb unit related to the reported measure-
ments, including BeE-Nose for VILE.

malization value:

d
spanC
i =

di
max
− di

min

Cm
, (17)

ddspanC
i =

ddimax
− ddimin

Cdm
. (18)

This set of features with the described normalization will
be calculated in the experiments outlined in the next sec-
tion, based on the obtained and smoothed gas sensor read-
ings from the SGP30 eCO2 and total volatile organic com-
pound (TVOC) outputs and the BME680, and will be selec-
tively used in the ensuing classifications with either four or
two classes. Details of the methods and parameter settings
are given in the next section.

5 Experiments and results

One SmartComb module, given in Fig. 2, was deployed in
a mature hive that had released a swarm, and sensor data
on temperature, relative humidity, weight, and hive sound as
well as gas sensor data from hive air were collected from
8 July to 11 September until formic acid treatment. A base-
line in this work was to look for indirect indications of the
hive state from the sensor readings (König, 2021a), i.e., de-
viations from a normal state correlating with mite infesta-
tion. The direct indication or detection of certain gas com-
ponents and absolute quantities (e.g., originating from the
mites’ metabolism) is a more ambitious and more costly next
step that will require increased effort from the sensor port-
folio to the data evaluation. The acquired and archived mea-
surement data were processed based on standard Python. In
the first step, a moderate smoothing of the data, sampled at
approximately six samples per minute, was conducted using
a digital low-pass filter from the SciPy signal package (The
SciPy community, 2021) with the corner parameter set to 0.1.
The smoothing settings have an immediate influence on the
achievable classification rates of the following experiments.

Figure 3. BME680 resistance data for the period from 8 July to
11/19 September for temperature steps from 50 to 400 ◦C as well as
the scaled-up Varroa count GT.

Figure 3 shows a subset of gas sensing measurements from
the BME680 for eight temperature steps as well as the Varroa
counting GT, the latter of which was scaled-up for the sake
of visual representation, corresponding to the description in
Sect. 2 for this campaign for 56 (58) d from 8 July to 11
(19) September 20202. The SGP30 (SENSIRION, 2022) and
the BME680 (Bosch, 2020) gas sensors both served for mea-
surement in this campaign. The SGP30 delivers both eCO2
and TVOC outputs as well as two additional outputs, denoted
as Raw1 and Raw2 for hydrogen and ethanol, respectively.
Results obtained for the SGP30 standard use in this appli-
cation have been reported in König (2021b). The BME680
gives a single resistance value, which was acquired here for
eight equidistant levels from 50 to 400 ◦C in a basic staircase-
shaped temperature cycle with an approximate 500 ms step
time and the sensor reading at the end of the step time. These
measurements from both sensors were directly employed in
the first step as features for the VILE and ATND based on
a hold-out approach: 837 samples per training and test set
were extracted from the complete measurement data in steps
of 250 with a displacement between the training and testing
data of 125.

With regard to VILE, the problem has been simplified into
four discrete steps or levels derived from the GT described
in Sect. 2: No Varroa, Low Varroa, Mid Varroa, and Treat-
ment !, corresponding to counted daily averages of 0, 2.5,
8.6, and 14 Varroa on the board from 3 days of screening in
four inspection runs. With the established treatment thresh-
old value of 10, the last daily average is definitely above the

2Due to stability issues with the libraries included in the mea-
surement system, several days were not recorded, and the number
of days is less than the start and end date of the campaign imply.
The missing days are 30 July; 2, 7, 8, 10, 17–20, and 28 August
until treatment; and 12–17 September after treatment, resulting in a
total of either 10 or 16 d.
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Figure 4. Campaign data for the period from 8 July to
11/19 September for the BME680 sensor at 50 and 350 ◦C.

threshold. However, due to the sparseness of GT sampling,
there are several days that are actually a better fit with the
Treatment ! class than with the Mid Varroa class with which
they were affiliated. The acquired data set, which actually
ended with the onset of formic acid treatment, was extended
by 2 days, 18 and 19 September, after the first week of treat-
ment. These additional samples, extending the campaign to
58 d, can be affiliated with the Treatment ! class. To elucidate
if 1 week of formic acid treatment had a perceivable effect,
a fifth class, “Post-treatment”, was added for illustration pur-
poses in the following (see Fig. 7).

For ATND, the first three classes are merged into the
“SubTh” class, denoting a sensor reading below the treat-
ment threshold. In this case, the 2 extra days after the first
week of formic acid treatment are either labeled as Treat-
ment ! or as SubTh. Figure 4 illustrates a scatterplot of the
first and seventh BME680 temperature steps, showing a weak
to moderate support for the VILE hypothesis. Table 1 shows
the classification results, based on the scikit-learn package
(Pedregosa et al., 2011) and the included k-nearest neigh-
bor (kNN) classifier, for the BME680 data from the cam-
paign as well as the described VILE and ATND class labels
and the hold-out approach (Pedregosa et al., 2011, and Fuku-
naga, 1990; from p. 219 and p. 310, respectively) for all eight
temperature steps. The results coincide with the scatterplot
in Fig. 4 and are quite similar to previously obtained results
from the SGP30 (König, 2021b).

The approach described so far has been based on the use
of instantaneous sensor readings; however, this technique is
restricted, as there is an obvious temporal dependence of in-
formation on the time of acquisition and/or on the sequence
of sensory readings.

Recently, there have been investigations indicating that the
time of day matters in this kind of measurement and inter-
pretation (Szczurek et al., 2020b). For this reason, data be-

Table 1. Classification results for BME680 data using the hold-out
approach for the 8 July to 19 September campaign with kNN (k =
3).

Four classes Resubstitution 93.67 %

Confusion
matrix

121 5 0 0
10 373 20 0
0 8 204 6
1 0 3 86

Two classes Resubstitution 98.81 %

Confusion
matrix

741 6
4 86

Four classes Generalization 86.5 %

Confusion
matrix

116 10 0 0
10 350 43 0
1 32 171 14
0 0 3 87

Two classes Generalization 97.97 %

Confusion
matrix

733 14
3 87

tween 12:00 and 13:00 CET, as a time of commonly high
hive activity, have been extracted from the database. Due to
the significant reduction in samples in only 1 h of a 24 h pe-
riod, the hold-out approach was modified to 1814 samples
per training and test set, which were extracted from the com-
plete measurement data set in steps of 5 and with a displace-
ment between the training and testing data of just 3. Figure 5
shows the resulting scatterplot of the BME680 sensor at 50
and 350 ◦C, and Table 2 gives the corresponding classifica-
tion results again for all eight readings from the eight tem-
perature levels; however, both visual assessment of the plot
and repetition of the hold-out classification does not (with
regard to the increased similarity of the training and test set)
show significant improvement or change compared with the
complete data.

To advance from the evaluation of instantaneous sensor
values to an analysis of hive daily activity, as well as to better
cope with hive and sensor variations, the available database
has been grouped into daily cycles, and (following the con-
cept outlined in Sect. 4) a simple phase space with the orig-
inal sensor readings on the abscissa and their first temporal
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Figure 5. The extraction of campaign data for the period from
12:00 to 13:00 CET for the BME680 sensor at 50 and 350 ◦C.

Table 2. Classification results for BME680 data using the hold-out
approach for the 8 July to 19 September campaign for the period
between 12:00 and 13:00 CET.

Four classes Resubstitution 97 %

Confusion
matrix

273 2 0 0
12 921 15 0
0 15 431 5
0 0 5 135

Two classes Resubstitution 99.45 %

Confusion
matrix

1669 5
5 135

Four classes Generalization 95.04 %

Confusion
matrix

273 2 0 0
15 901 32 0
0 30 415 6
0 0 5 135

Two classes Generalization 99.39 %

Confusion
matrix

1668 6
5 135

Figure 6. A phase space example of campaign data for the BME680
sensor at 50 ◦C and the four classes of VILE.

Figure 7. An example of phase space features di Norm and
ddi Norm for the BME680 sensor at 50 ◦C and the four classes of
VILE as well as the 2 post-treatment days (in green).

derivative on the ordinate has been computed for each day
and each sensor output or channel. Each phase space axis
has been normalized by the corresponding campaign mean
or maximum value, respectively, giving axes values without
units. As a first example, Fig. 6 shows the resulting phase
space trajectories for the whole campaign for the BME680
sensor at 50 ◦C, with the class affiliation emphasized by the
corresponding color, as employed and indicated in the leg-
ends of all scatterplots (e.g., in Fig. 5). Figure 7 shows a scat-
terplot of phase space features d i Norm and ddi Norm for the
phase space of Fig. 6 and the four classes of VILE as well as
the 2 post-treatment days (in green). This plot suggests that
the hive state gradually tends to move back to normal after
1 week of treatment.

Figure 8 shows the corresponding information for the con-
currently measuring SGP30 sensor and its TVOC output. The
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Figure 8. A phase space example of campaign data for the SGP30
sensor, TVOC output, and the four classes of VILE.

trajectory families associated with the four classes in Figs. 6
and 8 obviously show promising interclass differences for
a useful feature computation. Thus, from these daily tra-
jectories in the phase space, features can be computed as
outlined in Martinelli et al. (2003) and Penza et al. (2009)
and extended upon in Sect. 4. From the 16 available fea-
tures computed for every sensor output, the most relevant
ones have been identified by common feature selection tech-
niques. Summarizing, the daily means d i Norm and ddi Norm,
the trajectory length (tlength), the trajectory angle (tangle),
and the trajectory number of sign change (NoSC) provide the
most promising performance in this particular use case. The
promise in the pursued modeling and feature computation is
not so much the gain in recognition rate for one particular
hive and sensor system; instead, it exists in the improvement
of the invariance with regard to factors such as readings from
different hives and sensor/measurement systems. This would
be required to effectively deploy a functional VILE or ATND
unit to all hives of an apiary or to different apiaries.

For this aim, the daily trajectory length (tlength) from
Sect. 4, e.g., calculated from SGP30 eCO2 and TVOC out-
puts and related phase spaces, was selected. The resulting
two-dimensional data already gave both compact and suit-
able results. Figure 9 shows the scatterplot of the tlength fea-
ture for SGP30 eCO2 and TVOC outputs. Table 3 shows the
related classification results for kNN (k = 1), a hold-out ap-
proach and ATND two-class labeling, where every second
day samples were added to the test set and the other half were
added to the training set, as well as the result of a leave-one-
out (loo) validation run, as the number of days (and, thus, the
available number of samples) is sparse compared with the
use of instantaneous values.

To tentatively validate the approach and the underlying
feature computation, data from a second campaign acquired
from a different hive and different measurement system in-

Figure 9. Scatterplot of the tlength feature for the SGP30 eCO2 and
TVOC outputs and the four classes of VILE.

Table 3. Classification results of the tlength feature from the SGP30
eCO2 and TVOC outputs and the 8 July to 19 September campaign
data with kNN (k = 1) and the ATND two-class labeling.

Hold-out resubstitution 100 %

Confusion Matrix

25 0
0 4

Hold-out generalization 96.55 %

Confusion matrix

25 1
0 3

Leave-one-out resubstitution 100 %

Leave-one-out generalization 93.1 %

Confusion matrix

49 2
2 5

stance, equipped only with the SGP30 gas sensor, in 34 d
of May and June 2020 for SGP30 eCO2 and TVOC out-
puts were reactivated. There was no calibration of the two
sensor systems with regard to each other. As reported in
König (2021a), the investigated hive unfortunately collapsed
and perished before the Varroa population crossed the treat-
ment need threshold. Therefore, data are only available for
three classes, No Varroa, Low Varroa, and Mid Varroa. The
Mid Varroa level is only represented by the last day of this
campaign. Thus, for a first invariance investigation of the
proposed feature computation, for both data sets from the
two campaigns, the No Varroa and Low Varroa classes and
the Mid Varroa and Treatment ! classes were merged into
two respective classes as a modified ATND. Corresponding
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Figure 10. Scatterplot of the tlength feature for the SGP30 eCO2
and TVOC outputs for cross classification of the July–September
(circles) and additional May–June (triangles) campaigns with two
classes of VILE.

Figure 11. Scatterplot of the first and second principal components
of the SGP30 eCO2 and TVOC outputs for cross classification of
the July–September (circles) and additional May–June (triangles)
campaigns with two classes of VILE.

to Fig. 9, Fig. 10 shows the training (circles) and test (tri-
angles) data sets from these two different hives. Classifier
training and resubstitution then took place with the first cam-
paign, and generalization was done with the second cam-
paign, again using a kNN with k = 1. Table 4 shows the re-
sults obtained. Moreover, Fig. 11 shows the first and second
principle components of all 16 features for SGP30 eCO2 and
TVOC outputs, i.e., 32 features, for both campaigns as well
as the two classes of VILE used in the classification given
in Table 4. Finally, Fig. 12 shows the first and second linear
discriminant analysis (LDA) components for the same data
and class affiliation.

Although there are 10 false positives, the single true pos-
itive day was detected. Classification runs with the principal

Figure 12. Scatterplot of the first and second LDA components of
the SGP30 eCO2 and TVOC outputs for cross classification of the
July–September (circles) and additional May–June (triangles) cam-
paigns with two classes of VILE.

Table 4. Cross classification of the July–September and May–June
campaigns with kNN (k = 1).

Cross resubstitution (July–September) 100 %

Confusion matrix

39 0
0 19

Cross generalization (May–June) 70.58 %

Confusion matrix

23 10
0 1

component analysis (PCA) and LDA two-dimensional data
gave an identical resubstitution but inferior generalization.
This last experiment suggests that the proposed modeling and
feature computation provides a baseline for invariant feature
computation based on hive activity. Integration of data from
several hives and campaigns as well as enlargement of the
calibrated sensor spectrum has the potential to further ad-
vance the approach. The sparseness of the currently available
data has to be overcome by concurrently monitoring a larger
number of hives over the entire bee season.

6 Conclusions

Motivated by the importance of honey bees and the increas-
ing challenges imposed on bees and beekeepers, an in-hive
close-to-brood nest sensing system was conceived and ap-
plied in a single colony for a substantial period of time dur-
ing the 2020 bee season in a single measurement campaign.
One major goal of this work was to obtain an useful esti-
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mate of the Varroa infestation level (VILE) and the treat-
ment need level (ATND) from indirect cues obtained from
the noninvasive and continuous monitoring of bee hives by
simple and cost-effective multi-sensor systems, effectively
creating a soft sensor for VILE and ATND. The underlying
measurement system and the first results for the SGP30 sen-
sor have already been reported in König (2021a) and König
(2021b). In this paper, the focus is on the extension to the
BME680 sensor along with temperature modulation (König,
2021c) as well as an approach to invariant feature computa-
tion, based on the adoption of the phase space concept related
to hive daily activity. From phase space daily trajectories,
features from the literature (Martinelli et al., 2003; Penza
et al., 2009) and custom heuristic additional features have
been computed.

The classification results obtained for both instantaneous
sensor readings and the abovementioned phase-space-based
features are encouraging, but due to substantial overlap in
the still all too sparse data, only mediocre classification re-
sults in the order of 95 % could be achieved for data from
the 8 July to 19 September campaign. Thus, only the kNN
classifier was applied, as the effort involved with studying
numerous classifiers will not pay off until further optimiza-
tion of the earlier system stages is achieved (König, 2021b).

The discussed phase-space-based features were not ex-
pected to offer a classification boost with regard to the fea-
tures from instantaneous sensor values of a single hive, but
they were anticipated to deliver improved invariance prop-
erties. This was basically studied by classifying an earlier
campaign from May to June 2020 from a different hive with a
classifier trained using the data from the 8 July to 19 Septem-
ber campaign with moderate but motivating results.

In future work, several lines of improvement will be pur-
sued, such as adding sensor capability using the SGP4x
and temperature modulation in a proprietary configuration
and bee monitoring system update (under an NDA cour-
tesy of Sensirion); considering the BME688 (Bosch, 2021)
and the UST Triplesensor (Umweltsensortechnik, 2021) fur-
ther; extending the phase space and feature computation con-
cept to multi-sensing; including the context of temperature,
moisture, or acoustic sensing; and concurrently monitoring
a larger number of hives over an entire future bee season.
The pursued approach has the potential to be generalizable to
other illnesses and issues, such as foulbrood and small hive
beetle.

Code availability. The codes developed for the measurement sys-
tem and the host-based analysis are not publicly available. This on-
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data at this point in the research process.
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