J. Sens. Sens. Syst., 11, 75-82, 2022
https://doi.org/10.5194/jsss-11-75-2022

© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

SSS

W
=8 Journal of Sensors
and Sensor Systems ©

pen Access

Structure of digital metrological twins
as software for uncertainty estimation

Ivan Poroskun, Christian Rothleitner, and Daniel Heilelmann
Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany

Correspondence: Ivan Poroskun (ivan.poroskun@ptb.de)

Received: 30 September 2021 — Revised: 9 December 2021 — Accepted: 31 January 2022 — Published: 9 March 2022

Abstract. Ongoing digitalization in metrology and the ever-growing complexity of measurement systems have
increased the effort required to create complex software for uncertainty estimation. To address this issue, a
general structure for uncertainty estimation software will be presented in this work. The structure was derived
from the Virtual Coordinate Measuring Machine (VCMM), which is a well-established tool for uncertainty
estimation in the field of coordinate metrology. To make it easy to apply the software structure to specific projects,
a supporting software library was created. The library is written in a portable and extensible way using the
C++ programming language. The software structure and library proposed can be used in different domains of
metrology. The library provides all the components necessary for uncertainty estimation (i.e., random number
generators and GUM S1-compliant routines). Only the project-specific parts of the software must be developed
by potential users. To verify the usability of the software structure and the library, a Virtual Planck-Balance,
which is the digital metrological twin of a Kibble balance, is currently being developed.

1 Introduction

With the increase of the complexity of measurement sys-
tems, the determination of measurement uncertainties using
a conventional uncertainty budget, as described in the GUM
(JCGM, 2008a), is often not possible or may lead to unre-
alistic results. In these cases, the Monte Carlo (MC)-based
method described in GUM S1 (JCGM, 2008Db) is applied.

To meet the requirements of the continuously evolving
field of coordinate metrology, the Virtual Coordinate Mea-
suring Machine (VCMM) was developed. Using the MC ap-
proach, the VCMM has made it possible to consider sig-
nificant coordinate measuring machine (CMM) deviations
caused by the guideway geometry and the probing system,
among other effects (Wildele and Schwenke, 2002; Heif3el-
mann et al., 2018). The previously used methods were not
suitable or were far too time-consuming for practical applica-
tion. The VCMM is used by DAkkS-accredited laboratories
as well as in the planning and evaluation of measurements in
industrial quality control.

The Planck-Balance (PB) (Rothleitner et al., 2018), a
tabletop version of a Kibble balance (Robinson and Schlam-
minger, 2016), is currently under development at PTB and

TU Ilmenau. Similarly to the VCMM, within the PB, the in-
dividual effects interact in a complex manner. Because these
effects cannot be separated, it is not possible to describe them
using a conventional uncertainty budget. The Virtual Planck-
Balance (VPB) currently under development is designed to
allow major uncertainty contributors (e.g., the Abbe error) to
be considered correctly.

The aim of the work presented here is to provide a struc-
ture for MC-based uncertainty estimation software that can
be used to guide the design and the implementation for new
systems. To this end, the structures of an already established
tool that is used to estimate metrological uncertainty were
analyzed and generalized. The VCMM was considered for
this purpose.

Different projects in which the MC approach is used for
uncertainty estimation naturally share similar code. How-
ever, because it has not been possible to reach a consensus
on which tools and structures should be used to create MC-
based software, commonly found software components are
constantly being reprogrammed. As a consequence, the ef-
fort required to develop such software increases along with
the possibility of errors. Individual projects use different ap-

Published by Copernicus Publications on behalf of the AMA Association for Sensor Technology.

76 I. Poroskun et al.: Structure of digital metrological twins as software for uncertainty estimation

proaches to solve the same problems and distinct wordings to
describe similar concepts. These factors complicate commu-
nication between organizations and projects and slow down
overall development in this field.

To address the issues listed above, a supporting software
library is currently being developed. The library is written in
a portable and extensible way using the modern C++ pro-
gramming language. It provides a set of reusable tools which
can be used to describe any metrological system in a compact
and maintainable way. The library was developed based on
the structures used by VCMM, and it implements GUM S1-
compliant routines for uncertainty estimation.

During the development of new simulation software, the
general idea is to split up a complex system into a number of
simpler software modules, where each module is based on a
single physical effect. The individual modules are then com-
bined to represent the whole measurement process. By em-
bedding the complete measurement model into a MC sim-
ulation, the uncertainty estimation is carried out. The VPB
was chosen as a first practical example to be developed using
the proposed software structure and the supporting software
library.

Additionally to the tools necessary to model the measure-
ment process itself (e.g., the random number generators), the
library also provides a variety of utility tools to set up an
adaptive MC simulation to evaluate the uncertainties and to
analyze the system properties by means of sensitivity anal-
ysis. Some of these functionalities were adapted from the
general software structure, and some were added for com-
pleteness.

In the next section, the VCMM concept will be introduced
and used to derive a general software structure for uncer-
tainty estimation software. An overview is given of the el-
ements of the VCMM software that can be reused for other
projects. The generalization process for the VCMM is de-
scribed in Sect. 3. From the metrological point of view, the
traceability of simulation results is of key importance. To go
from “simulation software” to a traced digital metrological
twin (D-MT) as proposed by Eichstédt et al. (2021), a series
of requirements must be met; these are listed in Sect. 4. The
components of the supporting software library and a descrip-
tion of certain technical aspects will be presented in Sect. 5.
Section 6 will demonstrate how an actual software module
is created using the supporting software library. The current
gravitational acceleration model of the VPB will be used as
an example.

2 VCMM concept

In the VCMM, MC-based simulation software is used to de-
termine the uncertainties of a dedicated measurement task
that is performed by means of a specific coordinate measure-
ment machine. The concept of the VCMM is based on the
notion that the process of the real measurement is recreated

J. Sens. Sens. Syst., 11, 75-82, 2022

in a simulation. The simulation can then be repeatedly car-
ried out to estimate uncertainties using the data from a single
measurement along with additional information known a pri-
ori. The influence of the uncertain input quantities is consid-
ered by means of mathematical models that describe the dis-
turbance of the measured data. For each simulation step, the
models are repeatedly evaluated, and the disturbance is added
to the data from the real measurement. The output quantities
are calculated based on the disturbed data. The result con-
sists of an estimate taken directly from the evaluation of the
measured data and an uncertainty obtained by means of a
statistical analysis of the disturbed (i.e., simulated) data.

As described by HeiBlelmann et al. (2018), the VCMM
consists of multiple models that describe the positional de-
viation of the measured coordinate points. Each model is im-
plemented as a separate software module. When combined to
a single piece of simulation software, the modules propagate
the influence of multiple input quantities on measured quan-
tities (i.e., output quantities) that include distances, diame-
ters, and angles. For the evaluation of the output quantities,
the same fit algorithms are used for the simulated data and
the real data; these algorithms are provided by the software
of the CMM.

Because this approach uses the measurements’ distur-
bances, which are caused by uncertain influence quantities,
there is no strict need to recreate the entire measurement
within the simulation; only models describing the influence
of the uncertain input quantities on the output quantities
should be considered.

3 General D-MT structure

In order to provide a generalization of the structures used by
VCMVM, its source code, which consists of roughly 40 000
lines of code, was reviewed and characterized. Addition-
ally, a lightweight version of the VCMM was implemented
from the ground up. This version includes all the major mod-
ules needed in order to perform comparison evaluations us-
ing data from real measurements. Newer developments (i.e.,
scanning and the CMM rotary table) were not considered.

It was observed that the internals of the VCMM can be
subdivided into three main parts: modules, which encap-
sulate individual physical models, random number genera-
tors (RNGs) and statistics, and support components. Depend-
ing on the role and generality of given software components,
only some of these can be considered for future reuse.

The VCMM models and its support components (e.g.,
XML configuration file readers) make up around three-
quarters of the total code share. They cannot be considered
to be generally reusable for other projects, as they are very
specific to the VCMM itself. However, the RNGs and statis-
tics are required by all MC-based software programs used for
uncertainty estimation; these were implemented as a stand-
alone library, named vmlib, that will be discussed in Sect. 5.

https://doi.org/10.5194/jsss-11-75-2022

I. Poroskun et al.: Structure of digital metrological twins as software for uncertainty estimation 77

simulation loop
>

virtual
measurement
s ea——
1

———————

module A i
1 '
J": ’ ———>levaluation| |

1
| . . |
1 e, o >
. module B} g——————— | P ——) A 7 I
|
14 e
‘ |

rule
J

Figure 1. Proposed structure of D-MTs for uncertainty estimation,
derived from the generalization of the VCMM.

The new implementation of the VCMM consists of
roughly 5 times fewer lines of code than the original soft-
ware. The drastic reduction in code size was possible due to
the well thought out design of the individual modules and
by extracting the RNGs and statistics into the supporting li-
brary. The usage of a third-party library for linear algebra
(Guennebaud et al., 2010) helped a lot to reduce and sim-
plify the code within the modules. It should be noted that be-
cause the re-implementation of the VCMM does not include
all the original functionalities, no direct comparison should
be made. However, it can be seen that the size of the VCMM
(and thus its complexity) can potentially be reduced.

The investigation of the re-implementation of the VCMM
was geared toward analyzing patterns in which the RNGs
are used to build individual modules and how the statisti-
cal components connect them to a single piece of simulation
software. Figure 1 shows the general structure derived from
this investigation. The structure should be read from the left
to the right — in the same order the simulation is performed.
The entire structure is enclosed by a simulation loop that de-
notes the repeated evaluation of the components within the
MC simulation.

Before the simulation starts, the RNGs (depicted as red
circles) of the individual modules are parameterized from ex-
ternal sources such as XML files. The modules are contained
inside the virtual measurement component, whose task is
to replicate the real measurement process; it is the aggre-
gate of individual modules mentioned before. On each run
of the MC simulation, the virtual measurement produces a
dataset that could have been obtained from a real measure-
ment. Next, the data are passed to the evaluation algorithm.
It is supposed to be the same algorithm which is also used
to evaluate the real measurements. As the evaluation result,
a new value is obtained for each simulated quantity. While
the simulation process is being carried out, the results of the
individual evaluations are stored inside the measurands. A
measurand is a programmatic representation of a real mea-
surement quantity. It stores the results of the individual sim-
ulations for the future uncertainty estimation, which is per-
formed after the execution of the MC loop is complete. The
uncertainty estimation is performed for each measurand.

https://doi.org/10.5194/jsss-11-75-2022

The stopping rule is an optional component that can be
used to achieve a given numerical tolerance or to prematurely
abort the simulation. During the simulation, the stopping rule
observes the numerical properties of the individual measur-
ands and signals to the simulation loop whether the simula-
tion should be continued or stopped.

4 Requirements

So far, the presented structure is intended to guide the de-
velopment of new software for uncertainty estimation, i.e. a
digital twin (DT). However, to be used in a traceability chain,
the results of the given DT must be metrologically traced,
thus making it a digital metrological twin (D-MT). The term
“digital metrological twin” was explicitly introduced by PTB
(Eichstidt et al., 2021) to clarify its affiliation to metrology,
as the definitions of “digital twin” may differ significantly
depending on their application (Glaessgen and Stargel, 2012;
Negri et al., 2017).

In Eichstadt et al. (2021), a definition and requirements
for a D-MT are given. It states that “the measurement un-
certainty [must] be calculated according to valid standards”.
This requirement is automatically covered, as the supporting
software library implements the GUM S1 uncertainty esti-
mation routines, which are considered as a state-of-the-art
method.

Further it states that to achieve a traced simulation re-
sult, “all input parameters [must be] determined traceable
and [must be] stated with corresponding measurement uncer-
tainty”. Regarding this requirement, it should be noted that a
measurement process described by means of a proposed soft-
ware structure does not automatically become a D-MT. The
developer of such software has no influence if the input pa-
rameters used for the simulation are metrologically traced or
not. This aspect lies completely in hands of the software user.

Lastly, Eichstédt et al. (2021) state that the results of such
simulation software, to become a D-MT, must be “validated
by traceable measurements”. This aspect lies more in the
hands of the scientist who develops the mathematical models
for a given measurement process. The actual software devel-
oper is responsible for correctly implementing a given math-
ematical model and integrate it with the surrounding compo-
nents.

In the following, some aspects around the validation of the
software and the traceability of its results are discussed in
more depth.

4.1 Models

Models used by the D-MT must be well understood, verified,
and documented. The scope of the individual models should
be defined. The full scope of the D-MT is derived from the in-
tersection of the scopes of all its models and should be clearly
communicated to the end user of the system.

J. Sens. Sens. Syst., 11, 75-82, 2022

78 I. Poroskun et al.: Structure of digital metrological twins as software for uncertainty estimation

The simulation results produced by the virtual measure-
ment must have statistical properties that are similar to those
of the real measurements. All the main uncertainty com-
ponents of the real measurement device and process must
be identified and considered in the simulation. Systematic
errors, which are not always visible in the measured data,
should be identified and considered. Additionally, when the
averages of the input quantities are shifted, the models must
respond similarly to the behavior of the real measurement.
The boundaries of the shifts must be included in the scopes
of the models.

4.2 Validation

The evaluation algorithm of a measurement setup can often
be nontrivial and difficult to implement. It must be well tested
to guarantee its correctness. For the testing, different scenar-
ios can be implemented. When an algorithm is implemented
“from the ground up”, the unit testing approach is recom-
mended; see, e.g., Beck (2002). If applied thoroughly, most
of the difficult-to-perceive errors can be eliminated.

Both the individual components and the results of the
entire D-MT must be validated; reference datasets can be
used for this purpose (Forbes et al., 2015). In coordinate
metrology, a web service, TraCIM, has become well estab-
lished (Wendt et al., 2015). The service is being continuously
expanded to include new algorithms both from coordinate
metrology and from other fields of metrology.

This validation can also be performed by means of in-
tercomparison measurements and by comparing the results
of our software to the results of reference software and to
the results of other D-MTs. Additionally, the simulated mea-
surement results can be compared to the statistics of a series
of repeated real measurements. This latter approach may not
cover systematic errors that occur only on timescales larger
than those of the actual measurements or only between the
different measurement setups. Section 6 provides an example
of how systematic effects are accounted for in a simulation.

5 Supporting software library

To make the creation process for new software for uncer-
tainty estimation efficient and less error-prone, a supporting
software library named vmlib is currently being developed.
The library is implemented in the C++4-17 programming lan-
guage and is designed to make it easier for users to imple-
ment the structure from Fig. 1.

Each component shown in Fig. 1 is covered by the vm-
lib library. For example, the measurand component is rep-
resented by a vim: :measurand class, which can be easily
integrated with a vm: : stability object, which is used
for adaptive MC. It also implements the RNGs by means of
avm: :random_value class and provides a functionality
for GUM S1-compliant statistical evaluation.

J. Sens. Sens. Syst., 11, 75-82, 2022

5.1 Random number generation

RNGs are the most complex components of the software li-
brary. They are also intended to be the most common soft-
ware components in the software written by the users them-
selves with the aid of the library, as they are used within the
models to represent the uncertain input quantities of the mea-
surement process.

Generally, RNGs can be used with all kinds of univari-
ate probability density functions (PDFs). However, for our
purposes, PDFs that can be fully described in terms of their
mean and the standard deviation are of special interest. In the
following, we refer to this set of PDFs. These PDFs can be
treated as a group of polymorphic objects that are parameter-
izable by means of two values. For the sake of convenience,
RNGs containing this type of PDFs are called polymorphic
RNGs. The restriction mentioned above allows the individ-
ual RNGs to be parameterized using the data containing the
name of the distribution (e.g., normal or uniform), its mean,
and the standard deviation. The library provides a set of run-
time objects that are used to dynamically create RNGs. The
same runtime objects are used when the RNG parameters are
first read from the configuration files.

As the aim of the VCMM concept is to recreate the mea-
surement process in the most realistic way possible, one must
distinguish the timescales on which a given input quantity
acts. In the simulation, the different timescales are replicated
by means of nested simulation loops; here, the outermost
loop is the main MC loop, which is the realization of the
outermost timescale. This is necessary to correctly consider
the influence of the systematic effects on the resulting uncer-
tainties.

The RNGs provided by the library are designed to simplify
the creation of a simulation containing multiple timescales.
These RNGs can store their current random value until an
explicit request has been made to generate a new one. For
this purpose, the RNG interface provides three methods. The
randomize () method generates a new random value from
the underlying PDF; it internally stores the result without re-
turning it. The random () method generates, stores, and re-
turns a new random value. The stored () method returns
only the previously generated random value without gener-
ating a new one. The exact names of these methods are not
final and may change in future versions of the library.

These methods allow the point in time at which a new ran-
dom value is generated to be clearly distinguished from the
point in time at which it is used for a computation. The li-
brary has borrowed this approach from the VCMM’s RNGs
and re-implemented it in a modern and efficient way. With-
out this functionality, it would be necessary to introduce ad-
ditional variables in order to store the current value and the
state of the execution order — a manual approach that is un-
suitable for large applications.

The core components of RNGs are implemented as pro-
posed by Polishchuk (2020) with additional extensions.

https://doi.org/10.5194/jsss-11-75-2022

I. Poroskun et al.: Structure of digital metrological twins as software for uncertainty estimation 79

This means that RNGs are highly customizable and can be
adapted to meet project-specific requirements. For example,
using the preprocessor definitions, any floating-point type
can be set for the numbers generated by the RNGs. Fur-
thermore, any random engine from the <random> header
(e.g. std::mt19937 or std: :knuth_b) can be used.
The engine can be seeded using a custom sequence of con-
stants or using a time-based seed. The implementation of the
time-based seed was taken from Polishchuk (2020).

For all customization aspects of the library, user-provided
solutions can be used, provided that these solutions imple-
ment the interface required by the C++ standard or by the
documentation of the library.

5.2 Registry

For the PDFs mentioned in the section above, the library im-
plements the shifted delta distribution. This distribution is
described in terms of a mean and a second number that is
always replaced by zero (as it is irrelevant for a given distri-
bution). This distribution is special in the sense that it allows
the “yet-not-uncertain” input quantities to be described in the
same way as the regular (i.e., uncertain) input quantities. It
allows an input quantity to be prematurely treated as random
but only later to be parameterized with a non-§ distribution.

The properties of polymorphic RNGs allow any distribu-
tion to be converted into the § distribution during runtime.
Thus, the “randomness” of the distribution will be disabled.
To this end, a special tool set is provided by the vmlib library.

This functionality is realized by so-called registry objects.
Such objects form a bookkeeping mechanism containing the
unique name of an input quantity and its address in the mem-
ory. At any time during the MC simulation, a specific RNG
can be referred to by its name; then, its properties can be
varied or its randomness entirely disabled.

Additionally, a group of multiple RNGs can be united to
form a single entry inside the registry object. This makes it
possible to disable the randomness of multiple quantities at
once.

5.3 Sensitivity analysis

When multiple complex models interact with each other, the
uncertainty contributions of the individual quantities are not
easy to distinguish. However, this information is essential to
understanding the behavior of the system and finding its main
uncertainty contributors.

Using the registry objects described in the previous sec-
tion, a variety of tools for analyzing the system properties can
be created. These could include parameter sweeps or even in-
verse solvers. As a proof of concept for future developments,
a variance-based tool for conducting a sensitivity analysis is
provided by the library. This tool determines the contribu-
tions of the individual input quantities to the total variance of
an output quantity.

https://doi.org/10.5194/jsss-11-75-2022

The analysis is performed as follows. First, a simulation is
performed in which all uncertain quantities are “active” (i.e.,
they produce random values). In this way, the total variance
of the output quantity is computed. Next, the MC simulation
is repeated once for each input quantity; here, only one quan-
tity is active at a time, while all other quantities are disabled.
Ratios are formed of variances from simulations with indi-
vidual (active) input quantities to the total variance. These
ratios then constitute the percentage contribution of the indi-
vidual quantities to the total variance. The same analysis can
also be performed with groups of multiple input quantities.

It is known that the drawbacks of this simple approach to
sensitivity analysis include its linear time complexity and the
fact that it provides incorrect results for highly nonlinear sys-
tems. However, the tool has already proved its usability in the
early development stage of the VPB. It is available for any
system created using the given library; only very little addi-
tional code must be added to carry out a sensitivity analy-
sis, even for complex systems. Due to its drawbacks, the tool
should be used with care. In the future, it will likely be pos-
sible to create more sophisticated sensitivity analysis tools
using the functionality of the registry objects. Allard and Fis-
cher (2018) describe other approaches to sensitivity analysis
that may be considered.

5.4 Measurands, stopping rule, and uncertainty
estimation

The results of the individual runs of the simulation loop are
stored inside the measurand object. Each simulated quantity
requires a separate measurand object. This object is a “wrap-
per” around the std: :vector class and stores additional
information about the measurand such as its name and the in-
dex. The measurand object provides an interface that allows
the “stopping rule” to access its current statistical properties.
To make these data accessible on each execution of the sim-
ulation loop, an algorithm for the running average and the
running standard deviation is implemented inside the mea-
surand class. This leads to a slight increase in the compu-
tational effort; however, this is negligible in comparison to
re-computation using a naive implementation.

Statistical information for individual output quantities can
be accessed by the stopping rule in each simulation run.
Based on the underlying algorithm, a decision is made con-
cerning how often the simulation must be repeated. The
library currently implements the stopping rule defined in
GUM S1. As shown by Wiibbeler et al. (2010), the GUM S1
method has a comparably low probability of successfully
predicting the number of repetitions necessary to achieve a
desired numerical tolerance. The same paper proposes a two-
stage procedure created by Stein (1945) as a possible replace-
ment of the method currently implemented.

The library provides GUM S1-compliant routines for un-
certainty estimation. These include functions for the compu-
tation of the probabilistically shortest coverage intervals and

J. Sens. Sens. Syst., 11, 75-82, 2022

80 I. Poroskun et al.: Structure of digital metrological twins as software for uncertainty estimation

the symmetric coverage intervals, where the desired cover-
age probability could be given as an optional argument. As
a default, a coverage probability of 95 % is used. Addition-
ally, the basic statistical properties of the output quantities
(i.e., the number of simulation runs, the mean, and the stan-
dard deviation) can be directly accessed from the measurand
objects after the simulation is complete; no additional com-
putations are required.

5.5 Parallelization

An MC simulation can easily be performed as a parallel com-
putation, as there are almost no dependencies between the
individual evaluations. Synchronization is only required to
protect the RNGs along with the containers where the indi-
vidual results are stored (i.e., the measurand object).

Often, the time and effort required to adapt the simulation
in such a way that it can be executed in parallel are greater
than actually performing all computations on a single thread.
To address this issue and make usage of the parallelization
accessible, the library provides a functionality that simplifies
the setup of a multithreaded MC simulation.

Since RNGs make extensive usage of a policy-based de-
sign pattern (Alexandrescu, 2001), users can provide custom
strategies for the storage and access of data within genera-
tors. In addition to the customization points listed at the end
of Sect. 5.1, there is also an option to change the storage type
of the random engine for usage in single or multithreaded en-
vironments. Various versions of synchronized containers and
utility objects are either already contained in the library or
are being developed.

In addition to the comparably low-level functionality for
multithreading provided by the library, the sensitivity anal-
ysis tool mentioned above automatically performs a paral-
lelization. The tool checks the number of available threads
and manages the individual runs of the simulation using a
built-in thread pool.

To perform a parallel sensitivity analysis, almost no mod-
ifications to the code are required. However, it must be en-
sured that there are no unsynchronized static objects, as these
would lead to so-called “data races”. Furthermore, all objects
within the simulation must be copy-constructible. Otherwise,
the compilation will fail, as it will be impossible to create
copies of the tasks for parallel execution. For this case, the
library also provides a sequential implementation of the sen-
sitivity analysis tool.

6 Usage example of the library

In the following, a usage example for the library will be
demonstrated using the acceleration model from the current
implementation of the Virtual Planck-Balance. The Planck-
Balance (Rothleitner et al., 2018) is a tabletop-sized Kib-
ble balance (Robinson and Schlamminger, 2016). Kibble
balances were formerly used to measure Planck’s constant.

J. Sens. Sens. Syst., 11, 75-82, 2022

Since the redefinition of the SI units in 2019, the Kibble
balance can be used for realizing the unit of mass, the kilo-
gram. It is based on the principle of electromagnetic force
compensation (EMC) and is operated in two modes: veloc-
ity mode (VM) and force mode (FM). In FM, a weight is
placed on the weighing pan of the balance. This mechani-
cal weight is counterbalanced by a voice-coil actuator. The
electrical current, which is required to compensate for the
gravitational acceleration, is measured. The measurement is
described by

m-g=BIl-1, (D)

where m is the mass, g is the gravitational acceleration, B/ is
the geometric factor of the coil, and I is the measured electri-
cal current. The geometric factor is determined in VM. Here,
the loaded mass is taken off the weighing pan, and the lever
of the balance is set into motion by means of a second voice-
coil actuator. The voice coil that is used in FM to counter
balance the weight now acts as a sensor (similar to a mi-
crophone). As the coil moves with a velocity v through the
magnetic field (here, a permanent magnet), an electrical volt-
age U is induced across the coil ends, which is proportional
to the velocity of the coil. The constant of proportion be-
tween v and U is the geometric factor calculated as

U =Bl v. (2)

The geometric factor is assumed to be unchanged among
both operational modes. With additional knowledge of the
gravitational acceleration, which is measured separately us-
ing an absolute gravimeter, the mass can be determined from
Eq. (1). In real applications, the mass is determined from the
average of a series of independent measurements. A typical
measurement series has a duration of a few hours to sev-
eral days. On these timescales, the effect of the tidal accel-
eration variation due to the movement of the moon and the
sun must be considered. A corresponding model is described,
e.g., by Longman (1959). Along with the geographic position
of the measurement setup, the timestamps of the individual
FM measurements are recorded and used for the correction
of the local acceleration. However, the tidal correction is not
exact. Therefore, the acceleration g used for the MC simula-
tion is described as a sum of the local acceleration gjoc and
the residual error after the tidal correction g¢. The tidal error
is assumed to be centered at zero and to have a standard de-
viation of 100 nms~2. The VPB’s gravitational acceleration
model assumes that the local acceleration is constant (but
corrected at each timestamp) during the measurement series
and that the tidal error is varied for each measurement of the
series. In that way, the local acceleration acts as a systematic
effect and the tidal error as a random effect. This information
is sufficient for implementing the VPB acceleration module.

In the source code of the VPB, each module is imple-
mented by a class that contains its mathematical description.
The implementation of the acceleration module is shown in

https://doi.org/10.5194/jsss-11-75-2022

I. Poroskun et al.: Structure of digital metrological twins as software for uncertainty estimation 81

#include <vm/vm.h>
class acceleration {
public:
void set_parameter(vm::parameter local,
vm: :parameter tidal) {
local accel = vm::make_random(local);
tidal_error = vm::make_random(tidal); }

void randomize() {
local accel.randomize(); }

double get_acceleration() {
return local_accel.stored()
+ tidal_error.random(); }

private:
vm: :random_value<double> local_accel;
vm: :random_value<double> tidal_error;

3

Figure 2. Implementation of VPB’s acceleration module.

Fig. 2. The module contains two RNGs (local_accel and
tidal_error) which are stored as private class members.
The RNG class vm: : random_value is provided by vm-
lib, which uses the vm namespace. To initialize the RNGs,
the model takes a pair of parameters (one for the local accel-
eration and one for the tidal error) and assigns them to the
two RNGs.

The method get_acceleration () computes and re-
turns the sum of the randomized local acceleration and
the tidal error. On each call of this method, a new ran-
dom value for the tidal error is generated by invok-
ing tidal_error.random(). To randomize the lo-
cal acceleration, a separate method (conveniently named
randomize ()) is provided. It will be retrieved before the
simulation of each measurement series begins and therefore
makes the local acceleration act as a systematic effect.

It should be noted that the described model about the lo-
cal gravity is only a sub-component of the very complex
Planck-Balance. It was chosen for its simplicity, and there-
fore it is adequate for explaining the library without losing
the overview. Sophisticated models can be built following the
same approach.

7 Conclusions

With the aim of decreasing the effort required to set up and
develop new software for uncertainty estimation, the VCMM
was analyzed and generalized. As a result, a software struc-
ture was derived which can be used to guide the new de-

https://doi.org/10.5194/jsss-11-75-2022

velopments. The reusable components of the VCMM were
identified, extended, and deployed as a stand-alone software
library.

The library provides many functionalities via which users
can set up a general structure for an MC simulation and de-
velop project-specific modules. Beyond the components con-
tained by the VCMM, the library provides additional tools
that address topics that are not of critical importance but are
of great practical interest such as parallelization and sensitiv-
ity analysis.

The library was designed to fulfill the specific require-
ments of software for uncertainty estimation. However, the
RNGs provided were intentionally developed in a general
form to allow them to be used flexibly. Thus, it may be pos-
sible to apply some parts of the library to fields other than
metrology.

The lightweight version of the VCMM was initially de-
signed to allow its principles to be better understood. The fur-
ther development of this software will contribute positively
to the development of the VCMM itself.

In addition to its software, the VCMM introduces two
modeling concepts. The first is the briefly described concept
of so-called timescale separation, where random and system-
atic effects can be considered correctly by the simulation.
The second concept concerns the simulation being performed
based on the data from a real measurement. These two con-
cepts are of special interest, as they may strongly impact the
uncertainties resulting from the simulation. Due to their com-
plexity, a separate discussion is required.

The development of Planck-Balance is still in progress.
Therefore, the development of the VPB is also steadily con-
tinued. At the current development stage, special attention
must be given to designing the software in the most general
and extendable way. The next goal is to realize an uncertainty
estimation that will sufficiently replicate the behavior of the
real balance. With the progressing development of the PB it-
self, new models will be added to the VPB. Inversely, the
VPB will be used to accelerate the development of the PB. In
the future, the VPB is to be used for uncertainty estimations
in industrial and research applications in a way comparable
to how the VCMM is used today.

Code and data availability. The data used in this work can be re-
quested from the authors if required.

Author contributions. IP developed the modular structure of the
D-MT and programmed the supporting software library. CR and
DH formed the concept of the D-MT study and defined the research.
IP, CR and DH discussed and interpreted the results and wrote the
manuscript.

J. Sens. Sens. Syst., 11, 75-82, 2022

82 I. Poroskun et al.: Structure of digital metrological twins as software for uncertainty estimation

Competing interests. The contact author has declared that nei-
ther they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“Sensors and Measurement Science International SMSI 2021”. It is
a result of the Sensor and Measurement Science International, 3—
6 May 2021.

Acknowledgements. Ivan Poroskun would like to thank his su-
pervisor, Thomas Frohlich, for his long-term support during the re-
search.

Financial support. This open-access publication was funded
by the Physikalisch-Technische Bundesanstalt.

Review statement. This paper was edited by Sebastian Wood and
reviewed by two anonymous referees.

References

Alexandrescu, A.: Modern C++ Design: Generic Programming
and Design Patterns Applied, Addison-Wesley Longman Pub-
lishing Co., Inc., USA, ISBN 0-201-70431-5, 2001.

Allard, A. and Fischer, N.: Sensitivity analysis in practice: provid-
ing an uncertainty budget when applying supplement 1 to the
GUM, Metrologia, 55, 414-426, https://doi.org/10.1088/1681-
7575/aabd55, 2018.

Beck, K.: Test Driven Development. By Example (Addison-
Wesley Signature), Addison-Wesley Longman, Amsterdam,
ISBN 0321146530, 2002.

Eichstddt, S., Elster, C., Hartig, F., Heilelmann, D., Kniel, K., and
Wiibbeler, G.: VirtMet — applications and overview, in: Virt-
Met 2021: 1st International Workshop on Metrology for Virtual
Measuring Instruments and Digital Twins, PTB Berlin, Berlin,
2021.

Forbes, A. B., Smith, I. M., Hartig, F., and Wendt, K.: Overview
of EMRP joint research project NEW06 “Traceability for
computationally-intensive metrology”, in: Series on Advances in
Mathematics for Applied Sciences, World Scientific, 164—170,
https://doi.org/10.1142/9789814678629_0019, 2015.

Glaessgen, E. and Stargel, D.: The Digital Twin Paradigm
for Future NASA and U.S. Air Force Vehicles, in:
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, American Institute of
Aeronautics and Astronautics, https://doi.org/10.2514/6.2012-
1818, 2012.

J. Sens. Sens. Syst., 11, 75-82, 2022

Guennebaud, G., Jacob, B., et al.: Eigen v3 [code], https://eigen.
tuxfamily.org (last access:: 2 February 2021), 2010.

HeiBelmann, D., Franke, M., Rost, K., Wendt, K., Kistner,
T., and Schwehn, C.. Determination of measurement un-
certainty by Monte Carlo simulation, in: Advanced Math-
ematical and Computational Tools in Metrology and Test-
ing XI, Series on advances in mathematics for applied sci-
ences, World Scientific Publishing Co., Singapore, 192-202,
https://doi.org/10.1142/9789813274303_0017, 2018.

JCGM: Evaluation of measurement data — Supplement 1 to the
“Guide to the expression of uncertainty in measurement” —
Propagation of distributions using a Monte Carlo method:
JCGM 104:2009, Tech. rep., JCGM, http://www.bipm.org/en/
publications/guides/gum.html (last access: 13 December 2020),
2008a.

JCGM: Evaluation of measurement data — Guide to the expres-
sion of uncertainty in measurement (GUM): JCGM 100:2008,
Tech. rep., Joint Committee for Guides in Metrology (JCGM),
http://www.bipm.org/en/publications/guides/gum.html (last ac-
cess: 13 November 2020), 2008b.

Longman, I. M.: Formulas for computing the tidal accelerations
due to the moon and the sun, J. Geophys. Res., 64, 2351-2355,
https://doi.org/10.1029/JZ064i012p02351, 1959.

Negri, E., Fumagalli, L., and Macchi, M.: A Review
of the Roles of Digital Twin in CPS-based Pro-
duction Systems, Proced. Manufact., 11, 939-948,
https://doi.org/10.1016/j.promfg.2017.07.198, 2017.

Polishchuk, I.: random, GitHub repository, commit 639db9b,
GitHub [code], https://github.com/effolkronium/random, last ac-
cess: 27 December 020.

Robinson, I. A. and Schlamminger, S.: The watt or Kibble balance:
a technique for implementing the new SI definition of the unit of
mass, Metrologia, 53, A46—A74, https://doi.org/10.1088/0026-
1394/53/5/A46, 2016.

Rothleitner, C., Schleichert, J., Rogge, N., Giinther, L., Vasilyan,
S., Hilbrunner, F., Knopf, D., Frohlich, T., and Hirtig, F.:
The Planck-Balance — using a fixed value of the Planck con-
stant to calibrate E1/E2-weights, Meas. Sci. Technol., 29, 1-9,
https://doi.org/10.1088/1361-6501/aabc9e, 2018.

Stein, C.: A Two-Sample Test for a Linear Hypothesis Whose
Power is Independent of the Variance, Ann. Math. Stat., 16, 243—
258, https://doi.org/10.1214/aoms/1177731088, 1945.

Wildele, F. and Schwenke, H.: Automatische Bestimmung der
Messunsicherheiten auf KMGs auf dem Weg in die industrielle
Praxis (Automated Calculation of Measurement Uncertainties
on CMMs — Towards Industrial Application), tm — Technisches
Messen, 69, https://doi.org/10.1524/teme.2002.69.12.550, 2002.

Wendt, K., Franke, M., and Hirtig, F.: Validation of CMM Evalu-
ation Software Using TraCIM, in: Advanced mathematical and
computational tools in metrology and testing X, Series on ad-
vances in mathematics for applied sciences, edited by: Pavese, F.,
World Scientific Publishing Co, Singapore, 392-399, ISBN 978-
981-4678-61-2, 2015.

Wiibbeler, G., Harris, P. M., Cox, M. G., and Elster, C.: A two-stage
procedure for determining the number of trials in the application
of a Monte Carlo method for uncertainty evaluation, Metrologia,
47, 317-324, https://doi.org/10.1088/0026-1394/47/3/023, 2010.

https://doi.org/10.5194/jsss-11-75-2022

https://doi.org/10.1088/1681-7575/aabd55
https://doi.org/10.1088/1681-7575/aabd55
https://doi.org/10.1142/9789814678629_0019
https://doi.org/10.2514/6.2012-1818
https://doi.org/10.2514/6.2012-1818
https://eigen.tuxfamily.org
https://eigen.tuxfamily.org
https://doi.org/10.1142/9789813274303_0017
http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html
https://doi.org/10.1029/JZ064i012p02351
https://doi.org/10.1016/j.promfg.2017.07.198
https://github.com/effolkronium/random
https://doi.org/10.1088/0026-1394/53/5/A46
https://doi.org/10.1088/0026-1394/53/5/A46
https://doi.org/10.1088/1361-6501/aabc9e
https://doi.org/10.1214/aoms/1177731088
https://doi.org/10.1524/teme.2002.69.12.550
https://doi.org/10.1088/0026-1394/47/3/023

	Abstract
	Introduction
	VCMM concept
	General D-MT structure
	Requirements
	Models
	Validation

	Supporting software library
	Random number generation
	Registry
	Sensitivity analysis
	Measurands, stopping rule, and uncertainty estimation
	Parallelization

	Usage example of the library
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

