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Abstract. It is a great challenge to apply a diagnostic system for sensor fault detection to engine test beds.
The main problem is that such test beds involve frequent configuration changes or a change in the entire test
engine. Therefore, the diagnostic system must be highly adaptable to different types of test engines. This paper
presents a diagnostic method consisting of the following steps: residual generation, fault detection and fault
isolation. As adaptability can be achieved with residual generation, the focus is on this step. The modular toolbox-
based approach combines physics-based and data-driven modeling concepts and, thus, enables highly flexible
application to various types of engine test beds. Adaptability and fault detection quality are validated using
measurement data from a single-cylinder research engine and a multicylinder diesel engine.

1 Introduction

Experimental investigations on engine test benches are a sig-
nificant cost factor in current combustion engine develop-
ment. To keep the number of required tests and their asso-
ciated costs to a minimum, it is essential that sensor faults
and measurement errors are detected at an early stage (Flohr,
2005). There are estimations (Fritz, 2008) that up to 40 % of
test bed time is lost due to faults that are detected too late.
Because of the increasing number of sensors and actuators in
combustion engines, reliable validation of test results by one
person alone has become nearly impossible. On the whole,
there is a need for an automated diagnostic system that evalu-
ates measurement data quality and identifies faulty measure-
ment sensors.

A large number of diagnostic solutions exist for specific
engine types, such as diesel engines (Kimmich et al., 2005;
Schwarte et al., 2002) and spark-ignited automotive engines
(Gagliardi et al., 2018; Svärd et al., 2013), or for subcompo-
nents, such as the common rail system (Clever and Isermann,
2010). As these methods were expressly developed for cer-
tain engine types and, thus, for certain fault types, they are
not suitable for general application on engine test beds. The

great challenge in applying a diagnostic system on engine
test beds is that they are often subject to frequent changes
in the test engine. Therefore, the diagnostic system must be
able to be adapted easily to different types of test engines.
Nowadays, model-based methods using physics-based mod-
els are still common (Sarotte et al., 2020). When they are
combined with data-driven techniques, hybrid procedures are
obtained (Jung, 2019). This paper also follows the approach
of combining physical and data-driven methods to provide
models and, subsequently, residuals for fault diagnosis. Con-
crete methods for model generation and a complete set of
physics-based models for engine test beds are presented in
the paper. In addition, it is shown how the presented methods
and models can be combined in a modular way in order to be
used on different test engines.

The rest of this paper is organized a follows: Sect. 2 pro-
vides a short overview of the general diagnostic method-
ology; subsequently, a comprehensive model library is pre-
sented in Sect. 3, and a method for data-driven modeling is
discussed in Sect. 4; finally, the application of the methodol-
ogy is explained and evaluated using two examples in Sect. 5.
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Figure 1. Scheme of the diagnostic procedure.

2 Methodology

The proposed diagnostic system works according to the pro-
cedure shown in Fig. 1. The test bed produces measure-
ment data which are combined to a measurement vector x =
(x1, x2, . . ., xn). This vector is then analyzed and checked
by the three-step diagnostic procedure: residual generation,
fault detection and fault isolation. In the residual generation
step, a set of residuals, r = (r1, r2, . . ., rm), is obtained from
a set of models. In the fault detection step, the residuals are
analyzed to determine whether a sensor fault is present in the
respective measurement. Finally, in the fault isolation step,
it is determined which sensors are faulty by calculating fault
probabilities p = (p1, p2, . . ., pn) for all the measured vari-
ables.

2.1 Residual generation

Models for residual generation can be classified according
to the type of model approach. A basic distinction can be
made between physics-based models and data-driven mod-
els. Physics-based models are based purely on physical
laws. Both the model structure and all model parameters
are known. For data-driven models only input and output
variables are considered. The internal relations are described
with general mathematical formulations, and the models are
generated online on the basis of previous measurements. It is
assumed that both of these model types ultimately result in
a quantitative model as a static relation of two general func-
tions, f (x) and g(x), that describe the fault-free system be-
havior. Such a model can be formulated either as an equation

f (x)= g(x) (1)

or as an inequality

f (x)< g(x). (2)

In both cases, a residual r is defined as the difference between
the terms before and after the operator:

r(x)= f (x)− g(x). (3)

As can be seen in Fig. 1, the procedure presented in this
paper combines different possibilities or tools for residual
generation. In this context, a tool is understood to be a user-
oriented method or set of functions whose purpose is to cre-
ate models for residual generation. The procedure includes
the following tools:

– The formula tool is a direct way to define a model in
equation form Eq. (1) or in inequality form Eq. (2). For
example, it can be used to define redundancies or simple
greater than/less than comparisons, allowing the user to
quickly contribute expert knowledge.

– The limit check tool delivers two inequalities (ll < x
and x < lu) per measured variable to the residual set by
using a lower limit ll and an upper limit lu.

– The model library tool provides engine-specific mod-
els. These models are grouped into component-specific
modules (engine, cylinder, turbocharger, throttle valve,
pipe) and include models in equation form and inequal-
ity form.

– The data-driven modeling tool uses online model train-
ing with a continuous update of the model parameters
to generate regression models that represent the correla-
tions of the measured variables. Each measured variable
is modeled as a function of all other measured variables.

Such a toolbox system is very useful for changeable sys-
tems, such as engine test beds in the field of research and de-
velopment; it enables rapid adaptation of the residual set to
changes in the test engine or test bed by exchanging, adding
or removing individual modules, formulas, limit values or
models.

2.2 Fault detection

Fault detection is performed in order to determine whether
a fault has occurred or not. This is done by checking fault
conditions.

Combining Eq. (3) with Eq. (1) gives

r(x)= 0 (4)
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for models in equation form, and combining Eq. (3) with
Eq. (2) gives

r(x)< 0 (5)

for models in inequality form.
Due to random and systematic measurement errors as

well as model errors, Eqs. (4) and (5) are not directly suit-
able as fault conditions. In practice, it is necessary to intro-
duce a threshold value t that takes these factors into account
(Wohlthan et al., 2020), yielding the fault condition

|r(x)|> t (6)

for models in equation form and the fault condition

r(x)> t (7)

for models in inequality form. These two conditions describe
the fault-free case. Thus, a fault is detected if one of these
conditions is not fulfilled.

2.3 Fault isolation

In the case of a detected fault, a third and final step cal-
culates fault probabilities p = (p1, p2, . . ., pn), producing a
value between 0 % and 100 % for all considered measured
variables x = (x1, x2, . . ., xn). Fault probabilities are used to
identify faulty sensors, whereby the following applies: the
higher the fault probability, the more likely it is that the val-
ues coming from this particular sensor are faulty and, thus,
serve (the user) as important information for troubleshoot-
ing. A geometrical classification method based on the dis-
tance evaluation between error propagation curves and resid-
ual state points (Wohlthan et al., 2020) is used for this pur-
pose. As the focus of this paper is on the residual generation
and fault detection steps, the fault isolation method will no
longer be discussed in this paper.

3 Library for engine test beds

As mentioned in Sect. 2, a model library was developed for
the diagnostic system presented in this paper that provides
residuals for engine test bed application in modules. A mod-
ule contains physics-based models and residuals representing
a certain hardware component. As can be seen in Fig. 2, it is
necessary to configure these modules by linking the prede-
fined input variables to the measured variables (ui = xj ).

The model library presented here contains modules for the
engine, cylinder, turbocharger, throttle valve and pipe. All
models are listed in Table 1. While the complete model is
given for simple physical relations, only the rough model
structure with the necessary input variables is given for com-
plex physical relations.

The engine module contains global relations that cannot be
assigned to any specific system component but that generally

Figure 2. Concept of a component-specific system module.

apply to internal combustion engines, for example, the mass
balances for carbon and oxygen or global energy consider-
ations. The air ratio is also a central variable in the internal
combustion engine, and the different possibilities for its de-
termination provide further models.

The cylinder module uses cylinder pressure (pc) as the
central measured variable and performs a thermodynamic
analysis of the combustion chamber, yielding results such as
the heat release rate (dQC) or a predicted value for the nitro-
gen oxides formed (µNOx ,sim). These results are then linked
to other measured variables, thereby providing further resid-
uals.

The turbocharger module compares input and output tem-
peratures of the turbine and the compressor in the form of
inequalities.

The throttle valve module and the pipe module connect the
mass flow through the element to the pressure drop across the
element. The main difference is that the mass flow model of
the throttle valve module takes a variable valve position into
account.

4 Data-driven models

As shown in Sect. 2.1, the goal of the data-driven model tool
is to generate models that deliver a predicted value for each
measured variable. Assuming a data set with k measured data
points, each of which consists of n measured variables x =
(x1, . . ., xn), this means that one of the n variables serves as
the response variable y and all other l = n−1 variables serve
as predictor variables p = (p1, . . ., pl).

One way to obtain such models is to use regression anal-
ysis (Schadler and Stadlober, 2019). All k observations of
the response variable are combined into the response vector
y = (y1, . . ., yk)′.

All observations of each of the predictors and a column of
ones for the intercept of the model are merged to the k×(l+1)
design matrix:

P=

1 p1,1 . . . pl,1
...

...
...

1 p1,k . . . pl,k

 . (8)

When using multiple linear regression,

y = Pβ + ε, (9)
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ṁ
f A
F
R

st
A

com
parison

ofthe
lam

bda
sensorw

ith
the

air–fuelratio
com

parison
1

calculated
on

the
basis

ofm
asses

L
am

bda
λ

S
=
g (µ

O
2 ,µ

C
O

2 ,µ
C

O
,µ

H
C
,µ

N
O
x )

A
com

parison
ofthe

lam
bda

sensorw
ith

the
air–fuelratio

com
parison

2
calculated

on
the

basis
ofexhaustgas

com
position

T-check
engine

T
3
>
T

2
T

he
tem

perature
atthe

engine
intake

is
higherthan

atthe
engine

exhaust
T-check

coolant
T

co
,o
>
T

co
,i

A
com

parison
ofthe

tem
peratures

ofthe
coolantw

ater
η-check

0
<
M

2
π
n

m
f lcv

<
η

m
ax

L
im

itchecking
ofthe

effective
engine

efficiency
Q

ud -check
0
<
Q̇

f (ṁ
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the response is a linear combination of the predictors. The
relation is disturbed by a random error ε = (ε1, . . ., εk)′, and
the unknown parameter vector β = (β0, . . ., βp)′ with l+ 1
components has to be estimated by the least squares method,
which yields the estimate

β̂ =
(

PT P
)−1

PT .y. (10)

The result is a model that represents the relation in the fault-
free state.

The fully defined model is then used to predict the value
of a new incoming measured data point

ŷk+1 = pk+1β̂. (11)

Finally, the difference between the predicted value and the
measured value yields the residual

r = ŷ− y. (12)

As can be seen above, in the prediction at a time step k+1,
the data of the time steps 1 to k are used to estimate the
parameters, which means that the model parameters are up-
dated at every time step. Continuous model training is nec-
essary for tests on engine test beds, as (due to frequently
changing engine configurations) the behavior of the engine
is not known in advance and can only be determined during
the test. Once all necessary variations have been recorded,
testing is often completed, and the test engine is changed or
reconfigured.

It is possible to estimate the threshold value needed for the
fault condition Eq. (6) by multiplying the root-mean-square
error (RMSE) by a constant factor ft:

t = ft

√√√√1
k

k∑
i=1

(
ŷi − yi

)2
. (13)

The model fitted with the last k observations is used for
the prediction.

In the case of continuous training, the problem may arise
that when an unknown operating state is reached, the resid-
ual increases sharply for a short time even in the fault-free
state, leading to the fulfillment of the fault condition Eq. (6).
It must be ensured that sufficient time is provided for model
training so that all models can adapt to the new operating
state without triggering an alarm. This can be achieved by
introducing an alarm delay. An alarm delay is employed
by specifying the number of measurements that the model
should wait for an existing threshold violation before an
alarm is triggered.

The alarm delay (da) and the threshold factor (ft) are the
two parameters of the data-driven modeling tool.

5 Application examples and evaluation

In this section, the diagnostic procedure is evaluated using
data from two test engines. The first engine is a single-
cylinder research engine (SCE) with 27 measured variables

for diagnosis, and the second one is a multicylinder diesel
engine (MCE) with 51 measured variables (Fig. 3). These
two completely different engine concepts show how the four
tools presented in Sect. 2.1 can be used to generate a com-
prehensive set of residuals and further a good fault detection
rate in each case.

5.1 Configuration of residual generation

The configuration details for each of the residual generation
tools is summarized in Table 2 for both examples.

When the limits for the limit check tool were defined, care
was taken to ensure a sufficient safety margin to the normal
operating range of all measured variables in order to prevent
false alarms in practical use. A list of the limits is not neces-
sary beyond the current scope of this paper. The limit check
tool delivers two residuals per measured variable for a total
number of 54 residuals for the SCE and 102 residuals for
the MCE.

The formula tool is mainly used to define pressure and
temperature redundancies as well as symmetry relations re-
sulting from the two flow paths for cylinder banks A and B
in the MCE. The formula tool provides a total of 9 residuals
for the SCE and 29 residuals for the MCE.

Table 2 gives an overview of the configuration of the mod-
ules used from the model library tool. The exact configura-
tion (i.e., the assignment of a measured variable to a module
input) is not specified in Table 2 if the name of the module
input from Table 1 is the same as the name of the measured
variable from Fig. 3. Three modules - one engine, one cylin-
der and one throttle valve – are used for the SCE. This results
in a total number of 12 residuals (8 from the engine, 3 from
the cylinder and 1 from the throttle valve). The more com-
plex structure of the MCE requires the use of several mod-
ules. In addition to the engine module, two cylinder modules
(the cylinder pressure of only two cylinders is measured) as
well as one turbocharger module and one pipe module per
bank are used. The “lambda comparison 1”, “lambda com-
parison 2” and “T-check coolant” models can not be used in
the engine module, as they lack measured variables. In total,
there are 29 residuals for the MCE (5 from engine, 2×3 from
cylinder, 2× 8 from turbocharger and 2× 8 from pipe).

In both cases, the data-driven tool is operated with the de-
fault parameters and can, therefore, be operated without con-
figuration effort. This results in a total of 27 residuals for the
SCE and 51 for the MCE.

5.2 Results

Fault-free measurement data from real test bed operation of
these two engines provide the initial basis for the evaluation.
The data set of the SCE consists of 159 data samples, and the
data set of the MCE consists of 51 data samples. To evaluate
the procedure, faults were simulated. The fault level, the fault
timing and the affected measured variable were varied sep-
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Figure 3. A schematic of a single-cylinder research engine (SCE, left) and a multicylinder diesel engine (MCE, right).

Figure 4. The detection rate (RD) at specific fault levels of the individual residual generation tools for the SCE (a) and MCE (b). The
detection rate at one fault level is averaged over all fault timings and variables.

arately. A total of 10 different fault levels between −50 %
and +50 % relative error were investigated. Due to the dif-
ferent data set size, the examined fault timings of the two
examples differ. For the SCE, the fault was simulated start-
ing with the 50th, 100th or 150th sample. The MCE, on the
other hand, used either the 20th or 40th sample. In both cases,
faults in all measured variables were examined. Thus, the ba-
sis for the evaluation is 10× 3× 27= 810 fault simulations
for the SCE and 10× 2× 51= 1020 for the MCE.

Figure 4 presents the results of the evaluation of the two
examples, showing the detection rate (RD; the number of

correctly detected faults divided by the number of actual
faults) over the fault level of each tool and the overall re-
sult when all tools are combined. As expected, the detection
rate increases as the fault level increases because threshold
violations become more likely. It can be seen that the indi-
vidual tools for the two examples greatly contribute to the
overall result in different ways. The tools formula, model li-
brary and data-driven models deliver good results of simi-
lar magnitude for the SCE, whereas the formula tool is the
main contributor to the overall MCE result due to the high
number of defined formulas. Furthermore, it is apparent that
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the model library tool performs best at low fault levels be-
cause the physics-based models that it contains are highly
accurate and, thus, generally have small model uncertain-
ties. This leads to smaller thresholds than with the models
of the formula tool and the data-driven models tool. In the
case of data-driven models, the poorer performance of the
MCE compared with the SCE can be explained by the fact
that the quality and stability of the models is lower as a re-
sult of the smaller data set. The limit check tool is of less
importance and is mainly used to detect sensor total failures
and other major faults. However, good overall detection rates
can be achieved in both cases, with the SCE showing better
results at low fault levels because of the higher contribution
of the residuals from the model library tool. The MCE, on
the other hand, achieves better detection rates at higher fault
levels: due to the large number of pressure and temperature
variables, the influence of variables that are difficult to mon-
itor (such as µNOx or µHC) is lower.

6 Conclusions

In this paper, it was shown how an adaptive residual gen-
erator can be realized and used for the diagnosis on engine
test beds. The adaptation of the residual set to the engine
or test bed is done by combining several tools and mod-
ules. As shown in the evaluation section, this system allows
good monitoring of the sensors for different engine types.
Depending on the application, the individual tools presented
make different contributions to system monitoring. A model
library consisting of component-specific modules provides
the most important basis for monitoring the sensors of en-
gine test beds. For larger data sets, the diagnostic system can
be effectively supported by the use of data-driven models,
which are generated automatically during the test by contin-
uous model training. In addition, the formula tool offers the
possibility to define models in equation or inequality form
and add them directly to the residual set, which is especially
useful for engines with a high number of redundant or quasi-
redundant sensors.

Appendix A: Nomenclature

α Throttle valve opening angle
η Efficiency
κ Isentropic exponent
λS Lambda sensor
φ Crank angle
µ Mass fraction
AFRst Stoichiometric air–fuel ratio
B Cylinder bore diameter
C Combustion
FMEP Friction mean effective pressure

H Enthalpy
I Number
LCV Lower calorific value
M Torque
Pe Effective power
Q Amount of heat
S Engine stroke
T Temperature
V Cylinder volume
a Air
c Cylinder
co Coolant
eoc End of combustion
φ Fuel
i In
m Mass
misc Miscellaneous
mix Mixture
o Out
p Pressure
soc Start of combustion
ud Undetermined
ub Unburned
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