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Abstract. A human activity recognition (HAR) system carried by masseurs for controlling a therapy table via
different movements of legs or hip is studied. This work starts with a survey on HAR systems using the sensor
position named “trouser pockets”. Afterwards, in the experiments, the impacts of different hardware systems,
numbers of subjects, data generation processes (online streams/offline data snippets), sensor positions, sampling
rates, sliding window sizes and shifts, feature sets, feature elimination processes, operating legs, tag orienta-
tions, classification processes (concerning method, parameters and an additional smoothing process), numbers
of activities, training databases, and the use of a preceding teaching process on the classification accuracy are
examined to get a thorough understanding of the variables influencing the classification quality. Besides the
impacts of different adjustable parameters, this study also serves as an advisor for the implementation of clas-
sification tasks. The proposed system has three operating classes: do nothing, pump therapy table up or pump
therapy table down. The first operating class consists of three activity classes (go, run, massage) such that the
whole classification process exists with five classes. Finally, using online data streams, a classification accuracy
of 98 % could be achieved for one skilled subject and about 90 % for one randomly chosen subject (mean of 1
skilled and 11 unskilled subjects). With the LOSO (leave-one-subject-out) technique for 12 subjects, up to 86 %
can be attained. With our offline data approach, we get accuracies of 98 % for 12 subjects and up to 100 % for 1

skilled subject.

1 Introduction

Human activity recognition (HAR) is an active field of re-
search due to the emerging applications in areas such as am-
bient assisted living (AAL), rehabilitation monitoring, fall
detection, remote control of machines/games and analysing
fitness data. The classification of human activities is fre-
quently the key issue to be tackled. This is an interesting
and challenging task, as activities from different subjects in
different environments have to be recognized as the same
class. A typical HAR pipeline consists of several steps: pre-
processing, feature extraction, dimensionality reduction and
classification.

The aim of our work is to develop a HAR system car-
ried by masseurs for controlling a therapy table via different
movements of legs or hip. For the masseur, it is important
that no hands are involved, as they are mostly oily, and it
is more comfortable if the therapy table can be operated re-
motely without stationary foot pedals. A voice control is also
not an optimal choice, as the patients lying on the therapy
table should be able to relax without disturbance. In our ex-
periments, we studied two different sensor positions: fixed at
the right hip like a belt and loosely inserted in a pocket of the
trousers.

This study aims to be an advisor for creating classification
models for HAR systems with wearable sensors and an addi-
tional help for finding optimal parameter settings. In Fig. 1,
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we depicted some influencing variables on the classification
accuracy of a HAR system (see enumerations at the figure
bottom). We split the influences according to their occur-
rence in the classification process. Most of these influenc-
ing variables have been studied in this work such as optimal
window lengths and shifts, good features and how to select
them, what is the minimal size for the training database, is
a preceding teaching process necessary, and so forth. Fig-
ure 1 also shows that, due to the huge number of influencing
variables, it is not easy to fully understand a classification
process, and it is only related with much work. Therefore,
the comparability between different classification tasks also
becomes difficult.

The rest of the paper is organized as follows. Section 2
summarizes relevant work on human activity recognition.
Section 3 explains the hardware and software infrastructure
used in our HAR system and declares the used data collec-
tion processes. In the Sects. 4-6, results of our experiments
with the three different hardware systems are presented and
discussed. In Sect. 7, a short comparison of the best-reached
classification accuracies with the different hardware systems
is given. Finally, Sect. 8 concludes the paper.

2 Related work

In recent literature, smartphones often serve as a tool for im-
plementing a HAR system (San Buenaventura and Tiglao,
2017; Nguyen et al., 2015; Biiber and Guvensan, 2014; Ustev
etal., 2013; Saha et al., 2017; Abdullah et al., 2020; Ashwini
et al., 2020; Weng et al., 2014), as they are equipped with a
rich set of sensors. However, device independence to remedy
varying hardware configurations as well as efficient classi-
fiers to prolong battery life and limit memory usage are still
problems to be tackled.

Other challenges in the field of activity recognition are the
differences in the way people perform activities concerning
speed and accuracy (user independence) as well as the sensor
positioning on the human body to find a position with high
information gain and good separable features. Orientation in-
dependence of the sensor is also often desirable.

In Bloomfield et al. (2020), the difficulty of comparing
HAR accuracy throughout literature is mentioned, since im-
plementations vary across subject health or functional im-
pairment, number of sensors and their placement locations
on the body, activities performed, number and type of classes
to distinguish, and validation techniques used. Additionally,
various sensors may record with different measurement accu-
racies. For validating results of trained models, some papers
use an n-fold process where samples from all subjects are
blended. An alternative and better scheme involves the leave-
one-subject-out (LOSO) technique so that the test set con-
tains data of unseen subjects. In Kulchyk and Etemad (2019),
classification accuracy drops from 100 % to 78.35 % when
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using the LOSO technique instead of splitting training and
test data into 70 % : 30 % or using 10-fold cross-validation.

The optimal sensor placement on the human body plays
an important role. Comparisons of different sensor posi-
tions have been considered in Kulchyk and Etemad (2019),
Nguyen et al. (2015), Altun et al. (2010) and Saha et al.
(2017). In Kulchyk and Etemad (2019) the ankle was the best
sensor position, while in Nguyen et al. (2015) and Altun et
al. (2010) the trouser side pocket and the right thigh, respec-
tively, were the best choices. However, in Saha et al. (2017)
the shirt pocket was better than the right trouser front pocket
and two further sensor positions.

In our work, we have chosen the trouser pockets as a de-
sirable unrestricted sensor position. In literature, we found
some publications that also used this sensor placement (San
Buenaventura and Tiglao, 2017; Nguyen et al., 2015; Biiber
and Guvensan, 2014; Ustev et al., 2013; Saha et al., 2017;
Abdullah et al., 2020; Weng et al., 2014), in addition to multi-
ple publications with other sensor positions. In Table 1, these
publications are listed with additional information about type
and placement of sensors, number of activities, used classifi-
cation methods and their performance.

In Table 1, the following abbreviations are used: acc
(acceleration), gyr (gyroscope), mag (magnetometer), bar
(barometer), app (approximately), pos (position), CNN (con-
volutional neural network), KNN (K nearest neighbour),
SVM (support vector machine), NB (naive Bayes), DT (de-
cision tree), RF (random forest), J48 (decision tree — J48),
BN (Bayesian network), BDM (Bayesian decision-making),
RBA (rule-based algorithm), LSM (least-squares method),
DTW (dynamic time warping), ANN (artificial neural net-
work), LR (logistic regression), IBK (instance-based clas-
sifier with parameter K; same as KNN), MLP (multi-layer
perceptron), DTa (decision table), PNN (probabilistic neural
network), Erms (root-mean-square error).

Some publications listed in this table fixed the sensor at
the thigh (Bloomfield et al., 2020; Kulchyk and Etemad,
2019; Altun et al., 2010; Mannini and Sabatini, 2011), and
three further publications examined a sensor placement on
the wrist similar to a watch (Yang and Zhang, 2017; Chuang
et al., 2012) and in the hand, respectively, (Ashwini et al.,
2020). Other sensor positions like ankle can be found in the
column sensor positions. If the authors used smartphones for
the data collection process, we added the word “smartphone”
in the “Sensor types” column in brackets.

If we take a closer look at Table 1, it is apparent that the
usage of a single sensor type (accelerometer) achieves good
classification performance. In San Buenaventura and Tiglao
(2017), the additional use of gyroscope and magnetometer
data resulted in an improvement in performance of 1.2 %.

A further interesting fact of Table 1 is that the number
of activities to be classified do not negatively correlate with
the classification performance. Also, publications with a high
number of daily living activities as Bloomfield et al. (2020)
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Table 1. Some existing studies with emphasis on the sensor position “trouser pockets”.

189

Related publications

Ref.

Sensor types

Sensor positions

Number of
activities

Classification methods

Performances

Bloomfield et al. (2020)

acc, gyr, mag

above and below

11 (6 static,

colour images + CNN;

91 % single model,

each knee 5 dynamic)  1-stage or 2-stage 100 % (static vs. dynamic),
classification model 99 % (static case),
91 % (dynamic case)

Kulchyk and Etemad (2019) acc ankle, thigh, 5 CNN 99 % (ankle),
sternum and/or 96 % (sternum),
shoulder 87.5 % (thigh),

82 % (shoulder),
100 % (with 2 sensor pos.), ...

San Buenaventura and Tiglao  acc and/or gyr  right trouser 6 KNN 96.9 % (acc),

(2017) and/or mag pocket 94.8 % (gyr),

(smartphone) 98.7 % (acc+gyr),
98.1 % (acc+gyr+mag), ...

Nguyen et al. (2015) acc, bar hand, belt, 5 SVM (best), KNN, 94.7 % (independent
(smartphone)  trouser back NB or DT holding places),

pocket and/or app. 98 % (side pocket — best),
trouser side app. 96 % (back pocket or belt),
pocket app. 91 % (hand)

Biiber and Guvensan (2014) acc trouser front pocket 8 KNN, k-Star, RF, 93.84 % (KNN),
(smartphone) J48, BN or NB 93.35 % (k-Star),

93.13 % (RF),
91.01 % (J48),
88.20 % (BN),
80.51 % (NB)

Altun et al. (2010) acc, gyr, mag  right + left thigh, 19 BDM (best), RBA, LSM, 97.3 % (only right thigh — best
right + left KNN, DTW, DTW>, for single sensor pos.), ...
forearm and/or SVM or ANN 98.8 % (right + left thigh), ...
chest 99.2 % (all sensor pos. used)

Ustev et al. (2013) acc, gyr, mag  trouser pocket 5 KNN 97 % (with orientation + user
(smartphone) independency)

Saha et al. (2017) acc shirt pocket (best), 5 2-phase classification process 9 % average improvement
(smartphone)  right trouser front with parameter tuning; base against single phase approach

pocket, belt classifiers: LR (best), J48, (with device + pos.
or bag IBK, MLP, Bagging or DTa independency)

Abdullah et al. (2020) acc chest and trouser 2 classes: two-layer feed-forward 90.6 %-93 %
(smartphone)  pockets fall or network

non-fall

Yang and Zhang (2017) acc “watch style” 5 DT 89.7 %

Chuang et al. (2012) acc users’ dominant 7 3-phase physical scheme 96.82 % (Physical Scheme),
hand wrist (with thresholds and 2 KNNs),  80.24 % (KNN),
and ankle KNN or PNN 80.50 % (PNN)

Ashwini et al. (2020) acc worn in hand 6 KNN (best) or SVM app. 98 % (shimmer device),
(shimmer app. 93 % (acc. sensor),
device or app. 95 % (both sensors);
acc. sensor) 6 % average improvement

against SVM

Mannini and Sabatini (2011)  acc thigh 5 SVM (activity higher than 99 %,

classification), Erms =0.28kmh~!
SVM + LR (speed for speed estimation
classification)

Weng et al. (2014) acc trouser pocket 4 2-phase classification 98.50 % (1 Hz 4 100 s window), ...
(smartphone) with SVMs 99.65 % (100Hz + 1 s window)
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Figure 1. Influencing variables on the classification accuracy of a HAR system.

and Altun et al. (2010) gained comparable results in perfor-
mance.

In literature, common classification methods are support
vector machines as well as k-nearest-neighbour (KNN) ap-
proaches. In Nguyen et al. (2015) and Altun et al. (2010),
SVMs achieved the best results; on the other hand, in Biiber
and Guvensan (2014) and Ashwini et al. (2020), KNN meth-
ods performed best. So, there is no overall method that per-
forms best regardless of circumstances. In Bloomfield et al.
(2020), Saha et al. (2017), Chuang et al. (2012) and Weng
et al. (2014), the idea to use several stages for classifica-
tion instead of a single model approach turned out to be ad-
vantageous. In Saha et al. (2017), for instance, a two-phase
approach improved the overall system by 9 % on average,
whereas a combination of several classifiers led to an im-
provement of 7 %. In Ustev et al. (2013), the use of linear ac-
celeration (excluding the effect of gravitational force) com-
bined with the conversion of accelerometer readings from a
body coordinate system to earth coordinate system gave huge
improvements in classification accuracy.

In the following, we want to summarize — for the particu-
larly interested reader — the uniqueness, strengths and weak-
nesses for every paper listed in Table 1.

Bloomfield et al. (2020) described a wearable sensor sys-
tem that is fixed above and below both knees. Data were
logged at 25 Hz, which was sufficient to measure the lower
extremities. A special approach to solve the problem of clas-
sification is the quaternion orientation representation of a
body’s orientation in three dimensional space. This informa-
tion is transformed into colour images that serve as input for
CNN s to get an automatic feature extraction. The LOSO val-
idation technique was used. During data processing, it was
found out that the body-worn sensors had slipped substan-
tially on the legs of two subjects during cycling activities
and on one subject during running activities. These trials had
to be excluded from further evaluations. In this study, static
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tasks were better classified as dynamic tasks. The classifica-
tion of data from subjects during cycling, ascending and de-
scending stairs turned out to be difficult. Moreover, the dif-
ferent execution speeds of the subjects made it difficult to
classify walking and running samples. Furthermore, the au-
thors stated that battery lifetime would be better for single
sensor systems using only accelerometers.

Kulchyk and Etemad (2019) proposed a system without
the need for pre-processing, as they use an end-to-end solu-
tion via CNN only. They used a publicly available dataset and
three validation techniques, also regarding the robust LOSO
validation. They stated that the minimum number of accel-
eration sensors required for perfect classification accuracy is
two, where at least one of the sensors should be located on a
body part with a wide range of motion such as the ankle.

San Buenaventura and Tiglao (2017) made tests with
lightweight classifiers (decision tree, KNN) while minimiz-
ing resource use. The KNN method, combined with data
of accelerometer—gyroscope and a subset of eight features
(found via the “ReliefF” feature selection algorithm), was
sufficient for recognition. Frequency domain features were
not necessary, as classifications with solely time domain fea-
tures gave the best results. Accuracy also reduced slightly
when a magnetometer was added to the accelerometer—
gyroscope combination. For distinguishing upstairs and
downstairs activities, the skewness feature of the accelerom-
eter data was useful. For future analysis, additional physical
and statistical features as well as other feature selection tech-
niques would be interesting.

Nguyen et al. (2015) developed a HAR system that should
perform robustly in any position that a smartphone could
be held and which should be suitable for real-time require-
ments (sampling window size of 3 s). This goal was reached
with an accuracy of more than 82 % for each activity in each
of the four possible holding positions. The authors wrote
that wearing multiple sensors on different body parts would
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be uncomfortable. The best results were achieved by SVM
classifiers combined with the trouser side pocket. Further-
more, new features are extracted from a tri-axis accelerom-
eter and a barometer like the variance of atmospheric pres-
sure, and afterwards the features got normalized to a standard
range of —1 to 1. So, they found features that are capable
of distinguishing walking, ascending and descending stairs
better than features of conventional methods. Moreover, the
tracking of the subjects in a building completed the study.
Nevertheless, analyses were only made with 10-fold cross-
validation and with all 118 features.

Biiber and Guvensan (2014) implemented a mobile ap-
plication to report the daily exercises of a user to estimate
calorie consumption. The system is energy-efficient, runs of-
fline and has only 10kB training data to be stored. The ex-
periments showed that 10 instances of each activity class
are enough to get the same accuracies with the best classi-
fier (KNN method, K =1). Six classifiers and two feature
selection algorithms showed that 15 out of 70 normalized,
time domain features are enough to get the best success rate.
As the system had slight difficulties to classify ascending and
descending stairs, the authors propose to combine these two
classes, if possible, into one class. Points to be improved in
future are the fixed location and orientation of the phone in
the trouser pocket, the use of a 10 s windowing process and
the sole use of the 10-fold cross-validation method.

Altun et al. (2010) made a comprehensive study that com-
pares eight classification methods in terms of correct dif-
ferentiation rates, confusion matrices, computational costs
as well as training and storing requirements. The classifier
BDM (Bayesian decision-making) achieved the highest clas-
sification rates with RRSS (repeated random sub-sampling)
and 10-fold cross-validation, whereas the LOSO technique
recommended SVM, followed by KNN (with K = 7). In this
study, 19 activities were classified via acceleration, gyro-
scope and magnetometer readings of sensors placed on five
different body places of eight young subjects. Sampling fre-
quency was set to 25 Hz, and data were segmented into 5s
windows. A big feature set was reduced via principal com-
ponent analysis from 1170 normalized features to 30. The
utilized receiver operating characteristic (ROC) curves pre-
sented, in a very clear way, which activities are mostly con-
fused. Also, the analysis made with reduced sensor sets as
well as the long list of potential application areas of HAR
systems is very interesting. Moreover, for future investiga-
tions, the authors propose the development of normalization
between the way different individuals perform the same ac-
tivities. New techniques need to be developed that involve
time wrapping and projections of signals as well as compar-
ing their differentials.

Ustev et al. (2013) specifically focused on the challenges
of user-, device- and orientation-independent activity recog-
nition on mobile phones. The orientation tests (same phone in
vertical/horizontal orientation) especially showed that con-
ventional HAR systems using phone coordinate systems are
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not robust enough. Firstly, Ustev et al. (2013) proposed to use
time domain, frequency domain and autocorrelation-based
features. Secondly, linear acceleration that excluded the ef-
fects of gravitational force increased the accuracy further.
Thirdly, the switch to Earth coordinates further boosted the
classification accuracies up to 97 %. The only drawback of
this method is the higher energy consumption for using three
sensors, which will be further investigated by the authors.

Saha et al. (2017) used simple time domain features, such
as the mean of the logarithm of each acceleration axis, to
implement a two-phase activity recognition system which is
device independent as well as position independent. There-
fore, six different smartphones and four different positions
of the devices are used. It is shown that the pattern for one
activity varies from one device to the other, which makes,
for example, threshold-based approaches unsuitable. Noise
and outliers were eliminated, and filtering was conducted to
preserve medium-frequency signal components. Phase 1 of
activity classification chooses the best training dataset that
yields maximum overall accuracy for a test set. Phase 2
further improves the accuracy by condition-based parame-
ter tuning of a given classifier. As shirt pocket was found to
be the best position for collecting training data, training data
were only collected with this specific position.

Abdullah et al. (2020) tried to distinguish fall and non-
fall events by computing four time domain features from ac-
celerometer data and by using a two-layer feed-forward net-
work. Data are collected at two different carrying positions of
the smartphone; 26 fall and 41 non-fall events were classified
with 93 % accuracy. In future, this study should be further ex-
tended to more subjects (now 2), to a bigger feature database
and to more classifiers.

Yang and Zhang (2017) used a wearable device in a watch
style for classifying five daily activities with an acceptable
accuracy. A big advantage is the comfortable way of wearing
the sensor. Unfortunately, sitting or bicycling activities can-
not be detected reliably. For pre-processing, a median filter
for eliminating noise and a temperature sensor for correcting
the acceleration data were used. Afterwards, several time do-
main and frequency domain features were computed, and a
decision tree was applied. To be more energy efficient, the
micro-controller was set to a sleeping mode and only woke
up when necessary. Weaknesses of the analyses are that only
young people participated in the study, and the classifica-
tion decision tree was only created from data of all persons
together. Furthermore, analyses including feature selection
methods or other classifiers would be interesting.

Chuang et al. (2012) applied a divide-and-conquer strategy
for first differentiating dynamic activities from static activi-
ties (threshold-based), and then posture recognition was used
to classify the static activities sitting and standing. There-
fore, thresholds for pitch and roll angles of the ankle were
used. For dynamic activities, the exercise classification al-
gorithm classified them into three classes: running, cycling
and ambulation activities. Afterwards, the ambulation clas-
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sification algorithm was utilized to distinguish between level
walking, walking upstairs and walking downstairs. Here, two
KNN classifiers with K =5 were used for pre-processed
(high-pass filtering) and transformed signals (13 time domain
and frequency domain features). The LOSO cross-validation
method confirmed the successful recognition of seven activi-
ties with 96.82 %. The use of two acceleration sensors, worn
on the participant’s ankles and wrist, was a good decision.
The only drawback of the analysis could be the participant’s
limited age range between 20 and 25 years.

Ashwini et al. (2020) presented a classification system
for six different hand gestures, where the subjects carry
a sensor in the hand. They compared two sensors (shim-
mer sensor versus tri-axial accelerometer sensor) with 38
healthy subjects, pre-processed data, eight features and two
different classifiers (SVM and KNN). Improvements were
achieved upon considering both shimmer and accelerometer
data. Among the classifiers considered, KNN had an aver-
age accuracy around 6 % better than SVM. Unfortunately,
the LOSO validation was not considered, and the exact pre-
processing strategy was not explained.

Mannini and Sabatini (2011) showed that online human
activity recognition (1 s time windows) with one acceleration
sensor mounted at the right thigh is possible for five activities
with high accuracies. Even with the LOSO technique, results
as high as 92 % could be achieved. Furthermore, locomotion
speed was estimated for the classified activities walk and run.
Overall, two SVMs fulfilled these tasks, and six young sub-
jects participated in the study.

Weng et al. (2014) tried to develop a HAR system with
high accuracy and low power consumption. Therefore, stud-
ies with 1 Hz sampling rate and long time windows were con-
ducted and showed very good results for four activities and
three young men. To classify two static and two dynamic ac-
tivities of daily life, three SVMs had been used in a hierarchic
manner to classify low-pass-, mean- and median-filtered ac-
celeration signals. In future, more participants and real-life
environments should be analysed. Drawbacks of the method
are the small number of activities and the huge time win-
dows, as the width of the time windows had to be increased
when sampling rates decreased.

In general, HAR systems with wearable sensors achieve
good performance. So, it is worth it to further investigate
such systems to remain competitive and to produce further
improvements to pave the way for future technologies.

3 Hardware and software infrastructure

For data collection, three different hardware systems have
been used, as there have been multiple enhancements dur-
ing the classification analysis. For system 1, a customized
data acquisition system with acceleration sensor ADXL.335
and micro-controller PIC32MX695F512H has been used.
The data are transferred via LAN cable to the PC. So,
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the orientation and rotation of the sensor is restricted dur-
ing carrying in the trouser pocket. For system 2, we used
a Decawave EVK1000 evaluation kit with micro-controller
STM32F105xx as base station. Additionally, a self-built tag
with a LIS3DH acceleration sensor and a STM32L051x8
micro-controller was utilized. The data are transmitted via
radio wave from the tag to the base station and transferred
via LAN cable to the PC. System 3 is nearly the same as
system 2, but instead of the LIS3DH acceleration sensor an
IMU LSMODS1 was used to record acceleration and gyro-
scope data. Table 2 shows photos of the different systems. We
recorded accelerometer data with 1 kHz using system 1, ac-
celerometer data with 50 Hz using system 2, and accelerom-
eter and gyroscope data with 59.5 Hz using system 3. During
the analysis with system 1, we concluded that even 20 Hz
would be enough for good results; therefore, we reduced the
sampling rate with progression of hardware development.

Within the experiments with systems 1 and 2, one healthy
(self-assessed) female person was used for data generation.
For analysis with system 3, 12 healthy people (5 female, 7
male) served as subjects. The subjects decided by themselves
how the sensor was to be initially put in the pockets of the
trousers and how fast or clear each activity was to be per-
formed.

In our analysis, we tested various movements such as toe
tip, heel tip, swivelling hips, stamping with feet, moving the
knee up and down, or moving the knee left and right for suf-
ficient recognition. Finally, we decided that the therapy table
should move upwards when the masseur moves the knee up
and down such as using an air pump. The toes are kept on
the ground during the pumping process. Otherwise, the ther-
apy table should move downwards, when the masseur moves
the knee left and right with the toes kept on the ground. If
the masseur is doing anything else, such as standing, giving
a massage, going or running, the therapy table should remain
in its current position.

For data collection, three classes of movements have been
recorded with five different activities:

— Class 1 was go, run or massage.
— Class 2 was pump therapy table up.

— Class 3 was pump therapy table down.

In the next sections, this data material is referred to as “of-
fline data”. If we make use of this offline data during analysis
(e.g. for feature selection processes), then we split these data
into 70 % training data samples and 30 % test data samples
and make a cross-validation with 1000 different choices of
training data samples collected from the whole dataset.

Furthermore, we recorded data streams (called “online
data” in the next sections) with the following sequence of
activities:

1. go—class 1 for 25,
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Table 2. Used hardware systems.

Hardware system 1 with sensor mounted at the hip:

2. pump up — class 2 for 10s,

3. massage — class 1 for 25,

4. pump down — class 3 for 10s,

5. go—class 1 for 10,

6. run —class 1 for 10,

7. go—class 1 forSs,

8. pump up —class 2 for 5s,

9. massage — class 1 for 20s,
10. pump down — class 3 for 55,

11. massage — class 1 for 10s.
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In Fig. 2a, an example of an online data stream is depicted.
First, acceleration data for each axis (accy, accy, accy) are
shown. The last panel shows the acceleration magnitude

computed as acc = \/ acc%( + acc?, + acczz.
As a tool for our analysis, we used MATLAB without any
special toolboxes for classification purposes.

4 Experimental results and discussion for hardware
system 1

In the data pre-processing step, the data are segmented into
windows of 3s, and these windows are computed every
200ms out of 10 online data streams of one subject (test
data). For training, 55 samples of each kind of activity are
used from a separate recording with the same subject. There-
fore, class 1 consists of more training data as classes 2 and 3
as there are more different movements in it. In detail, we
chose an approach with classification into five classes fol-
lowed by a renaming of classes 1-5 to new classes 1-3. For
the execution of the two different pumping exercises, the
same leg, as where the sensor was mounted or pushed into
the pocket, was used. After segmentation, multiple features
are generated and normalized to values between 0 and 1.

For the acceleration data of each axis as well as accelera-
tion magnitude, 43 features are computed, which are short-
time energy (STE), short-time average zero-crossing rate
(ZCR), average magnitude difference (AMD), root-mean-
square energy (RMS), 15 specific band energies (BE1-
BE1S), spectral centroid (SCENT), median of peak dif-
ferences (PEAKDIFF), number of peaks (PEAKS), spec-
tral roll-off (SROLL), spectral slope 1 (SSLOP1), spectral
slope 2 (SSLOP2), spectral spread (SSPRE), spectral skew-
ness (SSKEW), spectral kurtosis (SKURT), spectral band-
width (SBAND), spectral flatness (SFLAT) and the first 14
mel-frequency cepstrum coefficients (MFCC-1 to MFCC-
14). In summary, we have 172 features of which 3 x 4 are
of the time domain, 26 x 4 are of the frequency domain and
14 x 4 are out of the cepstrum. Further information about our
used features and additional features can be found in most of
the articles in our reference list (Antoni and Randall, 2006;
Bajric et al., 2016; Beritelli et al., 2005; Fernandes et al.,
2018; Gupta and Wadhwani, 2012; Morris et al., 2014; Nandi
et al., 2013; Preece et al., 2009; Prieto et al., 2012; Rosso et
al., 2001; Shen et al., 2013; Singh and Vishwakarma, 2015;
Yi et al., 2014; Zhang et al., 2013).

For evaluation of different machine learning applications,
we collected many features in a database that could be rea-
sonable for such purposes. Afterwards, with feature selection
or elimination processes, we automatically find a suitable
subset of features. For our daily work with different classi-
fication tasks, this prefabricated feature-based approach will
reduce our time for future analyses. In another publication
(Pichler et al., 2020), we also used various features to anal-

J. Sens. Sens. Syst., 13, 187-209, 2024




194 S. Schober et al.: HAR system using wearable accelerometers for classification

Go
Pump up
Massage

Pump down

Go
Run
Go
Pump up
Massage
Pump down
Massage

ECCX

acc,,
o

a
N
(=]
»
(=]
R - ant

@ 190 120 140
2 T T =
& MWWJ\J‘J\_WIM : WMM\*WU\ |
@
2 I I
q 20 40 0 80 1q0 120 140
3F J -1

g 2 I =
@ '* “N. “Ml‘ tl #“‘ h‘ 'I
1 [ " 1 I 1 =
i [ [ [ 1 i i
1 1] 1 1 1 1 1]
0 p 2 I 1 i : : I H :
0 20 40 60 80 100 120 140
time [s]
3 T T
s2F -
s}
1 1 | | | |
0 100 200 300 400 500 600 700

time [number of sliding windows]

Figure 2. Acceleration data and the estimated classes of an exemplary online data stream. (a) Acceleration data; (b) estimated classes without
(red line) and with smoothing (green line); blue line represents ground truth.

yse vibration data of bearings. In Capela et al. (2015), also a
huge list of features is generated.

For classification, we used the one-nearest-neighbour
(INN) method, as in our literature study KNN methods
reached classification accuracies that were as good as other
methods, such as CNN. In Biiber and Guvensan (2014) and
Ashwini et al. (2020), the KNN method performed even bet-
ter compared to other classic approaches for classification.
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For our application, it is important to quickly get a classifi-
cation response for motor control. Therefore, we decided to
use an easy and comprehensible method, and, according to
the literature research, it is also comparably as good as other
approaches.

Using the 1NN method, for each test data sample the most
similar training data sample is searched, and the class of
this training data sample is assigned to the test data sample.
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Additionally, a smoothing process is used to overcome the
problem of individual false assignments. For this idea, a time
window of length 4 s is moved over the classification results
of the data stream. The most commonly estimated activity
class within this period is then the new activity class for the
timestamp at the middle of the time interval. This results in
a time lag of 2's for online execution until the final class is
certain. In Fig. 2b, an example is given for the classification
results of an online stream with and without smoothing. The
red line shows the estimated classes without smoothing, the
green line shows the estimated classes with smoothing and
the blue line is the correct result.

We computed for each feature the ability to classify be-
tween the three classes. Remarkably, the features computed
from acceleration magnitude, acc, and from acceleration of
the z axis, accz (accz shows horizontally forward), per-
formed best for the hip sensor position. The best feature
(SBAND computed from acc) reached 81.42%. For the
trouser pocket sensor position, features computed from acc
and accy performed best. The best feature was MFCC-4 of
acc with 95.22 %. The worst features for both sensor posi-
tions reached 33.33 %.

Furthermore, we compared the two different sensor posi-
tions (hip and trouser pocket) with different sets of features:

Feature set 1 was 172 features

Feature set 2 was 43 features of acceleration magnitude

Feature set 3 was a combination of 23 features that had
the highest ability to separate the different classes on its
own (with the hip sensor position)

Feature set 4 was a combination of 30 features gained by
the backward elimination process (with the hip sensor
position)

The backward feature elimination process was used to find
a small subgroup of features with ample information con-
tent. The process starts with all features and then succes-
sively eliminates features, such that the classification accu-
racy is maximized in each elimination step (Kim et al., 2006;
Meyer-Baese and Schmid, 2018).

In Table 3, the classification accuracies for the different
feature sets with and without using an additional smoothing
process are illustrated. On the basis of the results in Table 3,
the activities “pumping the therapy table up/down” are best
recognized with positioning the sensor in the trouser pockets.
With the use of hardware system 1, the sensor is restricted in
its movement within the trouser pocket. So, it behaves sim-
ilarly to a sensor mounted at the thigh. Moreover, we can
see in Table 3 that an additional smoothing process is advan-
tageous if the classification results do not have to be avail-
able immediately. Furthermore, the use of an optimal feature
set is important, and the features resulting from acceleration
magnitude also performed good without a significant drop in
acceleration accuracy.

https://doi.org/10.5194/jsss-13-187-2024

classification accuracy
°
2
2
2
<x
s

L 4
X: 168
¥:0.9759

L N L
0 20 40 60 80 100 120 140 160

amount of eliminated features

(a)

classification accuracy

(b)

classification accuracy

0.955 L I L L L L L L
0 5 10 15 20 25 30 35 40

amount of eliminated features
(©)
Figure 3. Progress of classification accuracy during the backward
elimination process. (a) 172 features, hip sensor position, offline
data; (b) 172 features, trouser pocket sensor position, offline data;
(c) 43 features of acc, trouser pocket sensor position, offline data.

In our analysis, we also performed a backward feature
elimination process for feature sets 1 and 2 with the trouser
pocket sensor position. Figure 3 shows the theoretical accu-
racies within the feature elimination processes with the use
of offline data.

The data within a window of offline data streams include
only data of one special activity, which may explain the im-
proved performance.

In Fig. 3a, a set between 15 and 40 features gains a per-
fect classification result. In Fig. 3b, a set between 4 and 153
features gains 100 % classification accuracy. Therefore, the
trouser pocket sensor position needs fewer features to per-
form well on the training set. If we use feature set 2 as the
initial set for the backward elimination process with data
gathered from the trouser pocket sensor position, the clas-
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Table 3. Comparison of classification accuracies for different sensor positions with hardware system 1 and online data.

Feature Hip, Hip, Trouser pocket, Trouser pocket,
set without smoothing ~ with smoothing  without smoothing  with smoothing
1 86.98 % 90.86 % 88.75 % 91.89 %
2 81.59 % 84.65 % 85.69 % 89.62 %
3 89.45 % 92.26 % 90.94 % 94.18 %
4 88.97 % 92.29 % 87.61 % 90.28 %

sification accuracy is highest with eight features (98.8 %,
see Fig. 3c). These eight features are MFCC-4, SBAND,
BE4 (64.95-135.93), BE3 (31.75-64.95), MFCC-6, MFCC-
13, MFCC-14 and MFCC-8. The cepstrum coefficients per-
formed especially well. With these eight features, we com-
puted the classification accuracy again for online streams as
in Table 3. For the trouser pocket sensor position and no
smoothing, we attained an accuracy of 89.77 %. For the same
conditions with smoothing, we obtained 93.95 %.

Next, we examined the decrease in classification accuracy
if we add all four possible combinations of leg movement
and sensor positioning in the trousers. We recorded data with
the sensor placed in the right trouser pocket, and leg move-
ments are fulfilled with the right or left leg. Additionally,
we recorded data with the sensor placed in the left trouser
pocket, and leg movements are made with the right or left leg.
The training data arise from 240 windows of 3 s of each ac-
tivity group with four combination possibilities and 119 win-
dows of 3 s of each activity group for two combination pos-
sibilities. As test data, we used 20 online streams of one sub-
ject for four combination possibilities, and 10 online streams
of one subject for two combination possibilities (five online
streams of each combination possibility have been recorded).
For comparison purposes, we used three feature sets:

— Feature set 1 was 43 features of acceleration magnitude

— Feature sets 2 and 3 were a combination of 23 and 9
features, respectively, gained by backward elimination
processes

Feature set 2 is attained by a backward elimination process
started with 43 features of acceleration magnitude and all
four combination possibilities of leg movement and sensor
positioning. Feature set 3 also results from a backward elim-
ination process started with 43 features of acc but with only
two combination possibilities — leg movements and sensor
positioning must be at the same side. In Table 4, feature set 2
is used for columns 2 and 3, whereas feature set 3 is used
for columns 4 and 5. The abbreviation “comb. possib.” is
used for the term combination possibilities. Table 4 demon-
strates that with complete freedom with respect to the choice
of dominant leg and trouser pocket, the classification accu-
racy falls from 94.18 % to 86.11 % for the best feature set
with smoothing. With the restriction that the leg movements
pumping up/down and the trouser pockets must be on the
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same side, 92.61 % can be achieved. In conclusion, it is im-
portant that the key movements for pumping the therapy ta-
ble up or down are performed with the same leg as where
the sensor is positioned. This can be observed in particular
with classification results without an additional smoothing
process.

In the next step of our analysis, we examined the impacts
of a change in sampling rate. We simulated different sam-
pling rates with the function decimate in MATLAB. First,
we consider offline data with 83 data samples of each kind
of activity for training and 36 data samples of each activity
for testing. We used, again, windows with a length of 3s,
the 1NN method, 43 features of acc and the requirement that
key movements of each leg must be at the same side as the
sensor position. If we consider the black line in Fig. 4a, we
recognize a decimation in classification accuracy with 10 Hz
or less. The best choice would be 20 Hz. The pumping down
activity was estimated best (blue line).

Furthermore, let us consider the same evaluation for 10
online data streams as test data and 119 samples of 3 s for
each class as training data. Figure 4b shows the result. For
our online data streams, 20 Hz is also the best choice. With
an additional smoothing process, the classification accuracies
raise from 92.61 % with 1 kHz to 96.59 % with 20 Hz. These
results are obtained with the sole use of acceleration mag-
nitude, acc, for feature computation. If we start a backward
feature elimination process with all 43 features of acc, we
end up with a best feature set consisting of 15 features and
an accuracy of 96.58 %. So, also with 15 features and 20 Hz
sampling rate, the level of performance remains the same. If
we use all 172 features from accy, accy, accz and acc as
well as 20 Hz sampling rate, we get 98.23 % with smooth-
ing. In conclusion, a sampling rate of 20 Hz is recommended
here, and a sampling rate of at least 10 Hz is needed for an
acceptable performance of the HAR system.

Additionally, we studied the effects on classification ac-
curacy of different window lengths that segment our data
streams. For this purpose, we fix the sampling rate to 20 Hz
and vary the window lengths between 0.5 and 4.5s. Atten-
tion should be paid to the fact that we have 726 data samples
per activity for 0.5 s windows and 78 data samples per activ-
ity for 4.5 s windows, as the overlapping of the windows of
50 % was kept fixed. As in the last paragraph, we consider
the corresponding figures for offline and online data analy-
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Table 4. Classification accuracies with freedom about choice of dominant leg or trouser pocket with hardware system 1 and online data.

Feature 4 comb. possib., 4 comb. possib., 2 comb. possib., 2 comb. possib.,
set without smoothing ~ with smoothing  without smoothing ~ with smoothing
1 73.41 % 83.01 % 87.54 % 92.61 %
2or3 76.24 % 86.11 % 89.31% 92.58 %
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Figure 4. Modification of classification accuracy with different
sampling rates. (a) Offline data; (b) online data.

sis (same test and training data; 43 features computed out of
acc). Figure 5a shows that long, sliding time windows are
preferable — with a significant drop for windows shorter than
1.5s.

If we consider online data streams for test data as in
Fig. 5b, it does seem preferable to choose medium-sized win-
dows. For a window length of 4.5 s, performance drops again,
which we attribute to a recognition drop for short activity
periods. If we choose a sampling rate of 20 Hz and a win-
dow length of 2 s, we get a classification accuracy of 91.99 %
without smoothing and 96.39 % with smoothing as well as
the acceptance of an additional time lag of 2 s. If we choose
a sampling rate of 10 Hz and online streams for classification,
we would need a window length of at least 2.5s, as perfor-
mance would drop from 95.14 % to 90.15 % with the use of
2 s windows and smoothing.

Furthermore, we made a short comparison with other clas-
sifiers —- HMM (Rabiner, 1989), SVM (Chang and Lin, 2011)
and a change point detection method — with 20 Hz and two
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Figure 5. Modification of classification accuracy with different
lengths of sliding time windows. (a) Offline data; (b) online data.

different feature selection sets, but as these methods provided
similar results with less than 1% deviation for HMM and
SVM and worse results for the used change point detection
method, we stuck with the KNN methods. The coarse de-
scription of the used change point detection method is as
follows. Firstly, on the basis of variances, change points are
searched. Secondly, we look at the residence time in the fore-
going state to avoid, untimely, state transitions. Thirdly, with
the features of the time window after the change point, the
new state is declared.

One big advantage of KNN methods is the easy realiza-
tion and good comprehensibility. Also, a switch to the SNN
method instead of the 1NN method does not gain better re-
sults. So, we used K =1 as in Biiber and Guvensan (2014).

5 Experimental results and discussion for hardware
system 2

For our studies in this section, we used a new hardware sys-

tem — see also hardware system 2 in Sect. 3. One subject
made records with a tri-axis accelerometer with a sampling
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rate of 50 Hz and acceleration data limited within a range of
+2 g gravity. As in Sect. 4, three classes are used. Class 1
consists of 1614 data samples with activities “go”, “run” and
“massage”, class 2 consists of 538 data samples for the ac-
tivity “pumping the therapy table up” and class 3 consists of
538 data samples for the activity “pumping the therapy table
down”. In this section, the sensor is placed into the pocket of
the dominant leg (the leg that executes the key movements
for classes 2 and 3). So, 50 % of the data are recorded with
the sensor in the right pocket of the trousers and making the
key movements for pumping the therapy table up or down
with the right leg. The other 50 % of data are recorded with
the sensor in the left trouser pocket and with a dominant left
leg. Again, we use the 1NN method as classifier and features
were computed from acceleration magnitude, acc. Due to the
conducted feature engineering process, the list of features
was adjusted to STE, short-time average zero-crossing rate
of signal minus 1 (ZCR1), short-time average zero-crossing
rate of signal minus 1.3 (ZCR2), AMD, RMS, eight specific
band energies of spectrum (BEI-BES8), SCENT, median of
peaks in spectrum (SPEAKS), SROLL, SSLOP1, SSLOP2,
SSPRE, SSKEW, SKURT, SBAND, SFLAT and spectral flux
(SFLUX). Features 1-4 are from the time domain, and fea-
tures 5-25 are from the frequency domain. In this section, we
did our analysis without cepstrum coefficients, as we wanted
to find an easy lightweight method for classification with a
low computational complexity. We set the window length to
2.88 s (144 data points) and shifted the windows every 0.32 s
(16 data points). For the results with an additional smoothing
process, we used only the last two classification estimates to
form a new one (but with more weight for class 1). So, if
there are two estimates with classes 1 and 2, we still remain
in class 1. If there are two estimates with classes 2 and 3, we
choose class 2 as the preferred class.

With these 25 normalized features, a forward feature se-
lection as well as a backward feature elimination process was
started for the above-mentioned offline training data of this
section. These processes quickly find a local optima in con-
trast to brute-force methods where all parameter combina-
tions are tested. The forward feature selection process starts
with a feature, for which the maximum classification accu-
racy is obtained (and is easy to compute if there are more
possibilities), and then successively adds a further feature,
such that the classification accuracy is as high as possible
(Kim et al., 2006; Meyer-Baese and Schmid, 2018).

In Fig. 6a and b, the progress of classification accuracy can
be seen for adding features and eliminating features, respec-
tively.

Figure 6a shows that with only three features a good clas-
sification can be achieved but with seven features the best
result is achieved (99.87 %). These specific features are BE1,
SFLAT, SFLUX, RMS, BE4, BES5 and BE6. Figure 6b de-
picts that three features are enough for a good accuracy
(99.58 %) but with eight features an accuracy of 99.97 %
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ward elimination process.

Table 5. Classification accuracies for different feature sets and on-
line data.

Feature set Classification
accuracy
Eight band energies of spectrum 94.96 %
Seven features from forward selection 97.48 %
All 25 features 97.60 %
All 25 features + 14 MFCCs 97.93 %
Eight features from backward elimination 97.96 %

is possible. These features are BE3, SBAND, BE2, SFLAT,
BE4, SSLOPI1, SKURT and BEI.

In a next step, we made a parameter optimization for these
two specific parameter selections regarding window length,
window shift and time lag of the smoothing process. There-
fore, we used 10 online streams as test data and the offline
data as training data. Interestingly, we already used an op-
timal combination of window length (2.88s), shift (0.32s)
and time lag (0.32s) for an additional smoothing process.
With these parameter settings, we calculated the classifica-
tion accuracies for five different feature sets, which are listed
in Table 5. There, the eight features found via the backward
elimination process achieved the highest performance.

Another interesting question is whether training data
recorded with one dominant leg are enough for control of
the system with both legs. The results are posted in Table 6
for two different feature sets. If we change the dominant leg
for training and testing for the same person, the performance
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Figure 7. Influence of parameter K of KNN classifier on classifi-
cation accuracy with online data.

does not drop significantly. So, if desired, training with one
leg is enough for operating the system with both legs.

During the next study, we made recordings with changes in
the initial orientation of the tag in the trouser pockets as well
as changes in how the base station is positioned on the ta-
ble in front of the subject. We made four recordings with the
four different possibilities of how the tag is placed into the
pocket. Then we reversed the base station and made, again,
four recordings with the four different tag orientations. All
in all, the classification accuracies barely varied (between
—1.13 to +0.51).

Finally, we studied how different parameter values, K, of
the KNN classifier affect the classification accuracy. Up to
now, we used K = 1 for hardware system 2, but now we also
consider higher parameter values (K) when using eight fea-
tures derived from backward elimination and how the clas-
sification accuracy will change. Therefore, we show for the
best scenario of Table 5 the corresponding figure with alter-
nating K. As we can see in Fig. 7, K =1 or K =3 would be
a good choice. So, it practically does not matter if you choose
K=1orK=3.

6 Experimental results and discussion for hardware
system 3

In this section, we switched to another hardware system, de-
noted as hardware system 3 in Sect. 3, and we made record-
ings with 12 subjects (5 female, 7 male). The height of the
participants ranged from 1.65 to 1.86 m, with the location of
the sensor placed in the pockets and varied between groin and
a deep position at the thigh. Also, the initial orientation of the
sensor in the pockets and varied at random. Furthermore, the
subjects decided which leg to use for controlling the therapy
table (only restriction: leg which records the signals must be
the same as the leg for control). The clarity and pace of move-
ments also varied between the different subjects.

We recorded data with a tri-axis accelerometer and a tri-
axis gyroscope with a sample rate of 59.5 Hz. As in Sects. 3
and 4, offline and online data were recorded. The recorded
offline data streams (used for training) have a length of 30s

https://doi.org/10.5194/jsss-13-187-2024

for each activity group and subject. The five activities are go,
run, massage and two key movements that imitate the oper-
ation of a foot pump (knee pumps in vertical or horizontal
direction). The first three activities are collected in their own
class. The online data streams with various activities (used
for testing) consist of three runs of a length of 2min and 15s
for each subject as listed in Sect. 3. Additionally, we made
records of five further possible movements for controlling the
therapy table. So, the offline data streams have been extended
with the following activities: stamping, toe-tipping, describ-
ing a circle with the knee, swinging the hips left and right,
and quickly moving the knees forward and backward in an
alternating manner.

6.1 The used classification process and finding the best
method

The procedure of the applied data-based classification is as
follows:

— Creating a training database. We computed several fea-
tures out of raw signal sections of length 128; afterwards
we normalized the features to values between 0 and 1.

— Application of the classifier. We extracted training data
samples of length 128 (with an shift of 32 for on-
line data streams), computed and normalized the cor-
responding features, and made a comparison to the fea-
tures of the training database for finding the best-suited
class. Please make sure that test data samples are not
contained in the training database.

The analysis took place as follows.

6.1.1 The used features

For classification, we used 59 features computed from
data of the acceleration sensor as well as gyroscope
sensor; 57 features are based on the magnitude, acc=

\/ accg( + acc%, + aCCZZ, as the orientation of the sensor in the
trouser pockets is irrelevant. Features 58 and 59 are intuitive
features that use information of the single axes and the force
of gravity. Casually speaking, feature 58 computes the en-
ergy of acceleration in the direction of the force-of-gravity
vector (scalar product of acceleration and gravity vector). On
the contrary, feature 59 computes the energy of acceleration
in the orthogonal direction to the force-of-gravity vector (use
of cross product instead of scalar product). For gyroscope
data, scalar and cross products are computed from the mean
angular velocity and the current angular velocity.

Features 1-26 are out of the time domain: STE, ZCRI1,
mean level signal crossing rate (MCR), AMD, mean,
variance, median, mean absolute deviation (MAD), mini-
mum, maximum, range, interquartile range, 25th percentile,
75th percentile, skewness, kurtosis, harmonic mean, magni-
tudes of jerk, coefficient of variation (CV) or relative stan-
dard deviation (RSD), RMS, square root of the amplitude
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Table 6. Classification accuracies for changes in dominant leg with online data.

Feature set Leg for Legfor Classification accuracy
training  testing

All 25 features right left 96.35 % (—1.25 %)

All 25 features left right 97.44 % (—0.16 %)

Eight features from backward elimination  right left 95.97 % (—1.99 %)

Eight features from backward elimination  left right 97.25 % (—0.71 %)

(SRA), crest factor (CF), impulse factor (IF), margin fac-
tor (MF), shape factor (SF), and kurtosis factor (KF). Fea-
tures 27-57 are out of the spectral domain: root-mean-square
energy (SRMS), eight specific band energy’s of spectrum
(SBE1-SBES), SCENT, median of peak differences in spec-
trum (SPEAKDIFF), SPEAKS, SROLL, SSLOP1, SSLOP2,
SSPRE, SSKEW, SKURT, SBAND, SFLAT, SFLUX, dom-
inant frequency of signal, frequency centre (FC), root vari-
ance frequency (RVF), and seven symptom parameters. Fea-
tures 58-59, as described in the last paragraph, are also out
of the time domain.

6.1.2 The used classification method

The normalized feature vectors are assigned to a special class
via the one-nearest-neighbour method, as this method pro-
vided good results in the foregoing studies, has a good com-
prehensibility and is easy to implement.

6.1.3 Possibilities for the computation of the
classification accuracy

As in Sects. 3 and 4, we differentiate between online and
offline data. The approach with offline data is detailed as fol-
lows:

— For each subject and class, we have 50 data samples
(raw signals).

— For each class, 150 data samples of three subjects are
used for training, and 450 data samples of nine subjects
are used for testing.

— We used cross-validation to get different selections of
subjects for training and test data.

— We computed a mean classification accuracy out of 220
results of cross-validation.

Details for the approach with online data are the following:

— For training, data samples of the offline approach are
used from all subjects. Later in Sect. 6.2, other configu-
rations with less subjects are also analysed.

— For testing, 36 online streams are available (three
streams of length 2 min 15 s for each subject).
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— We computed a mean classification accuracy out of the
results of the online streams.

In our studies, we made sure that the training and test data
stem from different subjects to counteract over-fitting and
to get a classification method that is capable of classifying
movements of new subjects without the need of a separate
teaching process.

6.1.4 The feature selection process

If we take all 118 features for classification with the offline
approach, the classification accuracy was 81.62 %. Though,
it is preferable to eliminate redundant features and features
with less information. In our offline approach, the MF fea-
ture computed from acceleration data is the best feature with
68.53 % classification accuracy.

In Fig. 8, the classification accuracies of eight different
forward feature selection processes are depicted. The leg-
end labels “All”, “Time” and “Acc” describe with which
feature subgroup the process is started: “All” denotes that
the process starts with all 118 features, “Time” denotes that
we restrict to 56 features from the time domain and “Acc”
stands for acceleration data as 59 features are only selected
from this sensor. Furthermore, the digits 1-3 in the legend
stand for three different approaches concerning preselected
features: “1” means that no features are preselected, “2”
means that feature numbers 58+59 of both sensors are pre-
selected (process starts with four preselected features, up to
method Acc-2 which starts with two preselected features),
and “3” means that features 58+59 of the gyroscope sensor
are used and only feature 58 from the acceleration sensor
(three preselected features). The highest classification accu-
racy (92.13 %) is reached with eight features from the time
domain of acceleration and gyroscope sensor (see process
“Time-2” in Fig. 8). This feature set consists of four pres-
elected features (feature numbers 58+59 of both sensors):
median of gyroscope sensor and 25th percentile as well as
shape factor and 75th percentile of acceleration sensor.

Figure 8 further tells us that if we only use features of
the time domain, classification accuracy does not drop. If we
only use data from the acceleration sensor, then the accuracy
is somewhat lower.

For the forward selection process Acc-1 that uses only
data of the acceleration sensor, Fig. 9a shows the correspond-
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Figure 8. Classification accuracies for different forward selection processes with offline data.

ing classification accuracies for online data streams with the
same selected features. The approach with offline data with
three features achieved the highest classification accuracy
(84.94 %), whereas with online data streams the best method
(88.93 %) uses 12 features and a short time lag (see label
Online-Lagl in Fig. 9a). The label “Lagl” means that the
last two classification estimates are used to formulate a new
classification result. The option “Lag2” uses the last three
estimates to formulate a new one. The maximum accuracy
decides the class number. If two maxima are equal, the class
with no key operation is preferred. Furthermore, all 12 sub-
jects underwent a teaching process (offline data of all 12 sub-
jects is used as training data).

Figure 9a tells us that with theoretical offline data fewer
features can be used to get a good classification method, but
in practice with online data streams more features are needed
to get the same (or even a better) accuracy. For the forward
selection process Acc-2 (with the two prescribed features
584-59 computed from acceleration data), the corresponding
results for comparison of offline and online data are given in
Fig. 9b. Here, the online approach is also with fewer features
as good as the offline approach, but the highest classification
accuracies attained are nearly the same as with process Acc-
1 with 84.57 % for offline data and eight specific features and
88.69 % for online data and nine specific features.

6.1.5 Determination of a feature set

Based on the results depicted in Fig. 9b, we selected the nine
specific features — found with use of online data streams and
acceleration data only — as our choice for further examina-
tions. This nine features are median, 75th percentile, skew-
ness, kurtosis, harmonic mean, magnitudes of jerk, coeffi-
cient of variation and the preselected features energy in direc-
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tion and in the orthogonal direction of gravity. Remarkably,
this feature set does not contain features from the spectral
domain. In our further analyses, we restrict our analysis to
data of the acceleration sensor. In future work, this decision
may be revised.

6.2 Further analyses with the specified classification
method

In the following, seven different questions that came to mind
have been studied.

6.2.1 Is a teaching process for each subject necessary?

To answer this question, the algorithm was trained with 1,
3, 5, 11 or all subjects and tested with the remaining sub-
jects. In the case where all subjects served for training, all
subjects also served for testing. Figure 10a illustrates the dif-
ferent classification accuracies for online data streams and
different time lags (see also the paragraph of Fig. 9a for a
description of these time lags).

The values depicted in Fig. 10a with 1 to 11 subjects for
training behave like a pre-learnt system (no teaching for each
subject necessary before using the therapy table), whereas
with x axis = 12 we have a system with a going-ahead teach-
ing process for each subject, but in the training database
the data of the other subjects are also stored. The classifica-
tion accuracy drops about 3 % for a system without teaching
provided that many subjects pre-learnt the system (here 11
subjects). This figure underlines again the importance of the
LOSO evaluation to simulate real-life settings.

We expect that the classification accuracy of a system
without a foregoing teaching process saturates at about the
value as depicted for 11 subjects, even if more subjects train

J. Sens. Sens. Syst., 13, 187-209, 2024




202

S. Schober et al.: HAR system using wearable accelerometers for classification

90 T K T T T T T T T T
: g e ———
1 v + . =
85 - D e i ) ) T
P ¥ & = —_—
‘.‘ ] ¥ 4 1 e e
/ el i —_— —
/ P 4 |
80 [- / I i )
X / ; i
95 “/: '
/ / 1 1
© 75 [ : i n
5 / ! .
I¥] 1 1
S / / 1 |
/ / 1 1
& 0F [/ / i i -
= / I |
& 1 i
= ! |
5 /. |
2 esf i | -
o / 1 1
1 1
1 i
! best choice for | best choice for Offline
60 - 1 offline data 1 online data with a ~Online 7
i | time lag of 0.54's Online-Lag1
! ! — Online-Lag2
55 1 H 1 ! 1 1 | 1 1 1
0 2 4 6 8 10 12 14 16 18 20
amount of selected features
(@)
920 T T T T T T
1 1
el By
ey o e
T S g D e e
1 1 e 7 = M
85 e .
[ i
1 1 N Rt
B L R aed -
& 8ol Lo -
) // O
© II‘ / 1 1
> i/ 1 1
g / 1 1
& 75 . 2]
c 1 1
g 1 1
S P
E 1 1
g 70 Lo i
3 Lol
o
o
. [ . . — Offline
65 - best choice for 1 1 best choice for online data " Online
. 1 1 . .
offline data : : with a time lag of 0.54 s Online-Lag1
: : —— Online-Lag2
60 | M I | 1
0 5 10 15 20 25 30

amount of selected features

(b)

Figure 9. Classification accuracies for two forward selection processes with offline and online data. (a) Forward selection process Acc-1;

(b) forward selection process Acc-2.

the system, as the curve resembles processes with restricted
growth.

In the foregoing Sects. 4 and 5 with one skilled (and there-
fore rather precise) subject, we achieved classification accu-
racies of about 97 %. Considering the mean accuracies of all
12 subjects, where for training and testing only the data of
one subject is used, we got 89.33 % for online data streams
without a time lag (corresponds to label “Online”). There-
fore, the best solution would be a training database with
training data of only one person that also uses the system af-
terwards. In our studies, we saw widely varying classification
accuracies, which we hypothesize to originate from the pre-
cision of how exercises, in particular the movements of the
key exercises, are fulfilled. Classification accuracies there-
fore ranged from 76.33 % to 96.95 % for different subjects
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(label “Online”). So, the robustness of the system is only
given if the key exercises are performed in a consistent and
clear manner.

As this section is an essential result of our study, we sum-
marize the most important accuracies in Table 7.

6.2.2 How many activities are distinguishable?

In the beginning of Sect. 6, we stated that five further pos-
sible movements for controlling the therapy table have been
recorded for all 12 subjects. With seven key movements al-
together (vertical pumping of a foot pump, horizontal pump-
ing of a foot pump, stamping, toe-tipping, describing a circle
with the knee, swinging the hips left and right, and quickly
moving the knees forward and backward in an alternating
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Figure 10. Classification accuracies for different settings with on-
line data. (a) Classification accuracies with and without a preceding
teaching process; (b) classification accuracies for different window
lengths and shifts.

Table 7. Classification accuracies for different evaluation tech-
niques and 12 subjects with online data.

Method with  LOSO evaluation 12 subjects  Same subject

or without with 11 subjects  for training  for training
time lag for training and testing and testing
Online 84.13 % 86.89 % 89.33 %
Online-Lag1 86.18 % 88.69 % 89.82 %
Online-Lag?2 85.02 % 87.78 % 89.61 %

manner) and the three activities go, run and massage, we may
assess how good these 10 activities can be distinguished. Ta-
ble 8 shows the classification accuracies when successively
adding further activities. Therefore, we used all 118 features
(we made no feature selection processes for each special
number of activities to find the best subgroups, which may
lead to an underestimation of the performances), recorded
offline data and used a pre-learnt system with three subjects
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— in other words three subjects for training and nine different
subjects for testing.

Please keep in mind that for a different order of adding
these 10 activities, other accuracies also are achieved, but for
all 10 activities, the classification accuracy remains the same.
In conclusion, the classification accuracies in Table 8 are in-
fluenced by the feature set, the order of adding activities and
the special character of a selected activity, as classification
accuracies drop or increase after each addition. If we prefix a
teaching process (all 12 subjects are pre-learnt in a database),
the classification accuracies increase to 100 % for the first
two activities and to 92.64 % for 10 activities. These facts
highlight the importance of such a teaching process. If we
choose the five activities vertical pumping, horizontal pump-
ing, going, running and massaging for this evaluation, an ac-
curacy of 98.78 % is achieved.

What if we use the best feature sets for offline data (eight
specific features) and online data (nine specific features)
found at the end of Sect. 6.1.4?

— eight specific features: 91.93% for 2 activities and
67.40 % for 10 activities,

— nine specific features: 91.14 % for 2 activities and
55.11 % for 10 activities.

Due to these classification accuracies, we can see that these
feature subsets have been optimized for the five activities of
vertical and horizontal pumping, going, running, and mas-
saging. To classify 10 classes, a new feature selection process
would be necessary.

6.2.3 Analysis of different window lengths and shifts

For this analysis, online data streams, five classes as usual, a
system with pre-learning through all 12 subjects and a good
feature set found in Sect. 6.1.4 (nine specific features to clas-
sify five classes with online data) are used. Up to now, we
set the window length to 128 and the window shift to 32. But
now, we want to vary these parameters to see the changes in
classification accuracy (see Fig. 10b).

For comparison of estimated and real states, the estimates
are saved with the timestamp corresponding to the centre of
the window (a procedure we used for all performance anal-
yses). Therefore, the parameter window shift has no real in-
fluence on the performance of the system. As in the analysis
before, the time lag announced as Lagl gives the best results
(the last two estimates are used to formulate a new one — see
also Sect. 6.1.4 for more details about the used time lags).
The best window length is still 128, but also a length of 96
would be feasible for our hardware system with a sample rate
of 59.5 Hz. A window length of 64 or less is not recommend-
able here.
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Table 8. Classification accuracies for a different number of activities and a pre-learnt system with three subjects with offline data.

Number of  Last added activity Classification

activities accuracy

2 vertical pumping + horizontal pumping 88.09 %

3 stamping 82.71 %

4 toe-tipping 84.82 %

5 circling with knee 82.83 %

6 swinging hips left and right 83.06 %

7 moving knees forward and backward alternately 76.06 %

8 going 72.04 %

9 running 72.78 %

10 massaging 68.71 %

1 + Table 9. Classification accuracies of grid search for a different size
oer " g . e of the feature set with offline data.
ol ‘ . _
L + _Horizontal Pump Feature set Feature numbers ~ Classification
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Figure 11. Averaged and normalized feature no. 11 (range of total
acceleration) for different subjects and activities with online data
and a minimized training database.

6.2.4 |s a minimal size of training database also good

enough?

The aim of this study is to minimize the size of the train-
ing database. Here, we use five classes for classification (up
to now we used three classes for the analysis with hardware
system 3) and one averaged training data sample per activity
group and per subject. After the computation of all means of
the feature vectors, normalization to values between 0 and
1 is made. An example is shown in Fig. 11 for feature 11,
which is the range of total acceleration.

The data points shown in Fig. 11 are stored in the training
database for feature 11. In this figure, we also see that the
range is similar for the activities going and vertical pumping
(therapy table should drive up).

Further, the interesting question is now how does Fig. 8,
which shows the classification accuracies for different for-
ward feature selection processes with use for offline data,
transform if we use this minimal database? The answer is
contained in Fig. 12a, which shows the theoretical classifi-
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cation performances for seven forward feature selection pro-
cesses with different feature sets.

In the labelling, “—1” stands for no preselected features
and “—2” for a preselection of features 58+59 of accelera-
tion data. “All” means again that the process starts with all
features, and “Time”, “Acc”, or “Time-Acc” mean that only
features from the time domain, from the acceleration sensor,
or from time the domain and acceleration sensor are used. As
one might expect, the classification accuracies drop in com-
parison to the results depicted in Fig. 8; however, the classi-
fication accuracies of the single features did not decline. The
classification accuracies also drop slightly with use of online
data streams.

One big advantage of this minimal training database is that
a grid search is feasible to find the best global feature se-
lection set due to much less comparisons with training data
samples. If we consider the 28 features of the group Time-
Acc-1 (feature numbers 1-26 and 58-59 of Sect. 6.1.1), the
best and worst feature combinations of the grid search are
given in Table 9.

Table 9 shows that the classification accuracies resulting
from a grid search are much higher than by a forward fea-
ture selection process. In Fig. 12a with features selected from
the set Time-Acc-1, for instance, we achieved accuracies be-
tween 78 % and 80 % for a feature set consisting of 2 to 4 fea-
tures, now we achieved accuracies between 82 % and 90 %.
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Figure 12. Usage of a minimized training database. (a) Classification accuracies for different forward selection processes with offline data;
(b) comparison of test and training data samples for feature 11413 (best combination of two features with offline data).

So, theoretically, it makes sense to use the grid search if it is
somehow possible.

Figure 12b exemplary shows the test and training data
samples that have to be compared for the best combination
with a feature set size of 2. The asterisks mark the training
data and the points mark the test data.

With these three possible feature pre-selections found by
grid search, new forward feature selection processes were
initiated. For offline data, a better method for five features
was found (feature numbers 12 + 13 +24 4+ 59 4+ 15) with
an accuracy of 89.85% but no more remarkable improve-
ments. Unfortunately, the optimal feature sets found with of-
fline data could not transfer their good performance to online
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data streams. Here, the feature set announced in Sect. 6.1.5
is still the best method, i.e. 85.40 % without time lag and
87.52 % with Lagl.

This approach may be a feasible alternative if many sub-
jects train the system. If only one person trains the system,
only five means are saved in the training database, and this
is somehow too low. Here, it would be better to save not
only one but several means per activity. Subject 1, for in-
stance, had an accuracy of 97 % with a foregoing teaching
process, but with a minimal database accuracy dropped to
94 %, which would not be a good idea.
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Table 10. Classification accuracies for SVMs with different feature
sets and parameters with online data.

Feature set Parameter ~ Parameter  Classification
c(cost) g (gamma) accuracy
11,12, 13 32 512 84.94 %
11,12, 13 1 1/3 85.04 %
7, 14,15, 16, 17, 18, 19, 58, 59 2048 8 89.41 %
7,14, 15,16, 17, 18, 19, 58, 59 1 1/9 85.99 %
12, 13,24, 59 32 32 86.62 %
12, 13,24, 59 1 1/4 84.81 %
12,13, 15,16, 17, 18, 24, 59 20438 2 88.41 %
12,13, 15, 16, 17, 18, 24, 59 1 1/8 87.54 %
58, 59 4 512 80.56 %
58,59 1 1/2 80.35 %

6.2.5 Is a parameter k larger than 1 better suited?

In the course of the analysis, evaluations with k =3 and k =5
have been made. As results changed only slightly (sometimes
for the better, sometimes for the worse) k =1 is still a good
choice.

6.2.6 Are support vector machines (SVMs) a superior
alternative?

For the implementation of support vector machines in MAT-
LAB, the free library LIBSVM has been used. In the function
options of svmtrain (), many parameters can be set — for
our analyses we mainly focused at the SVM-type C-SVM
with radial basis function kernel. For the training database,
we did not use the minimal database as SVMs need a lot of
data for training. We used balanced training datasets with five
possible activities. In Table 10, the best results are summa-
rized.

Here, we used the online data approach with good feature
sets found by the KNN method for features of the time do-
main and acceleration sensor. Details for the used features
can be found in Sect. 6.1.1. For the parameters ¢ (cost) and
g (gamma), on the one hand, we used default values (c =1
and g = 1/(number of features)), and on the other hand, we
used values found by cross-validation combined with a grid
search. Here, the features fixed in Sect. 6.1.5 are again the
best choice with use of online data streams (89.41 %) — this is
a little bit better than with use of the 1NN method (87.73 %).
Please keep in mind that the training phase of SVMs is more
time-consuming as suitable parameters for a special feature
set have to be found to be as good as KNN methods. If we
make a teaching process with one subject to get training data
and afterwards we test the system with the same subject, we
get nearly the same mean performance (89.72 % instead of
89.41 %). For KNN methods, the performance could be in-
creased with this aspect, but for SVM probably not. For this
analysis, we used the best feature set with nine features of
Table 10 (see row 3) with online data streams and 12 sub-
jects. One subject, who performed the exercises more pre-
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cisely, gained 96.71 %. So, we can see that it is important to
make the key exercises precisely to also get a good system.

6.2.7 s a hybrid method (SVM+1NN) the better choice?

In our study, we also researched whether combinations of
support vector machines with 1NN methods provide a better
classification result. We tested three different possibilities:

1. The 1NN method with nine features fixed in Sect. 6.1.5
plus the SVM method with nine features announced in
row 3 in Table 10.

2. The INN method with nine features fixed in Sect. 6.1.5
plus the SVM method with nine features announced in
row 3 in Table 10 plus the SVM method with four fea-
tures announced in row 5 in Table 10.

3. The INN method with nine features fixed in Sect. 6.1.5
plus the SVM method with nine features announced in
row 3 in Table 10 plus the SVM method with eight fea-
tures announced in row 7 in Table 10.

Attempt 1 combines the 1NN method with an SVM by mak-
ing a motor control if both methods classified the same key
exercise and by making no motor control if both methods are
divided. Attempts 2 and 3 trigger a motor control if at least
two methods plead for the same key exercise. The reached
classification accuracies for these three attempts with use of
online data streams are 88.71 %, 78.60 % and 88.92 %. So,
this access to the hybrid methods did not lead to a perfor-
mance improvement.

7 Comparison of classification accuracies for
hardware systems 1-3

In Table 11, the details for the best-reached classification ac-
curacies of Sects. 4—6 are summarized.

The reasons for very good classification accuracies with
one subject can be summarized as follows:

1. The person is skilled, so the algorithm behind the sys-
tem is known and, therefore, clear and consistent mo-
tions are beneficial.

2. The trouser pockets are very deep, and this results in
more information that can be captured from the distinct
motions. The further the sensor is located from the hip
or belt position towards a body part with a wide range
of motion, the more information can be collected. This
is also stated in Kulchyk and Etemad (2019).

3. In the training database only data of one subject is
stored. So, the speeds of performing a motion, such as
running, are less varied.
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Table 11. Best-reached classification accuracies for different settings.

No. of subjects Used hardware ~ Online streams Offline data
system
1 (skilled) 1 98.23 % (see paragraph of Fig. 4b) 100 % (see Fig. 3b)
1 (skilled) 2 97.96 % (see Table 5) 99.97 % (see Fig. 6b)
12 (individually) 3 89.82 % (see Table 7) -
12 (together) 3 88.69 % (see Table 7) 92.13 % (see Fig. 8) or 98.78 % (see Sect. 6.2.2)
12 (LOSO) 3 86.18 % (see Table 7) -

Especially for analyses with the LOSO validation, it is
known that classification accuracies are lower as with cross-
validation. For instance, in Kulchyk and Etemad (2019) and
Altun et al. (2010), the LOSO validation reached an accuracy
of 78.35 % and 87.6 %, respectively. Our result of 86.18 % is
similarly good, but please keep in mind that we computed
this result out of our online data streams. For comparison
purposes of our classification accuracies to others, we would
like to emphasize that the accuracies in literature typically
correspond to our offline data approach, where signal seg-
ments are extracted very carefully from different classes.

8 Conclusions and future work

In this study, a HAR system carried by masseurs for control-
ling a therapy table via different movements of a single leg
has been developed. In our experiments, we studied two dif-
ferent sensor positions: fixed at the right hip like a belt and
loosely inserted in one pocket of the trousers. The second
position turned out best, as movements are more distinct.

With one female subject, classification accuracies of about
98 % for online data streams (following a predefined proto-
col of movements) and up to 100 % for offline data samples
(precise extraction of signal samples of distinct classes) were
achieved. Thereby, three operating classes have been used:
pump the therapy table up (class 2), pump the therapy table
down (class 3) and do nothing (class 1) for all other activities
performed by the masseur.

Furthermore, we conducted studies with 12 subjects and
many different approaches and modifications. In conclusion,
the classification accuracies varied in the range of 84 % to
98 % with, for instance, different validation techniques. In
contrast to other literature studies, our results are comparably
good.

With several subjects, the use of a minimal training
database and/or a foregoing teaching process that may re-
sult in similar data for the training database may be worth
consideration.

For future work, we additionally focus on key activities
with a high frequency (double-clicks or tapping motions)
such that the reaction time of the system can be further re-
duced, as the motor control cannot be faster as 1-2 cycle
durations of these key motions. Moreover, we will study a
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special two-stage system to allow for remote control only if
a special key is activated (for instance by an additional sensor
or voice control).
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