
J. Sens. Sens. Syst., 12, 93–101, 2023
https://doi.org/10.5194/jsss-12-93-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

  

Assisting the automated analysis of chemical–analytical
measurements in spirits using validated algorithms and

an intuitive user interface

Andreas T. Grasskamp1, Satnam Singh1, Helen Haug1,2, and Tilman Sauerwald1,3

1Fraunhofer Institute for Process Engineering and Packaging IVV,
Giggenhauser Street 35, 85354 Freising, Germany

2Friedrich-Alexander-Universität Erlangen–Nürnberg, Chair of Aroma and Smell Research,
91054 Erlangen, Germany

3Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbrücken, Germany

Correspondence: Andreas T. Grasskamp (andreas.grasskamp@ivv.fraunhofer.de) and
Tilman Sauerwald (tilman.sauerwald@ivv.fraunhofer.de)

Received: 30 September 2022 – Revised: 30 January 2023 – Accepted: 6 February 2023 – Published: 20 March 2023

Abstract. Exhaustive analysis of chemical measurements requires considerable expenditure of time and per-
sonnel. However, many aspects of this can be automated by translating manual work into objective algorithmic
routines. To this end, we developed adaptable software for gas chromatography data and validated analysis steps
using whisky samples. We employed an unspecific, larger, in-house volatile organic compound (VOC) database
and another specifically curated database of 217 known whisky chemicals, to automate database-matching based
on mass spectra and retention indices. We managed to reduce the amount of necessary interaction, facilitated
complex analysis for the less experienced user, and showed that characteristic whisky components constituted
the majority of detected molecules in all 16 analyzed samples. With this approach, we present a decisive contri-
bution towards the automated assessment of aroma profiles in food.

1 Introduction

Aroma compounds determine the perceptual experience
of flavors in beverages and foods. The widely enjoyed
whisky spirit contains a complex mixture of many differ-
ent aroma compounds (e.g., Câmara et al., 2007; Poisson
and Schieberle, 2008a). These odorous volatile organic com-
pounds (VOCs) determine the aroma profile perceived by the
consumer. They can be identified by a combination of rigor-
ous chemical analysis and olfactory measurements and have
been reported in literature (Jeleń et al., 2019; Poisson and
Schieberle, 2008a, b). Analyzing a mixture such as whisky
which contains high levels of non-odorant and odorant com-
pounds (Câmara et al., 2007; Demyttenaere et al., 2003;
Poisson and Schieberle, 2008a) with varying odor thresh-
olds (Poisson and Schieberle, 2008b) requires a selective,
highly resolved, and dynamic measurement technology to
capture all relevant odor determinants. Instrumental chemi-

cal analysis methods using gas chromatography–mass spec-
trometry (GC-MS) are currently established as the most pow-
erful approaches to detect and identify these VOCs. For the
identification of odorants, the combination of GC or GC-MS
with olfactometry denoted as GC-MS/O is a widely applied
method (d’Acampora Zellner et al., 2008b; Jeleń et al., 2019;
Poisson and Schieberle, 2008a). However, this process is af-
flicted with high costs due to its high demands in technical
equipment and time, especially regarding the analysis of ac-
quired data. Therefore, the desire for an efficient and reliable
method for detection of the decisive ingredients is high. Here,
we propose one such method employing intuitive user guid-
ance and adaptable purpose to facilitate analysis and reduce
data interaction for the less experienced user. In addition to
matching unknown VOCs using an in-house database con-
sisting of > 700 mostly odor-active molecules, we validated
our method by comparing standard software from the field. A
list of > 200 whisky components (yielded from, e.g., Câmara
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Figure 1. Process of sample analysis in conventional and in our pro-
posed semi-automated analysis. Eye and hand icons indicate data
inspection and interaction, with their size relative to the necessary
amounts of these actions.

et al., 2007; Daute et al., 2021; Demyttenaere et al., 2003;
Jeleń et al., 2019; Poisson and Schieberle, 2008a) specifi-
cally designed for this purpose was further used to assess
the plausibility of detection, although not using reference
standards normally employed for identification beyond rea-
sonable doubt. Lastly, we checked the plausibility of our
approach by automatically classifying substance groups in
16 whisky samples from two geographic origins using an es-
tablished method (Djoumbou Feunang et al., 2016).

2 Methods

The principal approach in conventional and semi-automated
analysis after GC-MS measurements is schematically de-
picted in Fig. 1. Special attention was given to reduce the
amount of necessary user interaction and maximize the out-
put of comprehensible information.

2.1 Data acquisition: stir bar sorptive extraction thermal
desorption (SBSE–TD) GC-MS

Samples of 16 different, commercially available whisky spir-
its were analytically evaluated, as described in our own work
(Haug et al., 2023). Among these samples, nine were of
Scotch and seven of American denomination. Native alcohol
contents varied from 40 % to 50.5 % by volume (ABV). To
ensure comparability, all samples were brought to 40 % ABV
with mineral drinking water where necessary. In order to ex-
tract volatile components, all samples were processed us-
ing stir bar sorptive extraction (SBSE; Baltussen et al.,
1999) in conjunction with polydimethylsiloxane (PDMS)-
coated Gerstel Twisters® (1 cm length, 0.5 mm coat thick-
ness; GERSTEL GmbH & Co. KG, Mühlheim a. d. Ruhr,

Germany). In short, an aliquot of each sample was taken,
mixed with a standard solution of 4-chloro-2-methoxyphenol
(Sigma Aldrich, Steinheim, Germany) and undecane (Sigma
Aldrich, Steinheim, Germany) in ethanol (VWR Interna-
tional GmbH, Darmstadt, Germany), diluted with deionized
water, and finally mixed with sodium chloride (Th. Geyer
GmbH & Co. KG, Renningen, Germany). Following ex-
traction using the Twister®, thermal desorption, and sub-
sequent cryo-focusing (Gerstel TDU and KAS, GERSTEL
GmbH & Co. KG, Mühlheim a. d. Ruhr, Germany), analytes
were transferred to the GC-MS instrument (Trace GC Ul-
tra, DSQ II, Thermo Fisher Scientific GmbH, Dreieich, Ger-
many). Carrier gas flux (helium) over the thermal desorption
unit (TDU) was set to 50 mLmin−1. Separation was carried
out through a DB-FFAP (Durabond free fatty acid phase) col-
umn (30 m× 0.25 mm, coat thickness of 0.25 µm; J & W Sci-
entific, Agilent Technologies, Waldbronn, Germany). Mass
spectrometric detection in electron ionization (EI) mode was
performed at 70 eV, and ions were detected in full scan mode
(mass-to-charge ratio, m/z 35–399). In parallel, in order to
measure linear retention index values (L-RI; written as RI for
brevity), an n-alkane standard mix (C6-C26) was analyzed
under the same GC conditions. The generated .raw files were
converted to .cdf files using Xcalibur 3.0.63 (Thermo Fisher
Scientific GmbH, Dreieich, Germany).

2.2 Analysis in AMDIS

GC-MS data were evaluated using the AMDIS software (Ver-
sion 2.37; D’Arcy and Mallard, 2017; Stein, 1999; Stein and
Scott, 1994). To this end, an RI-value calibration file was first
generated using the alkane standard run, checking for correct
assignment of alkanes C11–C26. Subsequently, 16 whisky
files were individually assessed through the function “use re-
tention index data” and the respective RI calibration file. An
in-house database of target analytes generated with AMDIS
was used in this, containing over 700 entries. The RI val-
ues determined by AMDIS and the mass spectra of detected
peaks were then compared to the targets by the software.
Afterwards, the result of this comparison was saved as a
text report and used in validating the newly developed semi-
automatic approach.

2.3 Preprocessing steps and automated identification of
peaks

Detection of the relevant substances and their respective
GC peaks present in the data generated in Sec. 2.1 requires
processing the alkane standard run, as described for AMDIS
above. These reference substances were used to calculate
RI values (according to van den Dool and Kratz, 1963, and
as done in Haug et al., 2021, 2023) that can be used in nar-
rowing down the list of possible analytes. We developed a
preprocessing pipeline (see Figs. 2 and 3) to work with this
GC-MS data in a non-proprietary form and independently
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Figure 2. Overview of the alkane and sample peak detection and spectral deconvolution process. (a) Exemplary alkane reference run
with detected alkane peak times and intensities. (b) Plot of several detected alkane peak times and time steps to the next detected alkane.
(c) Exemplary sample run with detected peak times and intensities. (d) Exemplary mass spectrum before and after deconvolution.

from AMDIS. The first step in the pipeline includes extract-
ing intensity matrices in a shape of number of scans by the
m/z range. Following this, deconvolution as designed by
Biller and Biemann is applied (Biller and Biemann, 1974).
The peaks deconvolved in this way (Fig. 2d) consist of a large
amount of noise that must be removed. For this purpose, we
developed a sliding-window-based approach that calculates
the median absolute deviation (MAD) to estimate noise. The
window of size 256 scan units and a stride of 50 scan units
slides across the deconvolved signal with an overlap. The am-
plitude of each peak within the window is compared against
the corresponding window’s MAD to ascertain if a sufficient
number of peak ions are above the noise cutoff for it to be
considered a meaningful peak. Regarding the alkane refer-
ences, the challenge was to automatically recognize peaks
that occur in semi-regular spacing and size (Figure 2a) while
making sure not to include off-target peaks as this would in-
validate all following RI values. To help in the localization of
alkanes, we developed a linear model between the retention
time of the alkane peaks and the distance between two con-
secutive alkanes (limited between 300 and 1600 s; Fig. 2b)
using the expected linear variation of retention time (RT) dif-
ferences (d’Acampora Zellner et al., 2008a). Since the time
steps between the alkanes decrease approximately linearly
over the elution time, the model can be used to estimate the

likelihood of a detected peak to occur within a time frame
where an alkane could be expected by using lower and upper
thresholds. Neighboring peaks that lay in time differences
below the lower thresholds were ignored, while those with
higher time differences than the upper threshold were used
to indicate missing neighboring alkanes. If no peak could be
detected in this time frame, the position would be estimated
by interpolation. Alkane C17 was used in low concentration
compared to the neighboring ones for easier identification.
By knowing the position of C17, all other alkanes could be
identified using the retention time model with interpolation
and thresholding. We want to emphasize that a proper iden-
tification beyond reasonable doubt (e.g., to validate the pres-
ence of toxic substances) would require using reference sub-
stances, which is not what we did here.

Unknown substances were detected and assigned an
RI value by the same processing steps as described above
(Fig. 2c), including intensity matrices and deconvolution
(Biller and Biemann, 1974). To minimize the number of
falsely identified peaks, we followed the approach to reduce
noise described above, which estimates the MAD inside a
sliding window over the data. For each segment of the data
inside the window, an MAD value was calculated and com-
pared to a threshold in order to identify outliers and differen-
tiate between noise and the signal. Retention times of signal
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Figure 3. Schematic depiction of data flux and steps in processing
and analyzing GC-MS data via the semi-automated process.

peaks were then saved and, in conjunction with alkane stan-
dard retention times, converted to retention indices (van den
Dool and Kratz, 1963). Lastly, a list of retention times, reten-
tion indices, and all mass spectra was saved to proceed with
database-augmented target matching, as described in the fol-
lowing sections.

2.4 Comparing mass spectra of unknowns with
database entries

Database-matching of molecules from detected individual,
deconvolved mass spectra was performed using cosine simi-
larity (Stein and Scott, 1994), as shown in Eq. (1).

scoreMS =

∑n
i=1(MSlib,i ·MStemp)√∑n

i=1(MSlib,i)2 ·

√∑n
i=1(MStemp)2

(1)

In Eq. (1), MSlib is one of n spectra present in the database
(or library) and MStemp poses a mass spectrum to be com-
pared with all library entries. The highest intensity value of
each individual mass spectrum was set to 1000. All m/z val-
ues were rounded to integer numbers. For all unknown mass
spectra with a corresponding RI value (i.e., a retention time
between first and last reference alkane), scoreMS was then
combined with the difference in RI between library and un-
known substance to yield scoreMS+RI, as shown in Eq. (2).

scoreMS+RI = 1−
(1− scoreMS)+ abs

(
RItemp−RIlib

RIlib

)
2

(2)

Here, only entries in the library were considered a possible
match when the condition |RItemp−RIlib| ≤ 30 was fulfilled.
To achieve this, a Heaviside step function (heaviside function
§1.16(iv); NIST, 2022; shown in Eq. 3) was multiplied with
the respective score.

f (|RItemp−RIlib|)=

{
0, if |RItemp−RIlib|> 30

1, if |RItemp−RIlib| ≤ 30
(3)

Procedures in Eqs. (1) to (3) were repeated for each un-
known spectrum in a chromatogram. Values for the score fell
within a range of 0 (no similarities) to 1 (identical). The li-
brary entry with the highest score was accepted as the most
likely molecule if its respective score was above a certain
threshold (0.6/0.8/0.9, respectively; see below).

2.5 Building a graphical user interface (GUI) for intuitive
analysis

Incorporating the above-mentioned processes into a guided
user experience to reduce the interaction necessary to come
to a result was one of the main goals of this work. There-
fore, we developed a user interface using both the Python
and MATLAB environments. Implementation of peak de-
tection and alkane identification was performed through
Python 3.10.8 and using the PyMassSpec library, while all
other procedures including the database search and the main
user interface were generated in MATLAB (R2022a) using
the integrated functionality “appdesigner” (Fig. 4).

2.6 Comparing results between AMDIS and the
semi-automated process

To assess the quality of database-matching in all 16 sam-
ples and compare between both approaches (conventional
AMDIS analysis and semi-automatic GUI-based approach),
we proceeded as follows. For each sample, a list of all de-
tected molecules (with the respective thresholds listed above)
was generated with each molecule occurring only once de-
spite the possibility of several detection RTs. We kept only
those instances of each molecule that had the highest con-
fidence (“net score” in AMDIS, “score” in our approach)
of detection. The exact way of calculating the net score in
AMDIS could not be fully retraced, but metrics like mass
spectral and RI value differences are taken into account
here as well (according to the AMDIS manual by D’Arcy
and Mallard, 2017). Following this, we checked whether
each molecule detected in AMDIS was found in the semi-
automated routine as well. From the number of molecules
found in both approaches, we calculated the overlap by divid-
ing by the total number of molecules found with AMDIS. Di-
viding the detected molecules into two classes (characteris-
tic/unknown whisky component) was achieved by comparing
them against the custom database of 217 whisky molecules.
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3 Results and discussion

A number of proprietary solutions exist for the analysis of
instrumental-analytical data. However, these often lack vi-
able options to export data in a non-proprietary format for
utilization in other programs. Other labs have also success-
fully amended the functionalities of AMDIS to increase ef-
ficiency and quality of results (e.g., Behrends et al., 2011)
or otherwise produced solutions to help with interpretation
of spectrometric data. Other solutions claim easy use via a
GUI (e.g., Nicolè et al., 2012a), but the provided links lead to
non-existing websites (HTML error 404 for MSeasyTkGUI;
Nicolè et al., 2012b) less than 10 years after publication of
the latest version (at the time of writing; version 5.3.3 from
21 March 2013 can be found via another link) and require
some knowledge in R, making it hard for the inexperienced
user. Here, we developed a modifiable and intuitive tool to
utilize chromatographic data (currently as .cdf files) that can
be customized to fit several input and output formats. Fur-
thermore, this tool allows the usage of tailor-made databases
to improve plausibility of results. Our software allows semi-
automated data analysis through a GUI that requires a few
steps, and only a few parameters need to be set at the be-
ginning. With the framework developed in Python and MAT-
LAB, this can also be adapted, e.g., to automatically detect
new chromatogram files in the working directory of the lab-
oratory and analyze them without any user inputs.

3.1 Building and validation of the graphical user
interface

To ensure intuitive and efficient application of the described
procedures for data analysis, we developed a modular and
customizable GUI with intuitive user guidance (Fig. 4). With
this process, we could automate a considerable number of
labor-intensive steps necessary for analysis, using 16 whisky
spirit samples as an example. We validated the quality of
our approach against a conventional software (AMDIS) and
found that our approach adequately reproduced the results
found therein; however, not to the degree of identification
using reference standards.

To assess the quality of our approach, we firstly deter-
mined which of the molecules found via conventional anal-
ysis (with both “high” and “medium” confidence, i.e., net
scores of 60 or 80) could also be detected using our semi-
automatic approach in an unspecific VOC database of > 700
aroma molecules (that had also been used in the conven-
tional analysis). Table 1 shows that we could on average
detect ∼ 86 % of those molecules detected in AMDIS with
the GUI and processing pipeline. The mean deviation in re-
tention times between molecules found in both procedures
was below 0.5 s. Considering the saving of manual interac-
tion with this procedure, and the possibility of misidentifi-
cation in both approaches, these metrics show that our ap-

Table 1. Results of the comparison between analysis in AMDIS and
semi-automated procedure.

Sample ID n(Molecules) Overlap Ø RT diff.
(AMDIS) (%) (s)

S01 68 95.58 −1.44
S02 81 82.72 −1.10
S03 76 89.47 0.15
S04 79 93.67 0.35
S05 63 85.71 −2.28
S06 70 78.57 −0.59
S07 70 80.00 −1.25
S08 63 90.48 0.23
S09 73 80.82 −0.84
B01 70 80.00 1.00
B02 69 86.95 −0.44
B03 66 78.78 0.96
B04 71 87.32 −0.51
B05 70 87.14 −1.18
B06 66 92.42 −0.41
B07 66 92.42 0.46

Ø 86.38 −0.43

proach is efficient and precise enough to be used in high-
data-throughput environments.

Next, we wanted to determine which part of the found
molecules in each of the approaches was also present in the
curated list of 217 characteristic whisky components. Fur-
thermore, we observed whether the probability of matching
was correlated with a molecule being present in this list. To
this end, we determined the mean quality of molecule de-
tection in two classes: those molecules that were present in
the curated list and those that were not. In the case of our
semi-automatic routine, the difference was statistically sig-
nificant in all samples. This implies that (1) the curated list of
whisky molecules indeed contains molecules that were likely
to be found in each of our whisky samples and that (2) our
approach is working as intended, detecting the molecules
typically found in whisky with higher likelihood. This was
only the case for four samples analyzed using AMDIS.
Several factors may play a role in this observed discrep-
ancy. Firstly, the analysis performed in AMDIS on average
had an overlap of 78.3 % between detected molecules and
the curated list, implying that molecules typically found in
whisky were present in the majority share, while our semi-
automated approach had an overlap of only 45.8 %. How-
ever, our semi-automated approach also found a consider-
ably larger amount of molecules not detected in AMDIS,
implying a higher sensitivity for background noise or traces
not detected in AMDIS. Modification of the criteria for
AMDIS analysis (net score of at least 80, corresponding to
high confidence of matching) and the semi-automatic ap-
proach (score of at least 0.8) resulted in an increase of
metric quality (AMDIS: 82.7 %; our method: 59.9 %) and
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Figure 4. Full view of the graphical user interface with an exemplary chromatogram and compounds detected with high confidence values
(note: the confidence threshold was set to 0.99 for ease of display).

convergence of the overlap in both approaches of 88.7 %.
Further increasing the criteria to 90/0.9 yielded an overlap
of 88.2 % and a further convergence in the quality of detec-
tion of 85.2 %/75.1 %.

Further evaluations will be necessary to optimize these
metrics and increase the quality of detection and/or reduce
the detection of background noise as signals in our approach.
In light of the simplification and reduced effort necessary for
database-matching, this approach is promising and already
useful nonetheless. Furthermore, a failure to detect < 25 % of
molecules as characteristic of whisky is not necessarily a sign
of wrong matching per se, especially considering that the
conventional procedure fails to detect ∼ 15 % itself. In fol-
lowing experiments and validation, we will use other sources
of VOCs (e.g., food products, synthetics) to demonstrate the
usefulness of our approach not just in the spirit realm. Fur-
thermore, we want to build verifiable references for our ap-
proach by utilizing synthetic mixtures of substances modeled
after real products. Only this will allow the comparison of ap-
proaches with finality, as a ground truth is currently lacking.
The reference substances added to the samples used here (un-
decane and 4-chloro-2-methoxyphenol; see Methods section)
were found in all samples. Further potential for reduction of

effort lies in the intensive evaluation of AMDIS reports using
expert knowledge, other than the mere generation and export
of results lists, which can be objectified in principle.

3.2 Classification of molecules into substance groups

Independently from the conventional analysis performed in
AMDIS, we wanted to see whether we could find differ-
ences in the substance groups of molecules detected in our
approach. Theoretically, due to different ways of whisky
production used in the two regions of origin (Scotland
(UK) and USA), we should be able to see higher or lower
amounts of certain substances in the samples. For this, we
used the “ClassyFire” approach (Djoumbou Feunang et al.,
2016) and assigned a predefined class of substances to each
molecule. Such classes included, e.g., “fatty acyls”, “phe-
nols”, and “benzene and substituted derivatives”. We found
that whisky samples of American denomination contained
9.1 % molecules classifiable as lactones, while whisky sam-
ples of Scottish make contained significantly less at 5.8 %
(p < 0.001; unpaired t test). This is possibly explained by
the fact that whisky distilleries in the USA by law have to
age their product in previously unused oak casks to use de-
nominations such as bourbon or rye (Code of Federal Regu-
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Table 2. Substance groups found in two different types of whisky (American/Scotch). Numbers show total counts of compounds within
substance groups and the overall average proportion of substance groups (avg. %±SD). Class denominations were taken as assigned in
ClassyFire by Djoumbou Feunang et al. (2016).

Class Count Avg. % of all ±SD Count Avg. % of all Diff
(American) (American) (Scotch) (Scotch) %

Benzene and substituted derivatives 35 12.7± 2.9 61 14.5± 2.9 1.84
Carboxylic acids and derivatives 20 7.2± 1.4 30 7.3± 2.2 0.15
Dihydrofurans 3 1.0± 1.3 2 0.5± 0.9 0.55
Fatty acyls 109 39.7± 3.9 160 39.1± 7.1 0.53
Lactones 25 9.1± 1.4 24 5.8± 1.2 3.27∗

Organooxygen compounds 52 18.7± 4.5 66 15.8± 2.7 2.92
Phenols 18 6.5± 3.0 46 10.3± 7.5 3.78
Prenol lipids 7 2.6± 1.6 15 3.8± 2.6 1.20
Saturated hydrocarbons 7 2.6± 0.2 9 2.2± 0.3 0.36
Other 0 0.0± 0.0 3 0.7± 1.0 0.7

∗ p < 0.001; unpaired t test.

lations – Title 27 Alcohol, Tobacco Products and Firearms;
United States Government, 2023), while in Scotland, used
oak casks are permitted for the whole maturation process.
Oak wood is a prime source for lactones, and diffusion of
these molecules into the whisky likely explains our observa-
tion. Furthermore, higher lactone contents have been found
in the American oak (Quercus alba), as compared to the
prevalent European species (Quercus robur and Quercus pe-
traea; Prida and Puech, 2006). Whisky samples of Scottish
origin, on the other hand, showed a phenol content of 10.3 %,
while those of US origin contained 6.5 %. This is likely ex-
plained in part by the use of peat in charring casks in Scotch
distilleries, which leads to high phenol contents that can
then enter the maturing spirit (Jeleń et al., 2019; Mall and
Schieberle, 2018). However, this difference has to be viewed
as unverified, as it was not found to be significant due to
high intersample variance and three Scotch outliers heav-
ily skewing the mean towards high values. The determined
classes as denominated by the utilized approach can be found
in Table 2. In conclusion, the detection and classification of
molecules in two whisky spirit types lead to plausible differ-
ences in the amounts of molecule contents.

4 Conclusion

Despite the best efforts and admirable results of some
groups (e.g., Behrends et al., 2011; Broeckling et al., 2006;
Martínez-Jarquín et al., 2017), and mainly owing to the spe-
cialist character of the subject matter, some hurdles are still
to be cleared when it comes to making the expert data analy-
sis of complex VOC mixtures following GC-MS procedures
simpler and more efficient while retaining an acceptable mar-
gin of accuracy. With the semi-automatic approach shown
here, we offer a way to decrease necessary interaction with
data and facilitate interpretation of yielded results, poten-
tially freeing up time and other resources. Another important

feature of this custom approach is that interaction with the
data and adjustment of individual functions, databases, and
export file formats is simplified. This will likely make it eas-
ier for inexperienced users to yield the same quality of data
analysis as an expert in the future, although exact identifica-
tion of molecules using our approach is not yet implemented.
Using a curated database of known whisky molecules, we
validate our approach and show matching qualities close to
conventional analysis proceedings. While we do not offer a
tool with as much functionality as some of the proprietary
Original Equipment Manufacturer (OEM) software, as we
focused on the most important core features in the analysis
pipeline here, we do believe that the procedures shown here
will be useful to the community.
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be discussed with the corresponding authors. Data pertaining to the
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