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Abstract. A new approach to assess the emanation of 222Rn from 226Ra sources based on γ -ray spectrometric
measurements is presented. While previous methods have resorted to steady-state treatment of the system, the
method presented incorporates well-known radioactive decay kinetics into the inference procedure through the
formulation of a theoretically motivated system model. The validity of the 222Rn emanation estimate is thereby
extended to regimes of changing source behavior, potentially enabling the development of source surveillance
systems in the future. The inference algorithms are based on approximate recursive Bayesian estimation in a
switching linear dynamical system, allowing regimes of changing emanation to be identified from the spectral
time series while providing reasonable filtering and smoothing performance in steady-state regimes. The derived
method is applied to an empirical γ -ray spectrometric time series obtained over 85 d and is able to provide a
time series of emanation estimates consistent with the physics of the emanation process.

1 Introduction

222Rn is an odorless, colorless, radioactive noble gas, occur-
ring naturally in the environment as part of the primordial
238U decay chain. Due to its high mobility in the environ-
ment, radon can accumulate inside buildings where, in con-
junction with its decay products (short-lived progeny; SLP),
it is responsible for the most significant natural exposure
of the general public to ionizing radiation, which is an im-
portant consideration for incidents of lung cancer (Darby et
al., 2005). In the 2013/59/EURATOM treaty, 300 Bq m−3

was stipulated as the action level for indoor 222Rn activ-
ity concentrations, beyond which mitigation is required. On
the other hand, however, measurements of outdoor 222Rn ac-
tivity concentration at environmental levels have numerous
beneficial applications in environmental sciences, including
(but not limited to): as a tracer of terrestrial influence on air
masses (Chambers et al., 2016, 2018); as a tool for classify-
ing the atmospheric mixing state (e.g., Perrino et al., 2001;
Williams et al., 2013, 2016; Chambers et al., 2019b, a); and
as a tool for estimating integrated local- to regional-scale

emissions of trace gases with similarly distributed sources,
such as CH4, N2O, or CO2 (Levin, 1987; Biraud et al., 2002;
Laan et al., 2010; Levin et al., 2021). For these reasons, there
is an interdisciplinary need for SI-traceable calibration pro-
cedures at low activity concentrations for atmospheric radon
monitors, and the associated realization and dissemination of
the unit Bq m−3, which can only be feasibly realized through
emanation sources rather than gaseous standards (Mertes et
al., 2020; Linzmaier and Röttger, 2013; Röttger et al., 2014).
In these prior studies, a method was presented that enabled
γ -ray spectrometric data from an open 226Ra source (i.e.
emitting 222Rn) to be used to estimate the resulting activity
concentration of 222Rn in a closed volume, by measuring the
activity of residual SLP in the source to quantify the 222Rn
emanation. In recent years, there has been a trend towards
the use of dynamic calibration conditions for 222Rn (e.g., Fi-
alova et al., 2020), eliminating the need for the long build-up
period associated with static conditions. However, it has been
demonstrated that emanation from most materials demon-
strates a strong dependence on humidity and temperature as
a result of changes in diffusion properties (Janik et al., 2015;
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Stranden et al., 1984; Zhou et al., 2020), which generally re-
sults in a correlation between emanation and environmen-
tal parameters. In these cases, previously established meth-
ods to determine the amount of emanating 222Rn fail over a
considerable time span, since the dynamical processes tak-
ing place in the source are not accounted for. Hence, experi-
mental investigations of source behavior under different en-
vironmental conditions are hardly possible using established
methods. Yet, this capability is particularly important for the
realization of in situ field calibrations of large volume atmo-
spheric 222Rn monitors, since dynamic methods would sim-
plify the technical aspects of in situ field calibrations con-
siderably. Said limitations are pointed out and discussed in
the theoretical section of this work and have not been stated
nor addressed elsewhere. A possible way to correct for such
environmental influences, however, lies in determining the
amount of emanating 222Rn in near real time. We present
herein that this can be achieved through continuous mea-
surement of spectrometric time series of the 222Rn emanation
sources and a suitable method for data analysis that addresses
the dynamic behavior of the system. The main contributions
of the present work are the discussion of the limitations of
established methods and the derivation and implementation
of an alternative method, based on the well established com-
putational techniques of recursive Bayesian estimation. First
results obtained by application of the proposed method to
experimental data are presented, which illustrate the theoret-
ically motivated limitations and which can be well explained
on the basis of the physical processes taking place in the em-
anation source, justifying the correctness and superiority of
the presented method.

2 Theory and derivations

2.1 Radioactive decay kinetics

Radioactive decay chain kinetics are described by a linear
time invariant (LTI) system of ordinary differential equa-
tions. Historically, this has been expressed in terms of the
Bateman equations (Bateman, 1910), but recently this has
been more conveniently written in matrix form (Pressyanov,
2002; Levy, 2019; Amaku et al., 2010). Undistorted radioac-
tive decay kinetics of a decay chain of n nuclides without, or
with only negligible, branching, as in the case of the 226Ra
decay chain, can thus be written concisely as Eq. (1). The
fundamental matrix K can be constructed such that it consists
of the respective decay constants λi on its diagonal and gen-
erally on its first superdiagonal, while all other entries are 0.
A denotes a vector consisting of the activities of the respec-
tive nuclides in the decay chain. Equation (1) can readily be
discretized using the matrix exponential of K, which is in
a form that can be conveniently computed by diagonaliza-
tion of K, e.g., through its (symbolically accessible) Jordan

canonical form or its Eigen decomposition.

dA= d


A0
A1
. . .

An



=


−λ0 λ0 0

...

0 −λ1 λ1
...

· · · · · · · · ·
...

0 0 0 −λn



A0
A1
. . .

An

dt

=KAdt (1)

2.2 222Rn emanation

The release of 222Rn from a 226Ra source distorts the dy-
namics described above, due to the introduction of an ad-
ditional sink-term η (222Rn atoms released per unit time),
which is not directly quantifiable experimentally. Previously,
a method was presented to measure a steady-state emanation
coefficient, previously understood to be the ratio of exhaled
and generated 222Rn atoms (Mertes et al., 2020; Linzmaier
and Röttger, 2013) at any instant in time.

χ =
η

AS
Ra-226

, (2)

where χ is the emanation coefficient, η is the release of 222Rn
atoms per unit time, and AS

Ra-226 is the 226Ra activity of the
source.

By first principles, however, the 222Rn activity AS
Rn-222

must follow first-order continuity as in Eq. (3).

dAS
Rn-222 =−λRn-222A

S
Rn-222dt + λRn-222A

S
Ra−226dt − λRn-222ηdt,

(3)

whereAS
Rn-222 andAS

Ra−226 are the activities of the respective
nuclides in the source material.

To this point, the best method to derive χ has been by mea-
suring the ratio of SLP and 226Ra activities within the source,
most commonly by γ -ray spectrometry, where χ is defined
as

χ = 1−
AS

Rn-222

AS
Ra−226

= 1−
AS

Pb−214

AS
Ra−226

. (4)

According to Eqs. (2) and (3) however, this is only applica-
ble under steady-state conditions. This limitation was not ac-
knowledged or discussed in earlier work. Consequently, ap-
plication of this simple method is restricted either to regimes
of a completely stabilized source, or a closed accumulation
volume for the emitted 222Rn. In closed volumes, the er-
rors associated with neglecting the dynamics in the source
are negligible, since the volumetric 222Rn follows the same
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dynamics. As such, after initial equilibration, Eq. (4) holds,
even with changing χ . However, in this case χ is more ac-
curately understood to be a partitioning coefficient of 222Rn
between the source and the closed volume, rather than the
definition given in Eq. (2). The result of Eq. (3) is that the
measurable AS

Rn-222 (t) is given by the convolution of the la-
tent η (t) with an impulse response function that is defined by
the radioactive decay kinetics. Thus, the estimation of η (t),
or equivalently χ (t), based on measurements of AS

Rn-222 (t)
is an inverse problem and cannot be carried out feasibly by
simple numerical estimation of the gradient (cf. Eq. 3) due
to the ubiquitous Poisson noise associated with radioactiv-
ity measurements. Moreover, in dynamic calibrations, η (t)
must be expected to vary with changes in the environmen-
tal conditions. It is also expected that this dependency will
be strongly related to the source design and its specific pro-
duction parameters. A further consideration is that, when us-
ing this method, it is not readily possible to accurately mea-
sure correlations of χ (t) with environmental conditions on
timescales smaller than at least five half-lives of 222Rn with-
out considering the decay kinetics. These limitations make it
infeasible to use the existing direct approach to continuously
estimate 222Rn release as required in dynamic calibration
procedures, or to derive correction factors for different en-
vironmental conditions, since the time required would be far
too long for such measurements due to the half-life of 222Rn
of approximately 3.8 d. Here we present and discuss a new
approach that embraces the described behavior and enables
the release of 222Rn from sources to be estimated more accu-
rately using continuous spectrometric measurements with the
generalization to non-steady-state situations. The algorithms
and assumptions presented have been chosen such that, in
the future, the necessary computations would be feasible on
relatively low-power devices (e.g., current single-board com-
puters) in an online fashion.

2.3 Recursive Bayesian estimation and model
formulation

Recursive Bayesian estimation describes a class of algo-
rithms to perform statistical inference in dynamical systems
that can be modeled by a (first-order) Markov process. The
general idea of these methods is to sequentially form priors
for a state vector x and a dynamical model of the system,
and use noisy measurements y related to x to correct them
through a measurement model and Bayes theorem (Särkkä,
2013). This method can be used to perform statistical inver-
sion, in that it enables the estimation of latent terms whose
values in a specific dynamical system are only partly mea-
sured. This is closely related to the case described in the
previous section, given that the state vector, the dynamics,
and the measurements can all be suitably modeled. In this
setting, two collections of conditional probability distribu-
tions are of interest, which are commonly called the filter-
ing distributions p

(
xn|y1:n

)
and the smoothing distributions

p
(
xn|y1:N

)
, where the notations 1 : n and 1 :N denote the

collection of all data observed up to time tn and the col-
lection of all data, respectively, and t specifies an instant in
time in the set of measurement times, T , indexed by n. In
cases where x follows a first-order Markov process, and un-
der certain conditional independence assumptions, the defi-
nition of p

(
xn|y1:n

)
and p

(
xn|y1:N

)
can be expressed re-

cursively (Särkkä, 2013; Särkkä and Solin, 2019). Prediction
of the state vector xn at time tn given a collection of measure-
ments y1:n−1 up to time tn−1 and the filtering density of the
state at time tn−1, p

(
xn−1|y1:n−1

)
is given by the Chapman–

Kolmogorov Eq. (5) (Särkkä and Solin, 2019).

p
(
xn|y1:n−1

)
=

∫
p (xn|xn−1)p

(
xn−1|y1:n−1

)
dxn−1 (5)

Upon observation of yn, the density predicted by Eq. (5) is
corrected into a filtered posterior using Bayes theorem with
the measurement likelihood p

(
yn|xn

)
, assumed to be condi-

tionally independent of the past states and measurements, i.e.
p
(
yn|x1:n,y1:n−1

)
= p

(
yn|xn

)
(Särkkä, 2013).

Conversely, smoothing refers to computing the density of
the state given all measurements in a specific time interval,
or the complete collection. In most cases, smoothing can be
defined recursively using information inferred from the filter-
ing and starting a backward recursion at the last time instant
at which the smoothing and filtering densities are equal. For-
mally, the smoothing density is recursively defined by Eq. (6)
for the above conditional independence assumptions.

p
(
xn|y1:N

)
= p

(
xn|y1:n

)∫ p (xn+1|xn)
p
(
xn+1|y1:n

)p (xn+1|y1:N
)

dxn+1 (6)

The most notable examples of these types of algorithms
are the Kalman filter (Kalman, 1960) and the Rauch–Tung–
Striebel smoother (Rauch et al., 1965), which yield the op-
timal estimators for discrete systems of linear dynamics and
independent Gaussian noise, where the filtering and smooth-
ing can be carried out in O (T ) time.

For the problem at hand, a stochastic differential equation
(SDE) is needed to express the (time-varying) uncertainty as-
sociated with the latent continuous variable η (t). This can be
seen as an application of the latent-force models introduced
in Alvarez et al. (2009), whose link with Bayesian filtering
was previously established in Särkkä et al. (2019) and Har-
tikainen and Särkkä (2012). The specific choice of SDE is
subjective but allows the properties of the resultant functions
to be constrained, and can be used to encode prior knowledge
(Särkkä and Solin, 2019). In this work, without any claims of
optimality, the choice was made to use the zero-mean, mean-
reverting Ornstein–Uhlenbeck process for the first derivative
of η, i.e., Eq. (7), resulting in constraining η to somewhat
smooth functions of certain autocorrelation.

d2η

dt2
=−γ

dη
dt
+ σdβt , (7)
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where dβt describes the increments of a scalar standard
Brownian motion.

While this choice is not entirely representative of the phys-
ical mechanisms related to η, in that, for example, it allows
for negative values of η, it results in a Gaussian process
for which the inference procedure has convenient conjugacy
and thus a closed-form solution, such that the resultant algo-
rithms are suitable for online operation on low-power com-
putational hardware that can be reasonably used to moni-
tor an emanation source during its operation. It should also
be noted that Eq. (2) was formulated with this in mind, in
the sense that η is modeled as state-independent, rather than
state-dependent, as would likely be more realistic for a diffu-
sive process like 222Rn emanation. However, these theoreti-
cal inaccuracies did not manifest in practice with the exper-
imental data presented in Sect. 3, given that η is far enough
from 0 and the collected data are strong enough, while only
approximate inference is of interest. The system is thus mod-
eled to follow the combined SDE given in Eqs. (8)–(11) in
terms of the Itō stochastic integral (Särkkä and Solin, 2019;
Hartikainen and Särkkä, 2012).

dx =Kxdt +Ldβt (8)

x =


AS

Rn-222
AS

Ra−226
η
dη
dt

 ;

K=

 −λRn-222 λRn-222 −λRn-222 0
0 −λRa−226 0 0
0 0 0 1
0 0 0 −γ

 ;L=
 0

0
0
σ

 (9)

xt = eK(t−t0)x0+

t∫
t0

eK(t−τ )Ldβτ (10)

p(xn|xn−1)∝N
(

eK(tn−tn−1)xn−1,

tn∫
tn−1

eK(tn−τ )LLTeKT(tn−τ )dτ
)

(11)

2.4 Measurement model for integrating spectrometric
data

Unlike most applications of such filtering algorithms for dis-
cretized LTI systems, here the supporting measurements can-
not be made at instantaneous moments in time because dis-
integrations of a specific nuclide can only be recorded over
a finite time interval, rn, indexed by n. In routine radioactiv-
ity analysis, this behavior results in decay or ingrowth dur-
ing measurement corrections. However, in the present case,
an additional contribution to the uncertainty results from un-
known changes of η over the integration time.

The way we have chosen to model this behavior in the
present study is to start by stating that the uncorrupted (i.e.,
noise-free) measurements are given by Eq. (12), where, for

now, we assume that H is known deterministically.

y (t, r)=H
r∫

0

x (t + τ )dτ, (12)

where H is a matrix that maps the state integral to the mea-
surement space.

The elements of H are related to the counting efficiency
of the setup and/or nuclide. Note that, in principle, it would
be possible to choose H to directly model some region of
the spectrum, but we chose to use derived peak areas or even
spectrum integrals as the input data such that the elements
of H are just the counting efficiencies. More elaborate mod-
eling in the spectrum space was not attempted, since the fil-
tering algorithms generally require inversion of the residual
covariance matrix in the measurement space, and thus scale
approximately with O

(
k3) where k is the dimensionality of

the measurements.
Since integration is a linear operator, the joint distribu-

tion of xn−1, xn, and yn clearly has a Gaussian density,
and hence p

(
xn,yn|y1:n−1

)
is readily found by marginal-

izing over xn−1, given that the previous time step posterior
filtering distribution p

(
xn−1|y1:n−1

)
is already known (and

Gaussian). This joint density is derived in Appendix A1. It
is assumed that the measurement yn is related to the state xn
by integrating from tn−1+δn to tn = tn−1+δn+rn, such that
arbitrary integration intervals rn and arbitrary time offsets δn
are possible (e.g., if measurements are skipped or delayed).
In other words, each time instant where the density of x is
inferred coincides with the endpoint of each spectrum acqui-
sition. This approach intrinsically accounts for the ingrowth
and decay during the finite integration time, but more impor-
tantly, additionally estimates the uncertainty arising from the
possible change of η within the integration time. Given that
p
(
xn,yn|y1:n−1

)
under the present model is thus accessi-

ble, the posterior filtering distribution p
(
xn|y1:n

)
is found by

conditioning onto the observed value for yn using the well-
known conditioning formula for multivariate Gaussians.

Radioactivity measurements generally follow Poisson
statistics. In the framework of Bayesian inference and re-
cursive Bayesian estimation, non-Gaussian noise consider-
ably complicates the inference procedure, since the mea-
surements are then no longer a Gaussian process and thus
no longer conjugate with the state. For this reason, there
is no exact closed-form solution for the filtering recursions
in the case of non-Gaussian noise. Considerable work has
been done to address this, including sampling procedures like
Markov chain Monte Carlo, particle filtering, or expectation
propagation (Minka, 2013), or by assuming that all arising
probability density functions (PDFs) are Gaussian combined
with an estimation strategy for the moments (e.g., unscented
Kalman filter; Julier et al., 2000). Generally, we found such
approaches unsuitable due to their computational complexity
but also because the measurements can be well approximated
as Gaussian (due to the high number of counts that are being
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observed). Instead, we approximate the measurement like-
lihood as Gaussian where the moments are evaluated from
the previous time step filtering distribution of x. Ebeigbe et
al. (2020) proposed that the covariance matrix could be esti-
mated from the mean of the filtered state in a different con-
text, which we adopted. Combining this with the results of
Appendix A1, we obtain Eq. (13) as an approximation of the
joint density p (xn,yn |y1:n−1).

p
(
xn,yn|y1:n−1

)
∝N

([
FrFδµn−1

HMFδµn−1

]
,

[
6xx 6xy

6xy
T

6yy

])
, (13)

where

6xx = Fr
(

Fδ6n−1FT
δ +Uδ

)
FT
r +Ur ,

6xy = Fr
(

Fδ6n−1FT
δ +Uδ

)
MTHT

+CHT,

6yy =HM
(

Fδ6n−1FT
δ +Uδ

)
MTHT

+HBHT
+O+R

and where the index n has been dropped on r and δ for no-
tational brevity and the included matrices are given as fol-
lows: R is a variance term that accounts for the variance con-
tribution of the background count rate, which is estimated
from prior background measurements and is assumed con-
stant over time, and µn−1 and 6n−1 denote the mean and
covariance matrix of the filtering distribution at the previous
time step.

Fa =eKa Ua =
a∫

0

eK(a−τ )LLTeKT(a−τ )dτ

Mr =

r∫
0

eKτdτ Cr =
r∫

0

r∫
τ

eK(r−τ )LLTeKT(a−τ ) da dτ

Br =
r∫

0

r∫
τ

r∫
τ

eK(a−τ )LLTeKT(b−τ ) da dbdτ

O=diag(min(1,HMFδµn−1))

2.5 Extension for strong variations in emanation
characteristics or discontinuities

The variance σ of the Brownian motion process in Eq. (7) al-
lows a linear dynamical model as shown in Sect. 2.3 and 2.4
to be tuned in a trade-off-like fashion for one of two prop-
erties. Predictions are good in times of relatively constant η
and low σ , such that the measurement noise is well filtered at
the expense of fidelity in response to steep changes in η, or
vice versa. In practical situations however, where the humid-
ity can change rapidly and is known to affect the emanation,
a period of re-equilibration is induced in the source, before it
returns to somewhat stable behavior. Therefore, experimental
time series of the radon source spectra typically show prop-
erties that are not well addressed by a single such model of

linear dynamics due to the described distinct regimes. This
kind of situation is strongly related to the tracking of ma-
neuvering targets, a field in which Bayesian recursive esti-
mation is well established. To obtain good filtering perfor-
mance in the sense of providing relatively smooth estimates
with small uncertainty in case of constant η while retaining
the ability to quickly react to steep gradients with associ-
ated larger estimation uncertainty, one approach suggested
by Nadarajah et al. (2012) and Mazor et al. (1998), among
others, is to use the interacting multiple model (IMM) recur-
sive estimator. This is commonly used for object tracking and
in this work was adopted to refine the procedure outlined in
the previous sections. In the IMM, multiple filters operate on
the data at the same time, and their output is mixed based
on the likelihood of their measurement predictions. In this
way a second, discrete, first-order Markov process describ-
ing a discrete random variable stn that indexes into the sev-
eral applicable and differently parameterized linear dynami-
cal models is formally introduced and evolves according to
some, potentially parameterized, transition matrix 5. As a
result, the filtering and smoothing distributions become the
compound distributions p

(
sn,xn|y1:n

)
and p

(
sn,xn|y1:N

)
,

respectively, which now also carry probabilistic information
regarding the active model index sn.

These compound distributions can be decomposed into
discrete and continuous components which are approxi-
mately represented as mixtures of Gaussians. This kind of
system is also called a switching linear dynamical system
(SLDS). In the SLDS, exact filtering is not computationally
feasible (Barber, 2006; Hartikainen and Särkkä, 2012), since
the filtering distribution is a mixture of Gaussians whose
components are being multiplied by the number of models at
each time step resulting in the exponential growth of com-
ponents. Most approaches for approximation, like the one
employed here, replace the resultant mixture at each step of
filtering and smoothing with a smaller one, limiting the num-
ber of kept components in the Gaussian mixtures to some
fixed upper value I . In case of filtering, these types of algo-
rithms are referred to as Gaussian sum filtering (GSF). Fig-
ure 1 gives an outline, both in terms of a component-wise
(i.e., marginalized only over the mixture component indices
in) and a marginal view (i.e., marginalized over both the
model indices sn and the component indices in) of the ap-
plied GSF method for the final SLDS model for the example
of two Gaussian components per mixture. The basis of the
prediction and correction steps for each combination of ac-
tive model and prior components, jointly indexed by sn, sn−1,
and in−1, is detailed in Sect. 2.3 and 2.4. By the discretiza-
tions carried out in Sect. 2.3 and 2.4, it is thus implicitly as-
sumed that the active model index can only switch after the
observation of each spectrum but not during the integration
time of each spectrum. The probabilities p

(
sn|y1:n

)
are also

estimated by the algorithm by evaluation of the likelihood
of measuring yn in each component of the prediction step
density and marginalization over xn and associated in, re-
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spectively. For further details on the GSF method, the reader
is directed to Barber (2006). The results of the GSF algo-
rithm are the (unsummed) factors on the right hand side of
the following approximation of the decomposed filtering dis-
tribution, which consist of said Gaussian mixtures:

p
(
xn|y1:n

)
≈

∑
sn
p
(
sn|y1:n

)∑
in
wsn,inp

(
xn|sn, in,y1:n

)
, (14)

where sn is the model index at time step tn, in is the com-
ponent index of the approximating Gaussian mixtures, and
wsn,in are the associated Gaussian mixture weights.

In this setting, the smoothing distribution is also a com-
pound distribution in which the components of each mix-
ture are multiplied within each smoothing step in a back-
wards recursive formulation by the number of linear dynam-
ical models. Therefore, smoothing is also only possible ap-
proximately, once again, on the basis of approximating each
arising Gaussian mixture with a smaller one. One way to ap-
proximately obtain smoothed results in the SLDS setting is
thus given by the expectation correction (EC) algorithm in-
troduced in Barber (2006) and shown therein to provide state-
of-the-art results, both in terms of computational efficiency
and accuracy, using the results of the GSF forward pass and
performing a backwards recursion through the time series.
The EC algorithm requires, analogous to the GSF forward
pass, the propagation and correction methods, in the form
of the filtering and smoothing steps, for the parameterized
linear dynamical system outlined in Sect. 2.3 and 2.4 acting
on each Gaussian mixture component. In this case, however,
the integrating behavior of the measurements does not lead
to any required adjustments, and the applied equations are
thus exactly analogous to the classical Rauch–Tung–Striebel
smoother that represent a formal reversal of the dynamics.
These have also been used in the original presentation of the
EC algorithm (Algorithm 5 in Barber, 2006). Figure 2 pro-
vides a graphical illustration similar to the filtering method
in Fig. 1 of the EC smoothing backward pass. The EC al-
gorithm provided in Barber (2006) was used without further
modifications, and for more information on this algorithm,
the reader is directed to this work.

While not a main contribution to this paper, for complete-
ness sake and to facilitate possible re-implementation, both
the GSF forward pass and the EC backward pass are outlined
in pseudo-code in Appendix A2 in the way they have been
implemented here.

To model the two distinct regimes outlined before, two
linear dynamical models are used that share their γ values,
but for one (cf. Eq. 8), σ is constrained to a small value.
Consequently, one of the models corresponds to regimes of
changing η and the other to near constant η. This approach
allows us via the model index probabilities p

(
sn|y1:n

)
and

p
(
sn|y1:N

)
obtained from the GSF and the EC algorithms to

also probabilistically identify regimes of constant radon em-
anation within a time series of recorded spectra, even when
the retained activity of 222Rn is still in a re-equilibration pe-
riod, as will be illustrated in the experimental results pre-

sented later. In that sense, and by construction of the two
models, the model index probabilities can be physically in-
terpreted as the probability of the source to currently have
stable emanation characteristics. A non-zero σ acting as a
regularization term is, however, still needed in the case of the
model corresponding to the constant regimes because oth-
erwise the approximations used within both the GSF and
the EC algorithm become numerically unstable. The final
model contains four unknown parameters, σ,γ , and the com-
ponents of5, which is row-wise normalized and whose com-
ponents are thus parameterized by two parameters. These
four parameters are tuned by minimizing the (approximate)
negative marginal log likelihood of the measurement series,
−
∑
nlnp

(
yn|y1:n−1,σ,γ,5

)
, that is accessible in the GSF

forward pass (see Algorithm 1 in Appendix A2). For the pur-
poses of this initial investigation, we assume the uncertainty
arising from uncertain parameters is negligible in light of the
counting statistics, the uncertainty encoded in the prior of the
initial state, p(x0), and the components of H.

2.6 Propagation of the detection efficiency uncertainty

In practice, the components of H are not known without un-
certainty, and the uncertainty associated with H is the most
significant contribution to the combined uncertainty of η in
most practical cases. The outlined formalism above is a way
to obtain estimates for p

(
xn|y1:n,H

)
and p

(
xn|y1:N ,H

)
or

the extended compound distributions p
(
sn,xn|y1:n,H

)
and

p
(
sn,xn|y1:N ,H

)
detailed in the previous section, respec-

tively. For notational simplicity, the following is formulated
with respect to the single-model case but applies analogously
to the SLDS model. Formally, the inclusion of this systematic
measurement uncertainty into the filtering or smoothing re-
sult, respectively, is given by Eq. (15), which is not tractable.

p
(
xn|y1:n

)
=

∫
H
p
(
xn|y1:n,H

)
p
(
H|y1:n

)
dH (15)

In the present case, we assume H to be constant with respect
to time and that its distribution is known from previous mea-
surements, independent of the collection y1:N . Generally, the
uncertainty in H associated with, for example, a prior calibra-
tion procedure, can reasonably be described by this approx-
imation, if dH

dt = 0. This allows rewriting Eq. (15) to obtain
Eq. (16); however, the result remains computationally infea-
sible, since it would require an infinite amount of filtering
and smoothing passes.

p
(
xn|y1:n

)
=

∫
H
p
(
xn|y1:n,H

)
p (H)dH (16)

Thus, in the setting at hand, p
(
xn|y1:n

)
, the result of Eq. (16)

is given as an infinite mixture of Gaussian mixtures with
weights proportional to p (H). Our strategy of choice to ap-
proximately include the systematic uncertainty associated
with H is to replace the infinite mixture by a finite ver-
sion, i.e., to compute the filtering and smoothing densities for
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Figure 1. Illustration of the iterative computational methods applied in the Gaussian sum filtering (GSF). The filtering distributions (prior
and posterior at time steps tn−1 and tn, respectively) are displayed as Gaussian mixtures indexed by in for each of the models indexed by sn.
The top panel shows a component-wise view, and the bottom panel shows a marginalized (over sn and in) view of the respective compound
distributions. The algorithm can be formally divided into the prediction, correction, and approximation steps. The illustrated iteration starts
at some specified prior for t0. For further details, see text and Appendix A2. The output of the algorithm is the approximated decomposed
filtering distribution

∑
sn
p
(
sn|y1:n

)∑
in
wsn,inp

(
xn|sn, in,y1:n

)
, the input is a prior and a collection of measurements y1:N with associated

time stamps, measurement times, and values for all parameters (see text). The approximate marginal likelihood of the measurement sequence
can be computed alongside the filtering.

Figure 2. Illustration of the backward iterative computational steps (1)–(4) in the expectation correction algorithm applied for correcting the
results from the Gaussian sum filtering (GSF) outlined in Fig. 1 to the approximate smoothing solution in the switching linear dynamical sys-
tem. Input to the algorithm are the results from the GSF and associated time stamps and values for all parameters. Output is the decomposed
smoothing distribution

∑
sn
p
(
sn|y1:N

)∑
in
wsn,inp

(
xn|sn, in,y1:N

)
as a Gaussian mixture approximation.

specific realizations of H and combine them into mixtures
weighted with the likelihood of said realization under the
density p (H) known from prior calibration measurements.
In practice, this is closely related to the selection of sigma
points of H within some prior density and using the asso-
ciated normalized likelihoods as multiplicative weights with
the respective filtering and smoothing mixture weights to ob-

tain extended mixtures that approximately reflect the uncer-
tainty associated with H, a method inspired by the unscented
Kalman filter (Julier et al., 2000) for approximate filtering in
non-linear systems.
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2.7 Implementation details

Implementation of the presented algorithms was carried out
in Python using the JAX framework (Bradburry et al., 2018),
which provides automatic batching and vectorization, just-
in-time compilation, and automatic forward- and reverse-
mode differentiation. This allows the optimization of the hy-
perparameters γ , σ , and 5 using the ADAM gradient de-
scent minimization (Kingma and Ba, 2014) routine from JAX
together with the automatically computed batch gradient of
the negative log likelihood, −

∑
nln
(
yn|y1:n−1,σ,γ,5

)
, of

the GSF forward pass on the entire dataset (Algorithm 1 in
Appendix A2). The number of components retained in the
arising Gaussian mixtures in GSF and EC is chosen accord-
ing to available computational resources. Forward and back-
ward step routines for the linear dynamical system given in
Eq. (2) (cf. Appendix A1) were implemented as shown in the
auxiliary functions for Algorithms 1 and 2 in Appendix A2,
respectively. Gaussian mixture reduction as necessary in the
GSF forward and EC backward passes (i.e., the approxima-
tion steps in the charts in Figs. 1 and 2) was implemented
according to a greedy algorithm (based on Kullback–Leibler
divergence (Runnalls, 2007). The mean approximation in the
EC backward pass, and implementation of the EC backward
and GSF forward passes, were directly adopted as presented
in Barber (2006). Gaussian mixture weights and model index
probabilities are stored and operated on in ln-space (using
the log-sum-exp operation for normalization) for improved
numerical stability. Routines for the computation of the Ma-
trices F, U, M, C, and B in Eq. (13) were obtained from
symbolic computation using SymPy (Meurer et al., 2017),
and the symbolic Jordan canonical form of F and were hard-
coded afterward.

3 Application to experimental data

Data for this experiment were generated using an electro-
plated 226Ra (104.4± 0.4) Bq source (Mertes et al., 2020)
mounted on an electrically cooled high-purity germanium
(HPGe) detector placed inside a 20 m3 climate chamber. γ -
ray spectra were recorded over approximately 85 d at inter-
vals of 10 800 s real time. Within the time series, regions of
missing measurements are present, i.e., δ values varied. At
specific times the relative humidity inside the climate cham-
ber was varied with the intention of inducing changes in
the emanation characteristics of the 226Ra source. Inside the
chamber, relative humidity and temperature were measured
in close proximity to the source with a SHT-35 sensor (Sen-
sirion).

For each spectrum, counts above 200 keV were summed,
a lifetime scaled background count rate (with associated un-
certainty that defines R) was subtracted, and the final al-
gorithms described above (as given in Appendix A2) were
applied to the resultant time series of count values (i.e., 1D
measurement series) as the input data y1:N , with five Gaus-

sian components per filter in the GSF forward and EC back-
ward passes. Results are illustrated for the filtering in Fig. 1a
and for the smoothing in Fig. 1b. Each r was chosen to reflect
the real time of each spectrum as provided by the manufac-
turer’s data-acquisition software (Genie 2000, Mirion Tech-
nologies), and each δ was computed from the recorded time
stamps of acquisition start points. The dead time of the sys-
tem was accounted for by correcting the derived count values
using the dead-time data as provided by the data-acquisition
software. The value of H was determined by measurements
of a sealed source of similar type and geometry as presented
in Mertes et al. (2020). The uncertainty associated with the
226Ra activity known from previous measurements detailed
in Mertes et al. (2020) was encoded in the density of the
prior for the state provided to the algorithm. Apart from the
226Ra activity, a vague Gaussian prior with a diagonal covari-
ance matrix was chosen for p(x0). Inherently, the model for-
mulation assumes perfect equilibrium between the SLP and
222Rn in the source, which is a small approximation on the
timescales at hand. The threshold of 200 keV was chosen be-
cause 226Ra emits γ radiation almost entirely below this en-
ergy level, such that the spectrum beyond is almost entirely
made up of events associated with the SLP in the source and
the background radiation. We chose to neglect the informa-
tion gained from the spectra regarding the 226Ra activity be-
cause it was not found to substantially improve the prior. The
summation of spectra is the most straightforward way to uti-
lize the information contained within each spectrum while
keeping the dimensionality of y as small as possible. As a
result, the prior density for the 226Ra activity component of
the state is retained over the entire dataset, which is why this
component of the state is not shown in Fig 3. The last com-
ponent of the state vectors, dη

dt , is also not shown in Fig. 3 for
visual clarity, since it carries no important information and is
merely used as a mathematical tool to specify the properties
of the stochastic process of η, the main estimation target of
this work. The component dη

dt is therefore not of any practical
meaning.

Both the confidence intervals and the median in Fig. 3
were computed from the marginal cumulative density of the
Gaussian mixtures using numerical root finding. Addition-
ally, the confidence intervals include a systematic, Gaussian
1 % uncertainty on the specific value of H which was approx-
imately propagated using the derivation in Sect. 2.6 for five
distinct realizations of H (µH,µH± σH,µH± 2σH).

4 Discussion and conclusion

In the present work, we have summarized and explained the
limitations of previously available approaches to estimate
222Rn emanation through measurements of the short-lived
progeny (SLP) retained within the source. As was derived
from first principles, those methods to standardize 222Rn
emanation are limited to sources with stable characteristics
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Figure 3. Column (a) shows the filtering and column (b) the
smoothing results. Input data (red dots in the top-most row; right
scale) and estimated residual 222Rn activity (left scale) are de-
picted in the first row. The second row shows the estimated ema-
nating 222Rn given by the SLDS deconvolution approach outlined
in Sect. 2.5 (black line; deconvolution result) and erroneously cal-
culated from Eq. (4) (red dots). Deviations between the red dots
and the filtering and smoothing results in row two are due to the in-
ability of Eq. (4) to account for dynamic behavior. In the third row,
the probability for stable regimes under the model, p

(
sn|y1:n

)
(col-

umn a), and p
(
sn|y1:N

)
(column b), where sn equals the index of

the model for the stable regime (black; i.e., inferred switch points;
see Sect. 2.7) and the relative humidity (red; not used as input data)
are shown. The fourth row shows the estimated relative standard
uncertainty (calculated from the median and the shown confidence
interval) of inferred 222Rn emanation.

within the operational time and, as such, are generally re-
stricted to use in stable environmental conditions. To allevi-
ate this shortcoming, here we developed an alternative ap-
proach that directly infers the conditional probability density
for the latent 222Rn emanation term from spectral time series
of the SLP that remains within the source.

During the application of the resultant algorithms to real-
world data, the deviations of the steady-state approximation
of the previous method (red dots in the second row of Fig. 3)
from the estimated true values (black lines in the second
row of Fig. 3) become apparent, underpinning the theoreti-
cal derivations. In turn, this means that a thorough analysis
of data obtained in this way is restricted to models that ac-
count for the dynamic nature of the system, which has not
previously been reported.

The specific structure of the filtering and smoothing results
in the second row of Fig. 3, showing peaked emanation upon
increases in humidity, can easily be explained physically as
follows, which justifies the results of the applied method.
Considering the time series of count data of the SLP within
the source (input data; red dots in the first row of Fig. 3), re-

gions can be seen where changes are occurring much more
quickly than would be possible based on the well-known ra-
dioactive decay kinetics. As was discussed in Sect. 2.2, the
time series of counts is theoretically given by a discretely
sampled convolved version of the emanation. Hence, peaked
emanation must be occurring, such that the observed time
series is possible within the theoretically known decay kinet-
ics. Conversely, the drop in humidity and thus emanation at
approximately 70 d does not show this behavior, and the ob-
served ingrowth of the counts directly follows the decay ki-
netics. Apparently, the behavior depends on the direction of
change in the emanation characteristics. This is explained by
the fact that upon an increase of the effective diffusion coef-
ficient, the source retains more 222Rn atoms than the associ-
ated equilibrium value, at which point increased outflow can
occur for quick re-equilibration. With the realistic assump-
tion of zero back diffusion from the volume into the source,
for a change in the opposite direction, the only way to achieve
progeny equilibrium is the typical ingrowth of 222Rn, which
is the exact behavior shown by the deconvolution result but
not by the previous method. Upon fresh preparation of an
emanation source, at which point no SLP is present in the
source but emanation is still considered to be happening, sim-
ilar count data to the one past 70 d in Fig. 3 may be observed.
This behavior was not previously discussed in Linzmaier and
Röttger (2013), where the apparent initial drop in emanation
(as computed by Eq. 4) resulting from the initial ingrowth
of residual 222Rn and SLP was seemingly considered to be
its true temporal characteristic, implying that Eq. (4) may be
applied in such a case.

In constant regimes, results obtained from previously re-
ported methods converge to the values obtained using the
deconvolution approach presented here, as illustrated at ap-
proximately days 60 to 70 and past 90 d of the data shown
in Fig. 3. While the method we present might not seem ben-
eficial in such constant regimes, the recursive Bayesian ap-
proach provides a computationally convenient, mathemat-
ically coherent, and flexible way to refine the uncertainty
upon observation of streaming data (e.g., obtained by con-
tinuous operation of spectrometers) also within constant
regimes. As such, here we report for the first time the ap-
plication of a method whereby time series data of an emana-
tion source can be used to derive correct (near) real time val-
ues of the emanation, irrespective of the state of the source.
Specifically, the use case of this method and our initial moti-
vation is the implementation of surveillance systems for em-
anation sources based on spectrometric measurements to im-
prove current state-of-the-art realization, and especially the
dissemination of the unit Bq m−3 for 222Rn in the low-level
activity concentration regime. With our contribution, and po-
tential extensions thereof, these types of systems will be en-
abled in the future. Moreover, experimental investigations of
the emanation behavior in response to different environmen-
tal conditions are drastically improved by our contribution.
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To obtain approximate filtering and smoothing algorithms
in the context of radioactivity measurements, we extended
the well-known computational methods for inference in lin-
ear dynamical systems (i.e., Kalman filter and Rauch–Tung–
Striebel smoother) with a computationally convenient ap-
proximation for the observed Poisson statistics and the inte-
grating behavior of the measurements in Sect. 2.3 and 2.4. In
doing so, we demonstrated that integrating measurements re-
sults in a Gaussian process with certain covariance with the
latent continuous state which retains the convenient closed
form of filtering and smoothing through conjugacy in such
linear dynamical models. As was shown, the integrating mea-
surements lead to additional additive uncertainty depending
on the variance of the Brownian motion which we consider
an intuitive result. These results were used in order to con-
struct the final switching linear dynamical system inference
algorithms applied during the experiments.

Within the recorded time series, distinct domains were ob-
served in response to the way the humidity in the cham-
ber was modified, which lends itself to the applied switch-
ing dynamical system model, differentiating between stable
and non-stable regimes. This approach allows smaller uncer-
tainty to be achieved and smoother functional realizations of
η in the somewhat stable regimes, but at the same time gives
reasonably high uncertainty for the unstable regimes where
the deconvolution result relies on only a few data points. A
simpler modeling approach relying only on a single linear
dynamical system, such as a more classical version of the
Kalman filter, cannot produce smooth results for the constant
regimes while retaining the ability to react to steep gradients,
since both properties are controlled by the variance of the
Brownian motion. While all obvious switching points (in-
duced by changes in the relative humidity) within the time
series were captured by the algorithm (third row of Fig. 3),
the specific autocorrelation we chose to regularize η leads
to smearing of the switching point in the backward (i.e., the
smoothing) pass. This is indicated by the fact that the model
proposes an unstable state of the source even for times be-
fore the humidity has undergone the step changes (i.e., in
times before a known change in the source properties has oc-
curred). Note that this is not the case for the filtering results.
This is can be attributed to the applied symmetric autocor-
relation of η (Eq. 7) and its independency from the resid-
ual radon activity, and it may be alleviated by asymmetric
autocorrelation or non-linear models but at a substantially
higher computational cost. Whether our approach translates
well to time series of different characteristics (e.g., drift,
smooth changes) is as yet unclear and subject to further stud-
ies. Nonetheless, the model parameters provide a way to tune
the algorithm for different scenarios.

For an approach like the present one to be applicable in
metrology, uncertainty estimates closely related to the guide
to the expression of uncertainty in measurement (GUM; Joint
Committee for Guides in Metrology, 2008) are needed. At
this point, the GUM is restricted to static measurements and

first steps are being taken for an extension to dynamic sce-
narios (e.g., in Eichstädt and Elster, 2012; Elster and Link,
2008; Link and Elster, 2009), where a slightly different for-
mulation for error propagation has been carried out. In the
present case, systematic contributions to the uncertainty are
dominated by the uncertainty of the measurement mapping
through matrix H. We provided a computationally simple
approach to approximately propagate this uncertainty across
the filtering and smoothing algorithms with arbitrary preci-
sion, given that enough computational resources are avail-
able and the detection system can reasonably be assumed to
be stable in time. Dropping this assumption would require
the approximation of the intractable integration in Eq. (15),
e.g., through Monte Carlo integration, which was found un-
necessary and would have made the algorithm unsuitable for
implementation on low-power, portable devices.

Appendix A: Joint density – derivation of discrete
forward step for integrating measurement

Assuming that the density p
(
xn−1|y1:n−1

)
is given as

N (µn−16n−1), we define the state at the intermediate time
point tn−1+ δn as xδ for which the following statistics are
readily available through the Chapman–Kolmogorov equa-
tion (Särkkä and Solin, 2019).

p
(
xδ|y1:n−1

)
∝ N (µδ,6δ)=N

(
Fδµn−1,Fδ6n−1FT

δ +Uδ
)
,

where Fδ = eKδ and Uδ =
∫ δ

0 eK(δ−τ )LLTeKT(δ−τ )dτ , as fol-
lows from Eqs. (5) and (11).

By combination of the definition for x(t) in Eq. (10) and
the definition of the measurement process for y in Eq. (12),
the measurement at tn is given by the following integration.
While the integral in Eq. (12) is an ordinary integral (e.g., in
the Riemann sense), the integral in Eq. (10) is a stochastic
integral in the Itō sense; i.e., the following double integral
is the ordinary integral over an Itō integral, for which we
assume that x(t) has continuous sample paths and is square
integrable.

ytn =H
∫ tn

tn−1+δ
x(τ )dτ =H

∫ r

0
x(tn−1+ δ+ τ )dτ

=H
∫ r

0
eKsxtn−1+δds+H

∫ r

0

∫ s

0
eK(s−τ )Ldβτds

The triangular domain of the double integral is swapped to
find

ytn =H
∫ r

0
eKsxtn−1+δds+H

∫ r

0

∫ r

τ

eK(s−τ )Ldsdβτ ,

from which the full density p
(
xn−1,xδ,xn,yn|y1:n−1

)
can

be computed using the expectation operator and the defini-
tion of the variance, where 〈·〉 denotes the expectation oper-
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ator. Moreover, by definition, 〈
∫

dβ〉 = 0 and thus

6
yy
n =

〈
(yn−〈yn〉)(yn−〈yn〉)

T〉
=

〈
H
(∫ r

0
eKsds xδ −

∫ r

0
eKsds〈xδ〉+

∫ r

0

∫ r

τ

eK(s−τ )Ldsdβτ

)
∫ r

0
eKsds xδ −

∫ r

0
eKsds〈xδ〉+

r∫
0

r∫
τ

eK(s−τ )Ldsdβτ

T

HT

〉
.

Under the assumption of independence of the Brownian mo-
tion and xδ , using Itō isometry and Fubini’s theorem, it fol-
lows that

6
yy
n = 〈(yn−〈yn〉)(yn−〈yn〉)

T
〉 =HM6δMTHT

+HBHT,

where M=
∫ r

0 eKsds and B=∫ r
0

∫ r
τ

∫ r
τ

eK(a−τ )LLTeKT(b−τ ) da dbdτ .
Analogously, the cross-covariance between xn and yn is

given as

6
xy
n = 〈(xn−〈xn〉)(yn−〈yn〉)

T
〉 =

=

〈(
eKrxδ − eKr

〈xδ〉+

∫ r

0
eK(r−τ )Ldβτ

)
(∫ r

0
eKsds xδ −

∫ r

0
eKsds〈xδ〉+

∫ r

0

∫ r

τ

eK(s−τ )Ldsdβτ

)T

HT

〉
=

= Fr6δMTHT
+CHT,

with C=
∫ r

0

∫ r
τ

eK(r−τ )LLTeKT(a−τ ) da dτ . The result in
Eq. (13) is then obtained by marginalizing the full density
over xn−1 and xδ , which for the Gaussian density means to
simply drop the respective columns and rows. Additionally,
the forward filtering step is obtained by conditioning the re-
sultant p

(
xn,yn|y1:n−1

)
, Eq. (13), onto the observation of

yn using the well-known conditioning formula for the Gaus-
sian distribution. An implementation for such computation is
given by the function FWD_STEP in Appendix A2.
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Appendix B: Applied algorithms in pseudo-code
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Code and data availability. Gamma-ray spectra and environ-
mental data obtained for the experimental section as well as the im-
plementation of the presented algorithms and processing software
are available at https://doi.org/10.5281/zenodo.7798458 (Mertes,
2023).
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