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Abstract. Most applications which measure physical quantities, especially in harsh environments, rely on sur-
face acoustic wave resonators (SAWRs). Measuring the variation of the resonance frequency is a fundamental
step in such cases. This article presents a comparison between three techniques for best determining the reso-
nance frequency in one shot from the point of accuracy and uncertainty: fast Fourier transform (FFT), discrete
wavelet transform (DWT) and empirical mode decomposition (EMD). After proposing a model for the gener-
ation of synthetic SAW signals, the question of wavelet choice is answered. The three techniques are applied
to synthetic signals with different central frequencies and signal-to-noise ratios (SNRs). They are also tested on
experimental signals with different sampling rates, number of samples and SNRs. Results are discussed in terms
of the accuracy of the estimated frequency and measurement uncertainty. This study is successfully extended to
SAWR temperature sensors.

1 Introduction

For some years now, the industry has been experiencing a
strong trend in the integration of preventive maintenance in
its development strategy (Lee et al., 2014). The drastic con-
trol of operation and investment costs requires a permanent
optimization of proper working conditions of production ma-
chines. Therefore, the diagnostics of several physical quanti-
ties, such as vibration, is experiencing considerable growth in
the field of aeronautics or rotating electrical machines (ISO
2372, 10816) (Scheffer and Girdhar, 2004; Brandt, 2011).
Temperature monitoring, especially in harsh environments
(François et al., 2015, 2012), also poses a major challenge in
countless applications (Kim et al., 2015; Li et al., 2014), and
this is precisely the focus of this study. These diagnostics are
increasingly based on surface acoustic wave (SAW) devices
that are now well established in research (Han et al., 2021;
Nguyen et al., 2017) and in the industry (Pohl, 2000; Hadj-
Larbi and Serhane, 2019). Their operation principles make

them almost indispensable: this is why they are found par-
ticularly in temperature (Lamanna et al., 2020; Silva et al.,
2017), humidity (Li et al., 2014; Penza and Cassano, 2000),
torque (Kalinin et al., 2013), magnetic field (Li et al., 2014),
strain (Maskay et al., 2018), mass (Tadigadapa and Mateti,
2009) or vibration (Wang et al., 2014) sensors.

A major advantage of this kind of sensor is its ability to act
discreetly. It does not need any dedicated energy to operate
because it picks up its energy from the wave that interrogates
it. Thus, a wireless SAW device is completely passive and
able to operate in harsh environments.

Figure 1 depicts the principle of the wireless SAW sensor
on which this work is based. An interdigital transducer (IDT)
is insonified by an interrogation or reader unit via an antenna.
In a single-port SAW resonator (SAWR), two reflector ar-
rays, which act as a mirror, are placed on either side of the
bidirectional IDT. The SAW piezoelectric substrate is warped
by mechanical waves due to the physical quantity variation.
This deformation causes a modification in the propagation of
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Figure 1. Wireless SAW sensor in one-port resonator mode.

the surface acoustic wave which is received by the IDT. The
propagation change leads to an alteration of the resonance
frequency. This variation is directly related to the amplitude
of the variation of the considered physical quantity, which in
this case is temperature.

In most cases, the fast Fourier transform (FFT) method
is applied with its possible variations (zero crossing, zero
padding, peak detection, etc.) (Hamsch et al., 2004; Lurz et
al., 2017; Jazini et al., 2018). The main drawback of these
spectral approaches is the measurement inaccuracy. Its im-
provement is often obtained by an average of the results
(Kalinin et al., 2012) and, in fact, the measurement cannot
be done in one shot.

The objective of the work described in this paper is to pro-
ceed, in one shot as precisely as possible, with the resonance
frequency estimation of the SAWR by comparing three meth-
ods: on the one hand the FFT and on the other hand two time-
based methods, wavelets (Antoniadis, 2007) and empirical
mode decomposition (EMD) (Kizilkaya et al., 2015).

This article is an in-depth study of a conference contri-
bution (Scipioni et al., 2019). It is structured in four parts
with all theoretical elements in Appendix A and notations in
Appendix B. After the introduction, Sect. 2 is dedicated to
a presentation of the methods. A theoretical model for the
construction of a synthetic SAWR signal is presented. This
section also details how to choose the wavelet for this appli-
cation. Finally, Sect. 3 is devoted to theoretical and experi-
mental results by proposing a discussion of the accuracy and
uncertainty of estimated frequencies before concluding.

2 Methods for resonance estimation in one shot

2.1 SAWR signal modelling

Usually, the envelope of a SAWR signal is modelled as a
decaying exponential (Kalinin, 2005, 2015). However, this
model does not reflect the behaviour of all the SAWR de-
vices. The envelope of some SAWR signals is sometimes
closer to a Gaussian shape as shown in Fig. 17. We pro-
pose a model suitable for all envelope shapes. Its expression
fλ,µ,α(t) is the probability density function of an inverse-
Gaussian law defined as

fλ,µ,α(t)=


√

λ

2π (αt)3 · e
−λ((αt)−µ)2

2µ2αt for t > 0,

0 otherwise,
(1)

Figure 2. Five examples of the probability density function
fλ,µ,α(t) of the inverse-Gaussian law which covers all shapes of
the SAWR signal envelope.

Figure 3. The synthetic SAWR signal used for finding the best
wavelet, with λ= 6, µ= 5, α = 1, Fs = 0.2 GHz, F = 10.7 MHz
andN = 212 samples and T0 = 15 µs, (a) without noise and (b) with
SNR= 4 dB.

where µ > 0 is its expectation, and λ > 0 and α > 0 are
shape and scale parameters, respectively.

Both parameters λ and µ allow covering of all envelopes
forms as shown in Fig. 2. The more λ increases, the closer the
function becomes to a Gaussian shape. The scale parameter α
simply adjusts the timescale. By applying an amplitude mod-
ulation of carrier frequency F we obtain the synthetic SAWR
signal s(t) as Fig. 3a shows an example:

s(t)= sin(2πF t) · fλ,µ,α(t). (2)

This modelling allows the identification of an experimen-
tal SAWR signal and roughly estimates its signal-to-noise ra-
tio (SNR). Since the frequency range of the SAWR sensor is
always known and since the signal contains a single main
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Figure 4. Experimental SAWR signal (Fs = 5 GHz, F =

10.6 MHz, N = 62900 samples and T0 = 12.58 µs), modelled by
the probability density function fλ,µ,α(t) of an inverse-Gaussian
law with λ= 0.1, µ= 0.2, and α = 0.07. Estimated SNR= 6.8 dB.

frequency, we can apply a low-pass filter with a cut-off fre-
quency close to the resonance frequency F . Thus, by a local
maximum detection on this filtered signal sf(t) and a cubic
spline interpolation, we obtain the experimental signal en-
velope e(t). Finally, by using a least-squares algorithm, the
different parameters λ, µ, and α of fλ,µ,α(t) can be calcu-
lated, which leads to the model of the SAWR signal s(t) and
an estimation of the SNR. This is depicted in Fig. 4.

2.2 Wavelet choice

This modelling also the allows performance of a study con-
cerning the best wavelet choice. If the EMD method offers
no choice for the analysis functions, this is not the case for
the wavelet transform. Indeed, there are many wavelet fami-
lies, and it is necessary to select the best fit for the intended
application. We do not neglect this rule, and hence we built a
synthetic SAWR signal with the previous modelling to which
we added a Gaussian white noise.

By varying the standard deviation of the noise, we gen-
erated 21 noisy signals with 4096 samples covering sev-
eral reference signal-to-noise ratios (SNRRef) ranging from
0 to 20 dB (Fig. 3b). In order to obtain the best wavelet,
we denoised each signal with 24 wavelets and computed
the new SNR thereafter. The results are depicted in Fig. 5.
Some wavelets stand out, i.e. Beylkin, Coiflet-5,
Daubechies-20, Symmlet-10, and Vaidyanathan,
for which a focus is given in Table 1. By minimizing the
standard deviation, the one with the best average SNR is the
Daubechies-20wavelet, which was used for the wavelet-
based method. The good results of this wavelet are directly
related to its morphology, which agrees with that of the
SAWR signal as shown in Fig. 6.

Figure 5. SNR computation after denoising for 24 wavelets accord-
ing to a reference SNR range (SNRRef) computed before denoising.

Figure 6. Morphological behaviour of the Daubechies-20
wavelet (scaling function) chosen for the study.

2.3 Spectral and time-based methods

We implement spectral and temporal approaches which are
particularly well suited to this work because the coherent sig-
nal contains only one main frequency. For the first one, an
FFT is performed on the whole signal without any prior pro-
cessing because this method is very robust to noise. The res-
onance frequency is obtained by finding the maximum mod-
ulus frequency. Figure 7 depicts this way.

Unlike Fourier, which is robust to noise, a very impor-
tant step of denoising must be performed for the time-based
methods. To accomplish this, two common techniques are
implemented and compared: wavelets and EMD. In partic-
ular, we implement the Antoniadis (Antoniadis et al., 2001)
and Kopsinis (Kopsinis and McLaughlin, 2009) methods, re-
spectively. In both cases, the default authors’ settings were
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Table 1. A focus on Fig. 5 for the best wavelets. SNR values computed after denoising.

SNRRef Daubechies-20 Beylkin Coiflet-5 Vaidyanathan Symmlet-10
(dB)

2 11.15 10.78 10.48 10.39 10.46
6 14.26 14.12 13.95 14.09 13.90
10 17.87 18.03 17.81 17.47 17.69
14 22.19 22.18 21.90 22.01 21.79
18 25.49 25.28 25.33 25.32 25.20

Figure 7. Resonance frequency estimation with an FFT performed
on the whole signal (Fs = 1.6 GHz, SNR=−10 dB): (a) full band-
width

[
−Fs

2 ,
Fs
2

]
, and (b) zoom around the maximum modulus

spectrum.

chosen. These two denoising techniques are very efficient, as
depicted in Fig. 8 (the SNR gets better from 10 to 23 dB).
The denoised signal allows a maximum detection procedure
to be applied as described in Rischette et al. (2013). Finally,
the researched frequency is obtained by computing the in-
verse of the average of all periods computed between each
maximum.

The time domain offers the advantage of choosing the por-
tion of the signal for computation (a variable number of peri-
ods) without having a major impact on the precision. The res-
onance frequency will thereafter be the average of the differ-
ent periods considered. The signal portion used for this calcu-
lation depends directly on the denoising quality and therefore
on the SNR. As the SNR reduces, the more necessary it will

Figure 8. Result of denoising techniques: (a) original and noisy
synthetical signals with SNR= 10 dB and (b) denoised signal by
the wavelet and EMD methods (SNR= 23 dB). The zoomed fig-
ures show that these two techniques are equivalent to a high-quality
result since all three curves are almost superposed.

be for a higher number of periods to be taken. On the other
hand, if the SNR is high enough (greater than 5 dB), fewer
than 10 periods will be sufficient to obtain a similar preci-
sion to the entire signal. In the case of Fourier, the search for
minimum uncertainty imposes the consideration of FFT on
the totality of the signal, as described in the following sec-
tion.
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Figure 9. Randomly computed frequencies Fj ,j ∈ [1,M], and
M = 100, with a Gaussian law N (m,σ ), m= 10.7 MHz, and σ =
200 kHz.

3 Results and discussion

3.1 Synthetic signals

SAWR signals s(t) were generated as described above with
the parameters of Fig. 3 and for M = 100 frequencies close
to a usual intermediate frequency at F = 10.7 MHz and for
Q SNR values (Q= 21 and −10 6 SNR 6 30 dB) with N =
8192 (213) samples, a sampling rate of Fs = 1.6 GHz and
a time duration T0 = 5.12 µs. These frequencies are repre-
sented in red in Fig. 9. The colour was chosen in order to
avoid the masking of some represented figures. Also gen-
erated for each of the M frequencies are P = 100 versions
ηi(t) of the noised signal by an additive Gaussian white noise
N (0,σh) with σh =

√
Ps× 10(−SNRh/10) and Ps: the signal

power of s(t) is

sj,i,h(t)= sin
(
2πFj t

)
· fλ,µ,α(t)+ σh · ηi(t), (3)

with j ∈ [1,M], i ∈ [1,P ] and h ∈ [1,Q].

3.1.1 Measurement accuracy

Figures 10 and 11 present a comparison of the relative er-
ror between wavelets and Fourier and between EMD and
Fourier, respectively.

First, by observing both figures, through the yellow plans,
we can see the invariability of the measurement by Fourier,
regardless of the signal-to-noise ratio and the averaging rank
of the noisy versions. As we might expect, we also see a pro-
gressive regularity of both 3D curves for wavelets and EMD
as the number of averaged signals increases. In contrast, this
regularity sets in much more quickly for EMD than wavelets.
Regarding the wavelet or Fourier comparison, a dividing line
appears at 0 dB and ends at −4 dB. It embodies the superi-
ority of wavelets for signal-to-noise ratio values greater than
this line (SNR>−2 dB). Concerning the EMD or Fourier
comparison, the lesson is obvious: EMD is always superior
to Fourier regardless of the signal-to-noise ratio, even in a
single version of the noisy signal.

Figure 12 compares wavelets and EMD by displaying the
positive value of the gap of the relative error. It is quite

Figure 10. Relative error for wavelets and Fourier between all the
averaged estimated frequencies F̂w

j,.
(j ∈ [1,M]) and the reference

frequencies Fj versus SNR values and versus the progressive aver-
age of randomly noisy signals.

Figure 11. Relative error for EMD and Fourier between all the av-
eraged estimated frequencies F̂ e

j,.
(j ∈ [1,M]) and the reference fre-

quencies Fj versus SNR values and versus the progressive average
of randomly noisy signals.

clear that the EMD provides more accurate results for SNR>
10 dB. On the other hand, as soon as the SNR6 10 dB, the
wavelets gain an advantage regardless of the number of aver-
aged signals. In terms of the measured values, the Fourier er-
ror reached 0.52 %, i.e. 55.64 kHz for F = 10.7 MHz against
0.013 % for the EMD and 0.011 % for the wavelets, or 1.39
and 0.97 kHz, respectively.

Another way of observing the behaviour of the error ac-
cording to the SNR is proposed in Fig. 13 for each method:
(a) Fourier, (b) wavelets, and (c) EMD. For the purpose of
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Figure 12. Positive values of the relative error between all the
wavelet averaged estimated frequencies F̂w

j,.
(j ∈ [1,M]) and all the

EMD averaged estimated frequencies F̂ e
j,.

versus SNR values and
versus the progressive average of randomly noisy signals.

readability, in Fig. 9, only the results of frequencies chosen
in red are displayed. Each curve corresponds to a studied fre-
quency for a method and takes into account all the averaged
versions of the signal (P = 100).

For Fourier (Fig. 13a), the error is variable from one fre-
quency to another but remains constant regardless of the
SNR.

For wavelets (Fig. 13b), the behaviour of the error is more
chaotic, reaching up to 15 dB. It then becomes stable and
reaches values much better than those of Fourier.

For EMD (Fig. 13c), the evolution of the error is also
variable, but its amplitudes are much smaller than those of
Fourier and wavelets. As for the wavelets, the stability of the
error is obtained above 15 dB.

Figure 14 shows the relative average error between all
the averaged estimated frequencies F̂j,P (j ∈ [1,M] and for
P = 100) and the reference frequencies Fj for each SNR
value as Fourier, EMD, and wavelet approaches. Regardless
of the SNR level, the values obtained by the FFT are al-
ways the same. This is not a surprising result since the FFT
is a robust tool against noise. On the other hand, this con-
stancy in the results proves the inability of the FFT to dis-
criminate between frequencies close to each other (less than
50 kHz, apart from F = 10.7 MHz). For the full studied SNR
range, EMD and wavelets are better than Fourier except for
−10 6 SNR 6−5 dB, where wavelets are no longer com-
petitive. Figure 14 allows us to conclude that, in the range
−10 6 SNR<8 dB, the EMD method is most efficient, while
in the range 8 6 SNR 6 30 dB it is preferable to use wavelets,
with a precision of up to 47 times better than Fourier.

Figure 13. Error between the estimated and reference frequencies
versus SNR for (a) Fourier, (b) wavelets, and (c) EMD.

3.1.2 Measurement uncertainty

In addition to accuracy, it is important to consider the uncer-
tainty of the measurement.

For the FFT approach, uncertainty is related to the spectral
resolution 1Ff, which only depends on the time duration T0
with

1Ff =
1
T0
. (4)

Therefore, FFT uncertainty depends only on duration and
not on the number of samples or the signal frequency. This
is the reason why the entire duration of the signal must be
considered to obtain the smallest uncertainty.

Unlike Fourier, the uncertainty 1Ft for both time-based
methods depends on the signal frequency and the sampling
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Figure 14. Mean of errors between estimated and reference fre-
quencies versus SNR for Fourier, EMD, and wavelet approaches.

period Fs, i.e. the difference between two consecutive sam-
ples. The relation is given by

1Ft = F −
1

Ts+ T
with T = 1/F and Ts = 1/Fs (5)

and finally

1Ft =
F 2

F +Fs
. (6)

Figure 15 depicts uncertainties 1Ff and 1Ft of the es-
timated frequency according to the reference frequency F
and the sampling frequency Fs. The results are enlightening
as soon as Fs > 500 MHz, which is the intersection between
1Ff and 1Ft. Even if the wavelets or EMD uncertainty are
slightly degraded as F increases, they are significantly lower
than the Fourier uncertainty in the ratios of 3, 18, and 36
for Fs = 1.6, 10, and 20 GHz, respectively. The Fourier un-
certainty plan is slightly tilted due to its constant value ex-
pressed in a percentage.

3.2 Experimental signals

Figure 16 shows the block diagram of the experimental setup
while performing signal acquisition using a radiofrequency
(RF) module. The signals are generated by a RF gener-
ator. They are then transmitted to the SAWR via an an-
tenna and a RF switch. Their initial central frequency is
Fn = 868 MHz, and the responses of the SAWR are trans-
lated at F = 10.7 MHz using a RF down-converter.

Tables 2 and 3 show the results for the three signals with
different numbers of samples, sampling rates, and a constant
time duration T0 = 13.1 µs. The superiority of the time-based
methods is confirmed in terms of uncertainty.

Signal no. 1 (Fig. 17) is characterized by a Gaussian en-
velope, Fs = 2.5 GHz, N = 32768 (215), and an estimated

Figure 15. Uncertainties 1Ff (Fourier) and 1Ft (W/EMD) of the
estimated frequency versus the reference frequency and the sam-
pling frequency.

SNR= 16.2 dB. The estimated frequencies are close in all
three cases (Table 2), with an improved wavelet or EMD
spectral resolution of 40 % with respect to Fourier (Table 3).
Taking into account the SNR and with regard to Fig. 14, the
right value is probably given by the wavelet method with
F̂ = 10.716MHz± 45.6kHz.

Signal no. 2 (Fig. 18) is characterized by Fs = 5 GHz,N =
65536 (216) and an estimated SNR= 13.7 dB. The frequency
difference between the time-based and Fourier approaches
is about 30 kHz, while between the two time-based methods
this difference is only 4 kHz (Table 2), which confirms the
results of Fig. 14. Furthermore, the uncertainty of wavelets
or EMD is clearly better since its improvement reaches a ra-
tio of 3 in comparison with Fourier (Table 3). For the same
reasons as above, the right frequency seems to be given by
the wavelet method with F̂ = 10.592MHz± 22.8kHz.

Signal no. 3 (Fig. 19) is much noisier than the previous
two and is characterized by Fs = 20 GHz,N = 262144 (218)
and an estimated SNR= 5.2 dB. The gap between Fourier
and wavelets or EMD is about 40 kHz against 1.3 kHz be-
tween the wavelets and EMD (Table 2). SNR= 5.2 dB cor-
responds to a range for which the measurement accuracy by
wavelets is better than EMD (Fig. 14). The uncertainty value
decreases to 5.7 kHz against 76.3 kHz for Fourier, which rep-
resents 0.05 % of the central frequency (Table 3). The true
value is probably F̂ = 11.023MHz± 5.7 kHz.

3.3 The case of SAWR temperature sensors

In this subsection, we describe the impact of previously es-
tablished frequency results on the temperature accuracy mea-
sured for this kind of sensor.

The frequency translation shown in Fig. 16 shifts the re-
sponse of the sensor centred around Fn = 868 MHz to a
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Table 2. Frequency estimation on experimental signals.

Signal Fs N SNR Fourier Wavelets EMD
no. (GHz) (dB) F̂ f (MHz) F̂w (MHz) F̂ e (MHz)

1 2.5 215 16.2 10.719 10.7160 10.7250
2 5.0 216 13.7 10.567 10.5920 10.5960
3 20.0 218 5.2 10.986 11.0215 11.0228

Table 3. Measurement uncertainty in experimental signals.

Signal Fs T0 SNR Fourier Wavelets or EMD
no. (GHz) (µs) (dB) 1Ff (kHz) 1Ft (kHz)

1 2.5 13.1 16.2 ±76.3 (0.71 %) ±45.6 (0.43 %)
2 5.0 13.1 13.7 ±76.3 (0.71 %) ±22.8 (0.21 %)
3 20.0 13.1 5.2 ±76.3 (0.71 %) ±5.7 (0.05 %)

Figure 16. Block diagram of the RF module implemented for the
SAWR signal acquisition.

Figure 17. Experimental SAWR signal no. 1 with low-pass filtering
at 20 MHz (Fs = 2.5 GHz, N = 215 samples, and T0 = 13.1 µs).

lower intermediate frequency F = 10.7 MHz but maintains
its spectral characteristics (amplitude, frequency width, etc.).
Therefore, the results obtained at F = 10.7 MHz are applica-
ble to the industrial, scientific, and medical (ISM) bands in
the ranges 433 MHz, 868 MHz, and 2.4 GHz.

Figure 18. Experimental SAWR signal no. 2 with low-pass filtering
at 20 MHz and lag (yellow in the colour version) used for the time-
based methods (Fs = 5 GHz, N = 216 samples, T0 = 13.1 µs, and
lag= 6.55 µs used for the time-based methods).

Figure 19. Experimental SAWR signal no.3 without filtering and
lag (yellow in the colour version) used for the time-based methods
(Fs = 20 GHz, N = 218 samples, T0 = 13.1 µs, and lag= 6.55 µs
used for the time-based methods).

Most SAWR temperature sensors are based on the piezo-
electricity phenomenon. Whatever the material category (sin-
gle crystal, film, or ceramic), the central frequency of this
kind of SAWR sensor can be connected to the temperature
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through the TCF (temperature coefficient of frequency) by a
linear approximation:

1F
Fn
= βT + δ, with


1F
Fn

(ppm),
T (◦C),
β (ppm ◦C−1),
δ (ppm),

(7)

or by a quadratic approximation with this form:

1F

Fn
= αT 2

+βT + δ, with α (ppm ◦C−2). (8)

We chose four SAWR temperature sensors from one of the
frequency bands mentioned above. Two of them come from
scientific articles and the other two from a manufacturer’s
documentation. Their references and central frequencies are
respectively as follows:

– Sensor 1 (SS433FB2), F1n = 434.56 MHz (SAWCom-
ponents, 2013),

– Sensor 2 (AlN-SAW), F2n = 501.18 MHz (Wang et al.,
2023),

– Sensor 3, F3n = 897.37 MHz (Liu et al., 2017),

– Sensor 4 (SS2414BB2), F4n = 2.41635 GHz (SAW-
Components, 2014).

The considered elements characterize the TCF (Fig. 20a).
These data establish with the desired level of precision the
temperature–frequency relationship (Fig. 20b). We apply our
frequency measurement method to the different sensors men-
tioned above. To compare the results for these sensors, we
choose to calculate the TCF as

TCF= 106
×

Fmax−Fmin

Fn (Tmax− Tmin)
. (9)

Equation (9) leads to the temperature–frequency relation-
ship:

1T = 106
×

1
TCF
×
1F

Fn
. (10)

The results are depicted in Table 4. For a low-noise sig-
nal (SNR= 30 dB, Fig. 10), the best frequency accuracy ob-
tained by the wavelets is 0.97 kHz, which corresponds to a
temperature accuracy of ±0.06 ◦C for a 433 MHz sensor and
±0.01 ◦C if the sensor is in the 2.4 GHz band.

For a strongly noisy signal (SNR= 5 dB, Fig. 19), the best
frequency accuracy is 5.7 kHz, which corresponds to a tem-
perature accuracy between±0.07 and±0.38 ◦C according to
the central frequency of the sensor.

Currently, the usual temperature accuracy is ±0.1 ◦C for
a single measurement and reaches ±0.01 ◦C in the averaged
multiple measurements. The results presented in this paper
reach an accuracy of ±0.07 ◦C in one shot for the 2.4 GHz
ISM band in a very noisy environment. The accuracy even
reaches ±0.01 ◦C for a slightly noisy signal.

Figure 20. Frequency behaviour according to the temperature
ranges for different temperature SAWR sensors: (a) temperature co-
efficient of frequency and (b) frequency shift.

4 Conclusions

Measurement of resonance frequency variation is fundamen-
tal for all applications using a wireless SAWR sensor. We
proposed a comparative study for the estimation of this fre-
quency between the usually FFT spectral method and two
time-based methods, the first using a wavelet approach and
the second applying empirical mode decomposition (EMD).
A model which describes the behaviour of SAWR signals
and also allows the generation of synthetic signals was also
proposed. This model was implemented to address the ques-
tion of the wavelet choice as part of the first method, and
it leads to the Daubechies-20 wavelet. Both time-based
ways are compared as well as with the reference way: the
Fourier transform. Synthetic and experimental signals are
used to evaluate these three solutions. Results obtained by
the time-based (wavelet and EMD) methods are distinctly
better than those of the FFT. According to the different SNR
values, the improvement in accuracy reaches a factor of 47
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Table 4. Temperature precision according to the frequency measurement.

Temperature Fin Fmin Fmax 1Fn Tmin Tmax TCF S∗ 1Ft1 1T1 1Ft2 1T2
SAWR sensor (MHz) (MHz) (MHz) (MHz) (◦C) (◦C) (ppm ◦C−1) (Hz ◦C−1) (Hz) (◦C) (Hz) (◦C)

Sensor 1 433.56 431.05 434.68 3.63 −40.0 200.0 −34.92 15 140 970 0.064 5721 0.378
Sensor 2 501.19 500.00 502.37 2.37 29.5 179.5 −31.51 15 800 970 0.061 5721 0.362
Sensor 3 897.37 895.96 897.36 1.41 25.0 55.0 −52.19 46 838 970 0.021 5721 0.122
Sensor 4 2416.35 2398.65 2419.19 20.54 −50.0 200.0 −34.01 82 173 970 0.012 5721 0.070

∗ Sensitivity.

and, in uncertainty, a factor of 36. Finally, this study shows
that the EMD method is better when the signal-to-noise ra-
tio is less than 8 dB and the wavelet method is preferable
when it is greater than 8 dB. Moreover, these frequency re-
sults have been applied to SAWR temperature sensors. The
accuracy reaches up to±0.01 ◦C in one shot. Future research
could provide better accuracy and uncertainty by introducing
up-sampling. A study of the number of periods according to
desired precision and uncertainty could also be of interest to
optimize the computation time.

Appendix A: Theoretical elements

Presented here is the theoretical background of the two main
methods employed in this study: the continuous–discrete
wavelet transform and the empirical mode decomposition.

A1 Wavelet transform

A1.1 Continuous wavelet transform (CWT)

The CWT is defined as

W
[
sa,b(t)

]
=

1
√
a

∫
R

s(t)ψ∗
(
t − b

a

)
dt, (A1)

with a the scaling factor, b the translation parameter, ψ∗ the
complex conjugate of ψ , and

ψa,b(t)=
1
√
a
ψ

(
t − b

a

)
.

The mother wavelet ψ checks the following properties:

– A number of vanishing moments m characterizes the
mother wavelet ψ such as

〈tm,ψ(t)〉 =
∫
R

tmψ(t)dt = 0, (A2)

where 〈·, ·〉 is the scalar product.

In this case the wavelet analysis is blind to any poly-
nomial of degree lower than m− 1, and therefore this
property is decisive in optimizing the detection of a sin-
gularity.

– The wavelet transform also has the ability to reconstruct
the signal s from the decomposition coefficients by

C−1
ψ

∫
R

∫
R

a−2 Wsa,b ψ

(
t − b

a

)
da db, (A3)

subject to

Cψ = 2π
∫
R

|ψ̂(ω)|2

|ω|
dω < +∞, (A4)

which is checked if the admissibility condition is re-
spected,

+∞∫
0

|ψ̂(ω)|2

|ω|
dω =

0∫
−∞

|ψ̂(ω)|2

|ω|
dω < +∞, (A5)

or also that∫
R

ψ(t)dt = 0 and ‖ψ(t)‖2 = 1, (A6)

with ψ ∈ L2(R).

The wavelet transform is a powerful tool for the detec-
tion of singularities in a signal. By calculating the Hölder ex-
ponent (or Lipschitz) and using wavelet transform modulus
maxima, it is possible to emphasize the properties of these
singularities. Figure A1 depicts a continuous wavelet analy-
sis of an example signal with the signal at the top, the wavelet
coefficients in the middle, and local modulus maximum lines
at the bottom.

Let a = uj0 and v = nv0u
j

0 . The CWT can be written as

W
[
sj,n(t)

]
= u
−j/2
0

∫
R

s(t)ψ∗
(
u
−j

0 t − nv0

)
dt, (A7)

with (u0,v0) ∈ Z2.
For u0 = 2 and v0 = 1 this dyadic transform becomes the

discrete wavelet transform given by

W
[
sj,n(t)

]
= 2−j/2

∫
R

s(t)ψ∗
(

2−j t − n
)

dt . (A8)
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Figure A1. Continuous wavelet analysis on a test signal with
1024 samples and a wavelet symlet 2: (a) the analysed signal,
(b) wavelet coefficient scalogram, and (c) local modulus maxima
lines.

A1.2 Discrete wavelet transform (DWT)

Unlike the CWT, the DWT is defined by two functions: the
scaling mother function ϕ and the wavelet mother function
ψ (Chen et al., 2016; Mallat, 1989). Therefore, there are two
bases that analyse the signal s. These are defined as ϕj,n(t)= 2

−j
2 ϕ

(
2−j t − n

)
for approximations,

ψj,n(t)= 2
−j
2 ψ

(
2−j t − n

)
for details,

(A9)

with j the scaling factor and n the translation parameter(
(j,n) ∈ Z2).

A link between this approach by the scale and wavelet
functions and the filter theory was established in particu-
lar by Stéphane Mallat (Mallat, 1989) and led to the multi-
resolution analysis (MRA). The MRA is based on two filters:
the approximation filter h (low-pass) and the detail filter g
(high-pass) for which the impulse responses are defined by{
h[n] = 〈ϕ,ϕ−1,n〉,

g[n] = 〈ψ,ϕ−1,n〉,
(A10)

where g[n] = (−1)nh[1− n].
The MRA is very well suited for denoising a signal since it

naturally separates the signal into approximations and details
at different scales.

This is depicted in Fig. A2. One can observe on the left the
signal increasingly denoised through scales.

Figure A2. Multi-resolution analysis of a zoomed experimental
SAWR signal using a wavelet Symlet 4 with approximations on
the left and details on the right.

A2 Empirical mode decomposition (EMD)

As wavelets, the EMD method analyses signals in scales.
The difference between Fourier or wavelets and EMD is the
analysing basis. The EMD is based on oscillating functions
extracted from the signal itself (Keshtan and Khajavi, 2016;
Huang et al., 1998). The oscillating functions are built algo-
rithmically and iteratively by a subtraction between the mean
envelope and the residual signal (Chen et al., 2018). This is
the mean of the upper and lower envelopes, built from a cu-
bic spline interpolation (Fig. A3). The oscillating functions
obtained are so-called IMFs (intrinsic mode functions).

The EMD algorithm is detailed in Fig. A4. Its principle is
based on two loops. The first one (Fig. A4 on the left) builds
the current IMF from the signal bereft of its previous IMFs
from which it gradually subtracts the mean envelopes. The
second loop (Fig. A4 on the right) manages the extraction of
the IMFs.

Thus, the signal s(t) is written as

s(t)=
n∑
i=1

imfi(t)+ rn(t), (A11)

with rn(t) the residue (three extrema maxima), imfi(t) the
oscillating function at scale i, and n ∈ N∗.
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Figure A3. Building of the upper, lower, and mean envelopes which
are the key points of the iterative algorithm of an intrinsic mode
function (IMF) calculation.

Figure A4. EMD algorithm that gradually extracts all the intrinsic
mode functions imfi (t) from the signal s(t).

Like DWT, the EMD method analyses the signal into
scales and is well suited for denoising. This is depicted
in Fig. A5, which shows the progressive separation be-
tween low (high IMF number) and high (low IMF number)
frequencies.

Figure A5. EMD analysis of the same zoomed experimental SAWR
signal as Fig. A2.

Appendix B: Notations

Fn SAWR resonance frequency
F Fn translated at 10.7 MHz
F̂ f Estimated resonance frequency by Fourier
F̂w Estimated resonance frequency by wavelet
F̂ e Estimated resonance frequency by EMD
Fs Sampling frequency
s(t) Synthetic signal without noise
sj,i,h(t) Noisy synthetic signals
η(t) Gaussian white noise N (m,σ ).
M Number of resonance frequencies (Fj )
P Number of the Gaussian white noises (ηi(t))
Q Number of signal-to-noise ratios (SNRh)
1Ff Spectral resolution with Fourier
1Ft Spectral resolution with time methods
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