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Abstract. Freshwater ecosystems are sources of the two most relevant greenhouse gases (GHGs): CO2 and
CH4. Understanding the importance of freshwater ecosystems in the global carbon cycle and their role in global
warming trends requires the accurate quantification of gas fluxes from the water phase to the atmosphere. These
fluxes depend on the gas exchange velocity and the concentration gradient between the phases, which both cause
high spatio-temporal variability in fluxes. On a global scale, the estimation of fluxes is limited by the lack of
cheap and accurate methods to measure dissolved gas concentrations. Low-cost sensors, as an alternative to ex-
pensive gas analysers, are available; however, to date, the in situ performance of such sensors has been poorly
examined. Here, we present an inexpensive data-logging sensor prototype that provides continuous measure-
ments of dissolved CO2 and CH4 in submerged environments. Gas measurements are done in a confined gas
space, which is rapidly equilibrated with the water phase through a single-layer polytetrafluoroethylene (PTFE)
membrane, by a miniature non-dispersive infrared (NDIR) sensor for CO2 (Sunrise sensor, Senseair, Sweden)
and a cheap metal oxide sensor for CH4 (TGS2611-E, Figaro Engineering Inc., Japan). Pressure, temperature and
humidity are measured to correct raw sensor readings. For freshwater, the dissolved gas concentration is directly
obtained from the measured molar fraction and temperature and pressure readings. In air, we measured the molar
fraction of CO2 in a range from 400 to 10 000 ppm and the molar fraction of CH4 in a range from 2 to 50 ppm
with an accuracy of ± 58 and± 3 ppm respectively. We successfully used our prototype to measure diurnal vari-
ations in dissolved CO2 in a natural stream. We further calibrated the CH4 sensor for in situ use at concentrations
ranging from 0.01 to 0.3 µmol L−1. Underwater, we were able to measure the molar fraction of CH4 in the pro-
totype head with an accuracy of ± 13 ppm in the range from 2 to 172 ppm. The underwater measurement error
of CH4 is always higher than for the same concentration range in air, and CH4 is highly overestimated below
10 ppm. At low CH4, humidity was the most important influence on the TGS2611-E sensor output in air, whereas
temperature became the predominant factor underwater. We describe the response behaviour of low-cost sensors
in submerged environments and report calibration methods to correct for temperature and humidity influence
on the sensor signal if used underwater. Furthermore, we provide do-it-yourself instructions to build a sensor
for submerged continuous measurements of dissolved CO2 and CH4. Our prototype does not rely on an exter-
nal power source, and we anticipate that such robust low-cost sensors will be useful for future studies of GHG
emissions from freshwater environments.
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1 Introduction

Freshwater ecosystems receive, transform, store and trans-
port significant quantities of terrestrial carbon (Cole et al.,
2007). In total, global inland waters receive approximately
5.1 Pg C yr−1 from adjacent terrestrial ecosystems, of which
estimated amounts of 0.9 and 0.6 Pg C yr−1 are exported to
oceans and stored in sediments respectively (Drake et al.,
2018). Over the last decade, the historically underestimated
outgassing flux has been repeatedly refined due to new
data; estimates have ranged from 0.75 (Cole et al., 2007)
to 3.9 Pg C yr−1 (Drake et al., 2018). Most of these gaseous
carbon flux estimates pertain to CO2, yet outgassing of
carbon from freshwater ecosystems occurs in the form of
methane (CH4) and carbon dioxide (CO2) (Cole et al., 2007;
Bastviken et al., 2011; Rosentreter et al., 2021). These
two gases are among the most important greenhouse gases
(GHGs) contributing to global warming (Saunois et al.,
2019).

Substantial uncertainties in the estimation of global GHG
fluxes to the atmosphere are caused by the high variability
in ecosystem-scale fluxes in space and time. This is espe-
cially true for small streams and rivers, which are under-
represented in the scientific literature, even though they have
the highest and most variable gas exchange velocities (Ray-
mond et al., 2013), the highest partial pressures of GHGs
(Butman and Raymond, 2011), and the most difficult to esti-
mate global surface area (Raymond et al., 2013). Direct flux
measurements, for example, using drifting flux chambers
(Lorke et al., 2015) or eddy covariance technology (Huotari
et al., 2013), are largely impractical in small lotic ecosystems
due to the physical challenges of flowing water and the spa-
tial extent and shape of streams and rivers. Thus, fluxes are
usually estimated as the product of a concentration gradient
to the atmosphere and the gas exchange velocity. Whereas
the latter can be predicted from physical features (Raymond
et al., 2012), the highly variable concentration is ideally es-
timated over relevant diurnal and seasonal timescales as well
as across many systems. Here, a major bottleneck to esti-
mate GHG emissions from these systems is the lack of cheap
and sufficiently accurate measurement methods for dissolved
CO2 and CH4 (Drake et al., 2018; Bastviken et al., 2020).

Current methods to measure GHG concentrations mostly
rely on expensive equipment or include labour-intensive pro-
cedures and analyses. To date, the dissolved gas concen-
tration is mostly analysed using the headspace technique,
equilibrators or semipermeable membranes. The headspace
method includes collecting discrete water samples followed
by a gas extraction step (equilibration with small gaseous
headspace) and consequent gas analysis (Boulart et al.,
2010). Realistically, this method allows only either high spa-
tial or temporal coverage, as it is time-demanding and costly
due to sample analysis by gas chromatography or with a
closed loop on a portable gas analyser (Wilkinson et al.,
2018).

More efficient data collection may be possible with in situ
measurements of dissolved gases, for example, involving the
use of an equilibrator in a loop with a portable gas analyser.
Here, the gas–liquid exchange area is increased by a mem-
brane, marbles or the formation of water droplets (e.g. spray
type equilibrator) (Yoon et al., 2016). Subsequent analysis by
a portable trace gas analyser allows real-time measurements
(Boulart et al., 2010; Paranaíba et al., 2018; Xiao et al., 2020;
Dalvai Ragnoli et al., 2023). Nevertheless, the analysis of
GHG spatial variability is limited by the number of (mostly
expensive) analysers.

A cheaper approach to measure greenhouse gases, at least
for CO2, is by non-dispersive infrared (NDIR) sensors, which
– when combined with semipermeable membranes – allow
for the submergence of gas sensors as well as continuous
in situ measurements (Johnson et al., 2006, 2010; Leith et al.,
2015). Concentration is measured in the gaseous headspace
enclosed behind the membrane, which is assumed to be in
equilibrium with the water phase. Using measurement inter-
vals of between 5 and 10 min, such devices have recorded di-
urnal fluctuations in a peatland stream (Dinsmore and Billett,
2008) and storm-induced pulses of high CO2 concentrations
in a forested headwater in an Amazonian stream (Johnson
et al., 2006, 2007). In these cases, measurements compared
well with discrete headspace measurements done in parallel
with a gas chromatograph (Dinsmore et al., 2009; Johnson
et al., 2007).

In recent years, there has been a rise in self-made
microprocessor-based logger configurations equipped with
relatively cheap sensors to monitor air quality and atmo-
spheric GHG concentrations (van den Bossche et al., 2017;
Collier-Oxandale et al., 2018; Jørgensen et al., 2020), emis-
sions from aquatic environments by flux chambers (Duc
et al., 2013; Bastviken et al., 2015, 2020), or bubble emis-
sions (Thanh Duc et al., 2019; Maher et al., 2019).

A sensor type showing promising results with respect
to monitoring the CH4 concentration, even at atmospheric
levels, is the Taguchi gas sensor (TGS) family from Fi-
garo Engineering Inc. (Osaka, Japan) (Eugster and Kling,
2012; van den Bossche et al., 2017; Collier-Oxandale et al.,
2018; Eugster et al., 2020; Bastviken et al., 2020; Jørgensen
et al., 2020). The TGS2600 sensor model has been success-
fully used for preliminary studies in the search for poten-
tial methane hot spots (Eugster and Kling, 2012) and to ex-
amine air quality trends at small spatial and temporal scales
(Collier-Oxandale et al., 2018), whereas the TGS2611-E sen-
sor model has been successfully used to measure CH4 con-
centrations down to the level of near-ambient concentra-
tions (van den Bossche et al., 2017; Jørgensen et al., 2020;
Bastviken et al., 2020).

Here, we describe and provide the blueprint to replicate
our River Runner (RR) prototype: a self-built, low-cost, sub-
mersible logger equipped with cheap gas sensors to mea-
sure dissolved CH4 and CO2 continuously and in situ. The
gas sensors are covered by a gas-permeable membrane that
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separates the sensor area, with a confined gas space, from
the water phase and allows for equilibration between both
phases. The CH4 sensor of our choice is the TGS2611-E.
This sensor acts as a variable voltage divider, and resistance
varies with the presence of CH4, humidity and temperature.
Therefore, a two-step calibration is necessary; here, we re-
port an easy-to-use calibration method for submerged mea-
surements. Concurrently, CO2 is measured with a new cheap
NDIR-based sensor that is factory-calibrated and ready to
use. The blueprint of our prototype and calibration instruc-
tions for in situ measurements allow one to easily replicate
our prototype. We anticipate that our device will help to ad-
dress uncertainties in GHG flux emissions by providing ro-
bust measurements from highly variable and remote aquatic
systems like small streams and rivers. The sensor accuracy of
the cheap gas sensors is compensated for by the low invest-
ment costs, which allow one to install a larger set of repli-
cated sensors to simultaneously address the temporal vari-
ability and spatial heterogeneity of the surveyed systems.

2 Material and methods

The River Runner prototype is built to measure dissolved
CH4 and CO2 continuously and in situ. Hardware and elec-
tronics are embedded in a polypropylene-based tubing de-
signed for water pipes in kitchen sinks. The prototype is di-
vided into two parts, namely, the prototype body and the pro-
totype head (Fig. 1). While the prototype body houses elec-
trical hardware and batteries and is, thus, placed inside the
tubing to be completely waterproof, the prototype head holds
the gas sensors, which are placed outside of the prototype
body and separated from the water phase by a semiperme-
able membrane. The polytetrafluoroethylene (PTFE) mem-
brane used is hydrophobic, but its permeability to gases al-
lows for the gaseous phase in the prototype head to equili-
brate with the water phase. The membrane was chosen due
to a good compromise between gas diffusivity, liquid entry
pressure and mechanical strength (a description and the re-
sults of a diffusivity test for several membranes are found in
Appendix B). In order to further enhance the equilibration
time between the two phases, and thus shorten the sensor re-
sponse time, the volume of the sensor head is kept as small
as possible. Total material costs of the prototype are less than
EUR 200 (Table 1).

2.1 Hardware and sensor description

Hardware and software environments were provided by the
open-source electronics platform Arduino. The hardware
has four main components: a microprocessor board, a real-
time clock (RTC) module with an electrically erasable pro-
grammable read-only memory (EEPROM) memory, a mi-
croSD card adaptor and a voltage regulator. With respect to
the microprocessor board, the Arduino Pro Mini 3.3V (Ar-
duino, Ivrea, Italy) was used due to its small size, low power

consumption, and sufficient input and output pins. The board
controls and communicates with the sensors and also pro-
vides the data-logging platform through the microSD card.
The onboard microprocessor is an ATmega328 which runs
at 8 MHz and has an operation circuit voltage of 3.3 V. Ad-
ditionally to digital and analogue input and output pins, the
board enables data transmission via all three common com-
munication protocols: universal asynchronous receiver/trans-
mitter (UART), inter-integrated circuit (I2C) and serial pe-
ripheral interface (SPI). As the UART chip on the Arduino
Pro Mini board was left out to save space and power, a sep-
arate UART adapter is necessary to upload code to the mi-
croprocessor. The microprocessor is programmed in the Ar-
duino language and compiled with the integrated develop-
ment environment from the Arduino company. The Arduino
code was made in-house and customised to the pin setting
of the RR prototype (Dalvai Ragnoli, 2024). After initialisa-
tion, when the microprocessor checks for the availability of
all modules, it reads values from the sensors and the RTC at
defined time intervals and stores them on an SD card. To keep
the time without relying on the oscillator circuit of the Ar-
duino board, the DS3231 RTC module was used. Equipped
with an EEPROM memory, a temperature-compensated crys-
tal oscillator and a CR2032 battery, this module accurately
keeps time independently of the sensor battery (Maxim Inte-
grated, 2015). Data are stored on a microSD card using the
SPI communication protocol.

To continuously record temperature, (relative) humidity
and pressure, the BME280 (Bosch Sensortec GmbH, Ger-
many) digital miniature environmental sensor was integrated
in the prototype head, with reported operation ranges of −40
to 85 °C, 0 % to 100 % relative humidity (relH) and 300 to
1100 hPa respectively (Sensortec, 2015). Accuracy for the
BME280 sensor is ± 1 °C, ± 3 % and ± 1 hPa with a reso-
lution of 0.01 °C, 0.008 % and 0.2 Pa for temperature, rel-
ative humidity and pressure respectively (Sensortec, 2015).
To measure CO2 concentration, the Sunrise sensor (Senseair,
Sweden) was chosen. This miniature NDIR-type sensor, with
an average current consumption of 38 µA, was developed
specifically for battery-powered applications. The supply
voltage to the sensor can be either 3.3 or 5 V (Senseair,
2019). Manufacturers specify a detection range of 400 to
5000 ppm for CO2; however, as we turned off the built-
in self-correcting automatic-baseline-correction algorithm,
measurements down to 0 ppm CO2 were possible. The Sun-
rise, the BME280 and the DS3231 RTC communicate with
the Arduino Pro Mini via the I2C communication interface,
which allows communication between a single primary de-
vice and multiple secondary devices through two bus lines.
Both lines, the serial data line and the serial clock line, are
bidirectional lines, where 1 bit of data is transferred each
clock pulse. Both bus lines are connected to the positive pole
via 10 k� pull-up resistors.

To measure the CH4 concentration, the TGS2611-E sen-
sor model from the TGS sensor family was selected. The dif-
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Table 1. Component list and description. Prices may vary with time and by supplier. The prices reported here correspond to purchases made
in the years 2020 and 2021.

Component Description Quantity Unit price (EUR)

Arduino Pro Mini ATmega328, 3.3 V, 8 MHz (manufacturer: Arduino) 1 6.76
Sunrise NDIR-based CO2 sensor (manufacturer: Senseair) 1 58.80
TGS2611-E Gas sensor, stainless-steel cap (manufacturer: Figaro Engineering Inc.) 1 12.90
BME280 p, T and RH sensor (manufacturer: Bosch Sensortec GmbH) 1 6.14
Voltage regulator S9V11F5S6CMA (manufacturer: Pololu) 1 13.64
DS3231 module RTC with EEPROM memory and CR2032 cell battery 1 13.44
SD card SanDisk Ultra 16 GB microSDHC 1 17.58
SD card module MicroSD Transflash Breakout 1 4.45
Batteries Samsung ICR18650-26 flat-top Li-ion 3.7 V 2550 mAh 2 10.99
Battery holder Velleman BH-18650 2 2.79
Housing Tubing, screw cap and circuit board 20
Other Cables, resistors, switch, shrink tube, connectors, etc. 10

Figure 1. Circuit diagram (a) with the wire connection of the prototype and a picture (b) of the RR prototype. In panel (b), the modules
and sensors in the prototype body and the prototype head are highlighted. The membrane, which covers the prototype head, was removed to
show the gas sensors.

ference between this sensor and other sensors in the afore-
mentioned family is the built-in charcoal filter inside the sen-
sor cap, which reduces the influence of interference gases,
such as ethanol or isobutane, and therefore increases the sen-
sor’s selective response to methane gas (Figaro Engineering
Inc., 2017). The detection range of the TGS2611-E sensor
given by the manufacturer is 500–12 500 ppm CH4, and op-
erating temperature conditions range from−40 to 70 °C. The

required voltage supply for the TGS2611-E is 5 V. There-
fore, the circuit voltage of the Arduino Pro Mini board was
increased from 3.3 to 5 V with a step-up/step-down voltage
regulator (S9V11F5S6CMA from Pololu, USA). This volt-
age regulator provides a constant and accurate circuit voltage
(VC) to the TGS2611-E sensor independent of battery status.

The low-cost TGS2611-E sensor was originally developed
to monitor gas quality and possesses a tin dioxide (SnO2)
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sensing area, which is heated by a built-in resistive heater.
The resistance of the sensor (RS) changes in the presence of
oxidising components, as these react with the oxygen from
the sensing film. The change in resistance is measured in-
directly as a change in voltage across a reference resistor
(RL) by one of the analogue input pins of the Arduino board.
The resolution of the TGS2611-E sensor is therefore defined
by the bit depth of the microcontroller. The Arduino pos-
sesses a 10 bit analogue-to-digital converter, which enables
one to convert an analogue input voltage into a correspond-
ing digital signal of 1024 sampling levels between the com-
mon ground and the operating voltage of the board (Beddows
and Mallon, 2018). Given the Arduino’s operating voltage
of 3.3 V, it has a resolution of 3.22 mV per bit. This digital
count can be translated into measured voltage at the analogue
input pin as follows:

Vmeasured = Cdigital
Voperating

SL
, (1)

where Cdigital is the digital integer value read by the Ar-
duino, Voperating is the operating voltage of the board and SL
is the number of available sampling levels of the analogue-
to-digital converter.

The RR prototype is powered by two Li-ion 18650 bat-
teries connected in parallel to sum their capacity. While the
negative poles of the batteries were connected to the com-
mon ground, the positive poles were connected to the RAW
pin using an on–off switch. As this pin is connected to the
Arduino’s onboard voltage regulator, the RAW pin can be
used to supply the board with an unregulated input voltage
anywhere from 3.4 to 12 V. The battery voltage of the Li-ion
18650 ranges from 4.2 V in a completely charged state to ap-
proximately 3.55 V; therefore, it is always within the supply
voltage requirements.

In the design phase of the prototype, the system was as-
sembled using solder-less breadboards. Thus, it was possi-
ble to experiment with the circuit design, add components,
try different sensors and modify wiring without soldering.
The final version was wired on an epoxy board, soldered and
fixed on an angled rail. Finally, all components were covered
in polyurethane resin (UR5041 Electrolube, UK) to protect
the connections from corrosion.

2.2 Methane sensor

2.2.1 Methane sensor signal interpretation

The TGS2611-E is connected to the Arduino board (Fig. 2).
Pins 3 and 4, the positive pins of the sensor electrode and the
heater, are connected to the output of the voltage regulator,
which provides a constant 5 V. Pin 1, the negative pole of the
heater, is directly connected to the common ground, while
pin 2 is connected to an analogue input pin of the Arduino
as well as to the common ground via a 10 k� resistor (RL).
When a circuit voltage (VC) is applied to pin 3, the voltage

Figure 2. Basic measuring circuit for the TGS2611-E (Figaro En-
gineering Inc., 2017): the circuit voltage (VC) and heater voltage
(VH) are 5 V, VRL is the voltage across the reference resistor, RH is
the heater, RS is the variable sensing resistor, and RL is an exter-
nal resistor. Pins 1, 2, 3 and 4 are the negative pole of the heater,
the analogue sensor output, the positive pole of the sensor and the
positive pole of the heater respectively.

across the reference resistor (VRL) varies according to the
(variable) resistance of the sensing area (RS) and is measured
at pin 2.

Direct conversion of voltage signal to CH4 concentrations
does not generate good enough results (Eugster and Kling,
2012). Therefore, the relative sensor response is calculated
as the ratio (R) between the sensor resistance and a reference
resistance:

R =
RS

R0
=

(
VC
Vout
− 1

)
(

VC
V0
− 1

) , (2)

where RS is the sensor resistance at the measured sensor volt-
age (Vout) and R0 is an empirical reference resistance at the
same temperature and humidity levels in atmospheric CH4
concentrations. R0 is obtained from a separate calibration
step, which allows one to measure V0. Using this method, R

is less biased towards temperature and humidity influences
(Bastviken et al., 2020). In a second calibration step, the
CH4 concentration is computed from the relative sensor re-
sponse. With this two-step calibration approach, Bastviken
et al. (2020) were able to obtain a sensor accuracy of the or-
der of ± 1.1 ppm near typical atmospheric background con-
centrations. Even though the sensor is not suitable for accu-
rately measuring absolute CH4 mole fractions at those very
low concentration levels, it can be used to monitor relative
changes in CH4 over time if properly calibrated (Bastviken
et al., 2020).
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Calibration constants were calculated for each prototype
individually, as individual sensor calibration is necessary
(Riddick et al., 2020). Any differences in the (temporal) re-
sponse (of the resistance ratio) of identical TGS sensors to
CH4 are attributed to the manufacturing process (Riddick
et al., 2020). Previous research on the TGS sensor fam-
ily has also suggested fitting different calibration equations
for the sensor voltage signal to the methane concentration
in cold (sub-zero) conditions compared with temperatures
above 0°C (Eugster et al., 2020). As we do not expect sub-
zero temperatures in the aquatic environments during pro-
totype deployment, sensor voltage readings at temperatures
below 0°C are eliminated. Sensor readings with a relative hu-
midity below 40 % are also excluded, as the resistance ratio is
not predictable for lower moisture levels (Eugster and Kling,
2012).

2.2.2 Methane sensor calibration in a gaseous
headspace

We calibrated multiple methane sensors in a gaseous phase
together, following the two-step approach proposed by
Bastviken et al. (2020). For both calibration steps, the pro-
totypes were placed in the headspace of a sealed box. The
box contained water and was placed in a climatic cham-
ber to allow temperature control. As temperature and hu-
midity co-vary near moist surfaces, alteration of temper-
ature allowed one to vary absolute humidity (absH). Al-
though temperature and absH could not be controlled inde-
pendently, their variability reflects in situ field conditions in
a humid environment. Temperature and relH were continu-
ously recorded by the BME280 sensor integrated in the pro-
totype head. Absolute humidity (in gm−3) was calculated
from vapour pressure, i.e. from relative humidity, pressure
and temperature directly measured in the headspace, accord-
ing to Vaisala (2013) (detailed computation steps are given
in Appendix C). The gas concentration in the headspace was
continuously measured by a micro-portable GHG analyser
(MGGA; Los Gatos Research, USA) by circulating the gas
phase between the analyser and the headspace of the sealed
box. The membrane, which is used to cover the prototype
head, was removed during calibration measurements in the
gaseous headspace to minimise the time lag between the
methane sensors and MGGA. A picture of the experimental
set-up and a schematic illustration are given in Fig. 3.

The first step of the calibration is needed to compute the
reference voltage V0 for different temperature and humid-
ity levels at background atmospheric CH4 levels. Therefore,
the temperature inside the climatic chamber was continu-
ously decreased from 25 to 5 °C followed by an increase
back to starting conditions. Hence, measurement of V0 over
the whole investigated temperature range was possible. Over
the period of 2 months, this calibration step was repeated
multiple times. Individual experiments lasted between 18
and 30 h, and the measurement interval was set to 30 s. We

evaluated four different calibration models from Bastviken
et al. (2020), which use different combinations of tempera-
ture (T ) and absolute humidity (H ) as model inputs, and two
temperature-only models (Table 2). We used “optim()” (R,
version 4.1.1) to optimise model parameters using maximum
likelihood. From the six candidate models, we then selected
the model that performed best for all prototypes among all
individual experiments in terms of maximising the R2 value
and minimising the root-mean-square error (RMSE). In this
step, the calibration models were given data for all calibra-
tion experiments except one, and we then used this last ex-
periment to validate our model. This validation step was re-
peated to validate all models on all calibration experiments
and independently for all prototypes. After choosing the
best model, the prototypes were individually calibrated us-
ing temperature and humidity data from all calibration ex-
periments performed with the respective prototype.

The second calibration step includes the injection of
methane gas and the calculation of the CH4 mole fraction
from the sensor resistance ratio. The latter is computed from
the raw sensor output (Vout) and modelled V0 using Eq. (2).
The gas concentration was changed by directly injecting cal-
ibration gas from a pressurised gas bottle (Air Liquide, Aus-
tria). The use of dry standard gas, with only a few parts per
million of H2O, is discouraged, as it drastically decreases the
relative humidity (Riddick et al., 2020). Therefore, we used
pumice stones, normally used in fish tanks, to bubble the dry
standard gas through the water column and were thereby able
to maintain a relative humidity above 50 %.

Calibration gas contained 50 ppm CH4 and
10 000 ppm CO2 (± 2 % uncertainty for both gases),
and gas addition was controlled by a pressure valve.
Methane was injected in a step-wise manner and the con-
centration increased gradually starting from the atmospheric
background. Over the period of 3 months, this experiment
was repeated multiple times. Individual experiments lasted
between 2 and 6 h, and the measurement interval was set
to 1 s. As both the gas concentration and the TGS2611-E
sensor output were continuously recorded by the MGGA
and the prototype respectively, we could directly relate these
two measurements.

The five most successful models proposed by Bastviken
et al. (2020) were used to compute CH4 concentration (Ta-
ble 3). Used metrics for model selection were the R2 value
and the RMSE between the modelled methane concentration
and the measured concentration by the MGGA. To choose
the best model, the same procedure as for V0 model selection
was used. Finally, prototypes were individually calibrated us-
ing data from all calibration experiments performed with the
respective prototype.

2.2.3 Methane sensor calibration submerged in water

To create close-to-reality measurement conditions and to
evaluate the gas sensors for in situ measurements, the pro-
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Figure 3. Experimental set-up of the CH4 sensor calibration: pic-
ture (a) and schematic illustration (b) of calibration in a gaseous
headspace and (c) schematic illustration of calibration submerged
in water. For the latter, the gas loop is shown with grey lines and the
water tubes with purple lines.

totype head was covered by the membrane and submerged
in water. To ensure equilibration with the background during
reference voltage computation, the water was bubbled with
background air using pumice stones for at least 12 h prior to
prototype deployment. The set-up was placed in the climatic
chamber to allow for temperature control, and the temper-
ature was varied between 5 and 25 °C. Continuous change

in temperature allowed one to measure V0 over the whole
investigated temperature range. Over a period of 1 month,
the experiment was repeated multiple times. Individual ex-
periments lasted between 5 and 10 h, and the measurement
interval was set to 3 s. Model selection and calibration was
done according to the same procedure as for the headspace
calibration.

For the second calibration step, the prototypes were placed
in different waterbodies that had a gradually increasing
methane concentration. This gradient was achieved by vari-
ous dilution steps of a highly concentrated water phase (with
approximately 2200 ppm CH4), which was extracted from a
nearby hypertrophic pond. The MGGA was again used as
the reference instrument to measure the methane concen-
tration in the water by equilibrating a closed gas loop with
the water phase. For this, water was pumped continuously
(0.5 L min−1) through a membrane-based equilibrator (Min-
iModule membrane contactor, 3M, Germany). The equilibra-
tor uses a hollow-fibre membrane, where water flows inside
the fibres and the gas flows on the outside to ensure maxi-
mum gas exchange efficiency. The gas phase is continuously
circulated in the opposite direction to the water phase using a
membrane pump (at approximately 2 L min−1). From the gas
loop, a gas sample is bypassed through the MGGA to mea-
sure the concentration of the gas phase. A hydrophobic filter
is installed before the gas pump to protect the devices from
water. Equilibration between the two phases is expressed as
plateauing measurements of the MGGA. The mean value of
a 10 min long plateau was used as reference concentration
for calibration. To prevent a change in the CH4 concentra-
tion over time, the set-up was placed in a gas-tight box; to
prevent a concentration gradient in the water phase, it was
continuously mixed using a pump. The experimental set-up
is illustrated in Fig. 3

The whole set-up was placed in a climatic chamber to
maintain a constant temperature during experiments. We
conducted CH4 calibrations at temperatures of 8, 15 and
25 °C. Over the period of 1 month, the experiment was re-
peated multiple times with various concentrations of CH4
in the water phase. Measurements at each specific CH4 and
temperature level lasted at least 40 min, and the measurement
interval was set to 1 s. We took the average from the sen-
sor readings recorded during stable sensor response at a spe-
cific CH4 and temperature level to calibrate the TGS2611-
E sensor against the (mean) concentration measured by the
MGGA. Model selection and calibration was done according
to the same procedure as for the headspace calibration.

From the equilibrated headspace concentration measured
by the TGS2611-E sensor (in ppm), the dissolved gas con-
centration (CCH4,W in mol L−1) can be computed by apply-
ing Henry’s law of solubility:

CCH4,W = pCH4 ·KHCH4(TW), (3)

where pCH4 is the partial pressure (in atm) of CH4 and com-
puted as the product of the equilibrated molar fraction of
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Figure 4. Senseair Sunrise pin configuration (a) and connection diagram (b) for the I2C communication between the Senseair Sunrise sensor
and any host system (Senseair, 2019).

CH4 measured by the TGS2611-E sensor and the pressure
measured by the BME280. KHCH4 (in mol L−1 atm−1) is the
gas-specific, temperature-dependent Henry constant and can
be calculated for every water temperature with parameterisa-
tion from IHA (International Hydropower Association, 2010,
as shown in Appendix D). Water temperature was approxi-
mated using the temperature measured by the BME280.

2.3 Carbon dioxide sensor

2.3.1 Carbon dioxide sensor set-up

To measure CO2, the Sunrise sensor from Senseair is used.
The Sunrise is connected to the Arduino board (Fig. 4). The
Sunrise VDDIO and VBB pins are connected to the VCC
pin of the Arduino, which provides 3.3 V, and the COMSEL
pin and the GND pin are connected to the common ground.
The I2C communication pins are connected to the respective
bus lines, and the Sunrise EN pin is connected to Arduino’s
digital pin 8. In the Arduino sketch, pin 8 is defined as output
and set to high.

An Arduino sketch used for configuration of the Sunrise
sensor is needed to change the I2C address. Every I2C ad-
dress contains 7 bits and needs to be unique in a system. As
the default address for both the Senseair Sunrise and the RTC
DS3231 are the same (0× 68), one of them needs to change
in order to operate both modules on the same primary device.
Additionally, the measurement mode is set to single mode in
order to trigger a measurement on the host’s command, and
the automatic baseline correction function is disabled. This
function, which is installed on the Sunrise sensors by default,
corrects for sensor drift, thereby making sensor calibration
dispensable and extending sensor life. The function takes the
lowest recorded value during an 8 d interval and automati-
cally sets it to 400 ppm CO2. This comes in very handy when
the sensors are used indoors, where it is safe to assume that
the lowest recorded value during this interval corresponds to
fresh air. However, for the purpose of our prototypes this as-
sumption is not valid, as freshwater may also be undersatu-
rated in terms of CO2. As the automatic baseline correction

function is disabled, the sensors have to undergo a target gas
calibration.

Senseair also implemented a software algorithm to correct
the CO2 readings for temperature and pressure fluctuations.
However, pressure compensation was deactivated for mea-
surements with the RR prototypes; thus, Sunrise readings
had to be corrected for the measured pressure level. Devi-
ation is 1.58 % of the reading per kilopascal deviation from
mean sea-level pressure (Senseair, 2019). Pressure from the
BME280 is used to correct the CO2 values. Thus an eventual
increase in pressure due to higher hydrostatic pressure, e.g.
when measuring in deep water, is also taken into account.

2.3.2 Carbon dioxide sensor measurements

We did a zero calibration with pure N2 to set the origin
of the sensors. Afterwards, calibration was verified by ex-
posing the sensors to two different calibration gas standards
(Air Liquide, Austria) with CO2 concentrations of 350 and
10 000 ppm respectively. Additionally, the gas concentration
was continuously recorded with the MGGA, which was op-
erated in parallel and used as the reference instrument.

As the standard gas used for the second step of the
methane sensor calibration in the headspace (Sect. 3.1.1)
contained 10 000 ppm CO2 and the concentration was in-
creased continuously, these experiments were used to verify
calibration within the whole measurement range and to eval-
uate the influence of humidity and temperature variations on
the Sunrise sensor readings. Furthermore, as these measure-
ments were conducted between 9 and 23 months after the
sensor calibration, assessment of the long-term behaviour of
the sensor was possible. Measurements of the Sunrise sensor
were again compared with measurements from the MGGA,
which was used as the reference instrument.

To validate in situ performance of the CO2 measurements,
we deployed the prototypes for 24 h in a nearby natural
stream to measure diurnal fluctuation in dissolved CO2. Af-
ter pressure correction of the Sunrise sensor readings, the
dissolved gas concentration (CCO2,W, in mol L−1) was com-
puted by applying Henry’s law of solubility (Eq. 3). The par-
tial pressure of CO2 in the headspace was calculated from

J. Sens. Sens. Syst., 13, 41–61, 2024 https://doi.org/10.5194/jsss-13-41-2024



M. Dalvai Ragnoli and G. Singer: The River Runner 49

Sunrise sensor readings, and the pressure was measured by
the BME280. The Henry constant was computed with a spe-
cific parameterisation for CO2 (reported in Appendix D) at
temperatures measured by the BME280. Thereby the com-
puted dissolved CO2 concentration was compared with dis-
crete grab samples taken at random times during prototype
deployment. Those samples were taken using the headspace
technique and measured using the MGGA in a closed-loop
configuration (Wilkinson et al., 2018). Samples were taken
with a syringe by collecting 70 mL of water and background
air respectively. The concentration of the latter was addi-
tionally measured with the MGGA. To enhance equilibration
between the two phases, the syringe was intensely shaken
for approximately 2 min. The gaseous headspace was then
transferred into pre-evacuated gas vials and stored with over-
pressure until further analysis. This closed-loop method re-
quires consideration of sample dilution by ambient gas (Dal-
vai Ragnoli et al., 2023). For this purpose, a sample of gas
standard with known gas composition was analysed under
in situ pressure and temperature conditions to calculate a vol-
ume ratio between the sample and loop volume (Dalvai Rag-
noli et al., 2023). From the resulting headspace concentra-
tion, the equilibrium concentration of the water phase was
computed using Henry’s law of solubility. The original water
concentration was finally computed by summing the number
of moles in the equilibrated phases and accounting for the
background concentration.

3 Results and discussion

3.1 Methane sensor calibration

3.1.1 Calibration in a gaseous headspace

The two-step calibration was first done in a gaseous phase to
evaluate the sensor’s suitability to measure the methane con-
centration. For the first step of the calibration, the tempera-
ture (and thereby absolute humidity) was varied in order to
model V0 over the wide range of ambient conditions expected
in freshwater environments. The continuous change in tem-
perature during the calibration experiments resulted in a con-
tinuous gradient in absolute humidity. Temperature was var-
ied between 6 and 25 °C, and mean relative humidity in the
prototype head was 76± 3 % on average among prototypes,
resulting in an absolute humidity ranging from 4 to 19 gm−3.
At the background atmospheric CH4 concentration, the mea-
sured output voltage of the sensor (Vout) corresponds to V0
and, for all sensors, the voltage signal increased linearly with
increasing temperature and humidity (Fig. 5a).

The model selection step resulted in the simple linear
model using the absolute humidity as the predictor (V0
mod 3) having the highest R2 and lowest RMSE for all pro-
totypes; therefore, it was chosen to compute V0. The same
linear model was used by Bastviken et al. (2020) to com-
pute V0, because of the combination of best fit and minimum

number of parameters. A summary of the performance of all
six V0 model candidates is provided in Table 2. Model pa-
rameters are sensor-specific for every prototype and reported
in Table 6.

Models using relH instead of absH have been reported
(Bastviken et al., 2020) to return lower R2 values; there-
fore, they were not taken into account in this calibration step.
Using absH instead of relH was also suggested by Eugster
et al. (2020), who were thereby able to reduce typical de-
viation from the reference to less than ± 0.1 ppm CH4. The
better prediction when using absH can be explained by the
fact that the sensing area reacts with the absolute number
of water molecules in the sensor head, which compete with
other molecules for space on the active sensor surface (Eug-
ster et al., 2020). Models that include temperature as a pre-
dictor had lower R2 values when comparing predicted and
modelled V0, indicating that the temperature effect is negli-
gible compared to absH. Previous studies (Bastviken et al.,
2020) attribute this to the heating power (280 mW; Figaro
Engineering Inc., 2017) of the built-in resistive heater.

Unlike the raw voltage signal, R is independent of tem-
perature and humidity (Fig. 5c). At the background atmo-
spheric methane concentration, R was always very close to 1
for all prototypes (1.00± 0.11, 1.00± 0.05 and 1.00± 0.05
for prototypes RR1, RR2 and RR3 respectively) throughout
the whole investigated temperature and humidity range (Ta-
ble 4). It can be concluded that changes in sensor response
induced by changing environmental factors can be success-
fully corrected.

With an increasing methane concentration, the sensor
voltage signal Vout also increased. As the temperature
and humidity were kept stable during these measurements,
thereby keeping V0 constant, R decreased with an increas-
ing methane concentration (Fig. 6). Models using relative
humidity instead of absolute humidity to predict CH4 re-
sulted in lower R2 values and higher RMSE values, as absH
was again the most important predictor. A summary of the
performance of all model candidates is provided in Table 3.
Bastviken et al. (2020) chose V0 mod 3 in combination with
CH4 mod 5 as a compromise between a good fit and the min-
imum number of parameters and were thereby able to predict
the CH4 concentration to ± 10 ppm in the range from near-
ambient concentrations to 719 ppm CH4. We computed the
molar fraction of CH4 using CH4 mod 4 and CH4 mod 5
separately and obtained the best results using the combina-
tion of V0 mod 3 with the slightly more complex CH4 mod 4
model. Using this combination, we were able to compute
CH4 with an absolute error of ± 3 ppm in the range of 2
to 45 ppm CH4 for both prototypes (Table 4). However, near
the atmospheric background concentration (< 2.5 ppm CH4),
our model predictions have the highest offset to measured
values with relative errors of 79 % and 72 %, correspond-
ing to 3± 2 and 4± 1 ppm CH4, for prototype RR2 and RR3
respectively. With an increasing CH4 concentration, the rel-
ative error of our model prediction decreased considerably
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Figure 5. Sensor voltage signal vs. absolute humidity and temperature for one of the prototypes during V0 calibration experiments (a).
Measured vs. modelled V0 using V0 mod 3 (b) and resistance ratio vs. absolute humidity and temperature (c). Different symbols represent
independent calibration experiments and the colour gradient shows the respective temperatures. The grey line in panel (b) represents the 1 : 1
line and the black horizontal line in panel (c) represents mean R for this prototype. Note that the variance on the y axis is due to the inherent
noise in the sensor signal.

Table 2. Results of the V0 model validation: R2 and RMSE are averaged over the number of experiments (N ) and n is the total number
of measurement points used for calibration. V0 mod 1–4 are models proposed by Bastviken et al. (2020). V0 mod 5 and V0 mod 6 are
temperature-dependent models and were added, as proven necessary, during this study. The unit of V0 is voltage, T is the temperature (°C)
and absH is the absolute humidity (in g m−3). Models using relH instead of absH are not taken into account, as they return lower R2 values
(Bastviken et al., 2020). Model parameters g, h, m, n and S are sensor-specific constants and are derived from curve fitting. Note that unit
for RMSE is volts.

Headspace Submerged

RR1 RR2 RR3 RR2 RR3
Model N = 2 N = 4 N = 4 N = 6 N = 5

n= 14 547 n= 19 121 n= 20 258 n= 46 387 n= 40 214
Model no. Equation R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

V0 mod 1 V0 = g (absH)h + mT n
+ S 0.73 0.21 0.84 0.28 0.68 0.28 0.72 0.07 0.93 0.05

V0 mod 2 V0 = g (absH)+mT + S 0.74 0.22 0.84 0.07 0.81 0.06 0.92 0.06 0.94 0.04
V0 mod 3 V0 = g (absH)+ S 0.80 0.21 0.85 0.07 0.83 0.06 0.91 0.06 0.94 0.04
V0 mod 4 V0 = g (absH)/(S+ absH) 0.80 0.21 0.84 0.06 0.81 0.06 0.91 0.06 0.93 0.05
V0 mod 5 V0 = gT + S 0.78 0.19 0.82 0.06 0.80 0.06 0.92 0.06 0.95 0.04
V0 mod 6 V0 = gT/(S+ T ) 0.75 0.19 0.79 0.07 0.77 0.08 0.90 0.07 0.92 0.06

(Table 4), which indicates that measurements of absolute
CH4 concentration with the TGS2611-E sensor have to be
taken with caution, especially in the low-concentration range.
This is not unexpected, as the detection limit of this cheap
metal oxide sensor is reached. However, the TGS2611-E sen-
sor is reasonably able to measure CH4 concentrations above
10 ppm. Calibration parameters of our prototypes for mea-
surements in the gas phase are reported in Table 6.

Due to the experiment run time exceeding the battery life-
time for some measurements during V0 calibration, the sen-

sor did not always manage to measure over the full calibra-
tion cycle. Therefore, the sensor only occasionally managed
to measure during the temperature increase back to starting
conditions following the previous temperature decline in the
climatic chamber. Whenever the sensor did manage to mea-
sure the complete cycle, a hysteresis effect in the sensor volt-
age signal was observed: during the heating process, the volt-
age signal was consistently higher than during the cooling
process for the same temperature and humidity conditions
(Fig. 7). We interpret this hysteresis as a result of the time
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Table 3. Results of the CH4 model validation: R2 and RMSE are averaged over the number of experiments (N ). For the headspace calibration,
n is the total number of measurement points used for calibration. For the submerged calibration, n is the number of specific temperature and
CH4 levels used for calibration. No CH4 calibration experiments were performed with RR1. For the submerged calibration, sensor readings
are averaged during stable sensor response at each specific temperature and CH4 level. CH4 is in units of parts per million, R is the resistance
ratio of RS

R0
, T is the temperature (°C), and relH and absH are the relative and absolute humidity in percent and grams per cubic metre

respectively. Model parameters a, b, c, d , e, f and K are sensor-specific constants and derived by curve fitting. Note that unit for RMSE is
parts per million of methane (ppm CH4).

Headspace Submerged

Model RR2 RR3 RR2 RR3
N = 5 N = 4 N = 6 N = 10

n= 20 368 n= 15 589 n= 19 n= 49
Model no. Equation R2 RMSE R2 RMSE R2 RMSE R2 RMSE

CH4 mod 1 CH4 = aR + b(relH) + cT +K 0.48 12 0.72 12 0.91 45 0.34 51
CH4 mod 2 CH4 = aRb

+c(relH)d +eT f
+K 0.85 5 0.90 7 0.99 30 0.71 35

CH4 mod 3 CH4 = aRb
+c(relH)(aRb) +dT (aRb)+K 0.92 4 0.94 7 0.98 15 0.99 18

CH4 mod 4 CH4 = aRb
+c(absH)(aRb) +dT (aRb)+K 0.95 3 0.96 3 0.97 20 0.98 15

CH4 mod 5 CH4 = aRb
+c(absH)(aRb) +K 0.95 3 0.97 2 0.99 19 0.99 13

Table 4. Results of the model prediction for the TGS2611-E sensor in the gaseous headspace. Shown are the regression metric R2 and
the RMSE for sensor calibration using all calibration experiments for each calibration step. The resistance ratio R is reported as the
mean± standard deviation for all measurements at a background atmospheric CH4 concentration. Note that the unit for the RMSE dur-
ing V0 calibration is volts, whereas the unit for CH4 calibration is parts per million. The mean relative error and the standard deviation (in
%) of model prediction using the combination of the V0 mod 3 and CH4 mod 4 are shown for different concentration ranges (in ppm CH4).

Prototype V0 mod 3 CH4 mod 4 CH4 mod 5 Relative error (%) for different concentration ranges
R2 RMSE R R2 RMSE R2 RMSE < 2.5 2.5–10 10–25 > 25

RR1 0.60 0.1 1.01± 0.11 – – – – – – – –
RR2 0.81 0.05 1.00± 0.05 0.95 3 0.95 3 79± 50 43± 33 15± 10 9± 6
RR3 0.87 0.05 1.00± 0.05 0.95 3 0.96 10 72± 44 35± 33 16± 10 10± 7

lag between temperature and humidity in the headspace of
the calibration box. This hysteresis effect was not included
when considering equations to model V0, as it would require
one to assess the history of the measurements. However, as
the hysteresis effect is not accounted for in the modelled V0,
the hysteresis is dragged into the resistance ratio and, thus,
expectedly reduces model accuracy (Fig. 7).

3.1.2 Calibration submerged in water

To simulate equilibration between the water phase and am-
bient air, and thus measure V0 when the prototypes are sub-
merged, ambient air was bubbled through the water column.
To ease the use of the RR prototype for future users, we first
checked if parameters obtained in the quite easily achiev-
able headspace calibration can be directly used for under-
water measurements. However, applying V0 mod 3 and the
parameters obtained from the headspace calibration on the
submerged prototypes resulted in an offset between predicted
and measured V0: although modelled V0 was still highly lin-
ear to measured V0 (R2 values of 0.91 and 9.94 for RR2 and
RR3 respectively), and therefore indirectly to (absolute) hu-

midity and temperature, the sensor featured an offset in the
form of a parallel shift (RMSE values of 0.13 and 0.09 mV
for RR2 and RR3 respectively). Thus, the resulting overesti-
mation of the resistance ratio of, depending on the prototype,
8 % or 13 %, finally results in an overestimation of the CH4
concentration. Although the relative change in the CH4 con-
centration, for example, over time, could be assessed using
transferred calibration parameters, more accurate measure-
ments of absolute CH4 concentration are not feasible. We
conclude that parameters from calibration in a headspace can
be used for submerged measurements if the user does not
have the equipment to perform the more complex calibration
underwater or if measurements of the relative change in dis-
solved CH4 concentration are sufficient. However, to mea-
sure absolute concentration, we suggest performing a sep-
arate calibration under in situ conditions. Performing this
labour-, time- and equipment-intensive calibration decreases
measurement error and increases measurement accuracy.

Following the same procedure for model selection used
for the gaseous headspace calibration resulted in V0 mod 2
and V0 mod 5 being the best models to compute V0 in a sub-
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Figure 6. Results for the headspace CH4 calibration step for one
of the prototypes: sensor voltage signal (a), resistance ratio (b) and
modelled CH4 (using CH4 mod 4, c) vs. the CH4 concentration
measured with the MGGA as the reference instrument. Different
symbols represent individual calibration experiments. The grey line
in panel (c) represents the 1 : 1 line.

merged environment (Table 2). Both models use temperature
as a model predictor, indicating a stronger temperature in-
fluence on the sensor output for submerged prototypes com-
pared with measurements in air. We have two not necessar-
ily exclusive explanations for this behaviour. First, the lower
importance of humidity compared with measurements in air
can result from stable humidity conditions in the prototype
head. Although humidity was on average higher during sub-
merged measurements, it could quickly equilibrate through
the membrane and experienced less variation compared with
measurements in the gaseous headspace. While the temper-
ature varied from 26 to 8 °C, the mean relative humidity in
the prototype head was 87± 4 % and was never below 56 %.
Second, the physical properties of the medium surrounding
the prototype may play an important role, as thermal con-
ductivity for air is an order of magnitude lower than for wa-
ter; therefore, heat transfer in the water phase much faster.
Thus, the resulting higher rates of heat dissipation in the wa-
ter make temperature a dominant factor on the resistance of
the TGS2611-E sensor.

As a compromise between the best fit (high R2 and low
RMSE) and the lowest number of parameters, we selected
V0 mod 5 to compute V0 for submerged measurements. Us-
ing this model, the resistance ratio was close to 1 in the
whole investigated temperature range with very little devi-
ation (1.00± 0.06 and 1.00± 0.06 for prototypes RR2 and
RR3 respectively; Table 5).

The second calibration step was performed at three differ-
ent temperatures (8, 15 and 25 °C) and with dissolved CH4
concentrations ranging from 0.01 to 0.3 µmol L−1. The tem-
peratures and concentration range were chosen in order to
represent ranges typically found in freshwater ecosystems
(Stanley et al., 2016; Flury and Ulseth, 2019; Dalvai Ragnoli
et al., 2023). The dissolved CH4 concentration was computed

Figure 7. Observed hysteresis in the sensor voltage signal during
the V0 calibration step (a) and the resulting resistance ratio using
the simple linear V0 mod 3 model (b). The colour gradient shows
respective temperatures. The black line in panel (b) represents mean
R for this prototype.

using Eq. (3) and by approximating the water temperature
with the temperature measured by the BME280 in the pro-
totype head. As the conversion from the molar fraction mea-
sured in the prototype head to the dissolved gas concentration
is a mathematical operation and as our aim is to convert the
voltage reading of the TGS2611-E sensor to the more typi-
cally reported molar fraction (ppm), we report our calibration
results in parts per million hereafter, rather than in moles per
litre.

Submersion in a methane-enriched water phase resulted
in a voltage increase at constant temperatures, resulting in
a drop in the resistance ratio (Figs. 8; 9a, b). On average, it
took about 30 min for the voltage signal to stabilise after sub-
merging the prototypes in a higher-concentration water phase
(with an average CH4 increase in the water phase of 35 ppm).
The extent of the concentration difference between the two
water phases does affect the duration until equilibration is
reached between the new water phase and the prototype head.
Thus, it also affects sensor response time. However, we did
not systematically investigate the sensor response time, as
data from our experiments do not allow this. The model se-
lection for CH4 resulted in CH4 mod 3, 4 and 5 giving the
best results (Table 3). Using CH4 mod 5 as combination of
the best fit and minimal number of parameters, we were able
to predict CH4 with an accuracy of 13 and 14 ppm in the
range from 2 to 172 ppm CH4, and our model results were
highly linear to measured CH4 in the water phase (R2 of 0.93
and 0.94 for RR2 and RR3 respectively; Table 5).

The error in the CH4 prediction was highest at con-
centration levels near the atmospheric concentration until
up to 10 ppm CH4 (with the relative measurement error al-
ways higher than 100 %; Table 5). Here, the model overes-
timates the CH4 concentration on average by 9 ppm at near-
atmospheric concentrations (< 2.5 ppm CH4) and by 7 ppm
in the concentration range from 2.5 to 10 ppm CH4. This
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Table 5. Results of the model prediction for the TGS2611-E sensor submerged in water. Shown are the regression metric R2 and the RMSE
for sensor calibration using all calibration experiments for each calibration step. The resistance ratio R is reported as the mean± standard
deviation for all measurements at a background CH4 concentration. Note that the unit for the RMSE during V0 is parts per million. The
mean relative error and standard deviation (in %) of model prediction using the combination of the V0 mod 5 and CH4 mod 5 are shown for
different concentration ranges (in ppm CH4).

Prototype V0 mod 5 CH4 mod 5 Relative error (%) for different concentration ranges (in ppm CH4)
R2 RMSE R R2 RMSE < 2.5 2.5–10 10–50 50–100 100–172

RR2 0.85 0.06 1.00± 0.06 0.93 13 326± 36 123± 65 14± 15 26 14± 11
RR3 0.93 0.04 1.00± 0.04 0.94 14 440± 157 148± 95 30± 17 11± 8 13± 13

Figure 8. Time series measurement for one of the submerged CH4 calibration experiments: the raw voltage output signal from the TGS2611-
E sensor (a), temperature (b) and absolute humidity (c) over time. The vertical dotted lines represent the moments when the prototypes were
submerged in a new (higher) CH4-concentrated water phase, and the purple fields represent the time interval of stable measurements during
which we took the average of the sensor readings to calibrate the TGS2611-E sensor against the (mean) concentration measured by the
MGGA. The latter are shown for this experiment in panel (a). Horizontal dotted lines in panels (b) and (c) represent the mean temperature
and humidity values for this experiment.

is a result of reaching sensor detection limits, where cross-
interference with temperature and humidity are experienced
more strongly. At higher methane concentrations, the influ-
ence of cross-interference is weaker and the contribution of
CH4 to the sensor resistance is stronger. As a result, methane
concentration measurements in higher-concentration envi-
ronments were more accurate.

Measurement error, especially in the low-concentration
ranges, was always higher when the prototypes were sub-
merged in water compared with measurements in air: while
the relative error near the atmospheric background was 79 %
and 72 % in air, the error was 326 % and 440 % in the water
phase for prototypes RR2 and RR3 respectively. While mea-
surements in the low-concentration range have to be taken
with caution, the low-cost TGS2611-E sensor can be used to
measure CH4 with reasonable accuracy at higher concentra-
tion ranges (above 10 ppm CH4). The calibration parameters
of our prototypes for measurements in water are reported in
Table 6.

These experiments, and thus our sensor validation, were
performed during a relative short time period of months and
sensor drift effects were excluded. However, intense usage
of these metal oxide sensors can result in material corrosion
and sensor drift, especially if used in harsh and humid en-
vironments like those reported in this study. With our cur-
rent data, long-term sensor drift in submerged environments
cannot be predicted. However, previous work with sensors
from the TGS sensor family has reported a sensor drift of
less than 1 ppm CH4 yr−1 in air (Eugster and Kling, 2012;
Collier-Oxandale et al., 2018; Eugster et al., 2020). Eugster
et al. (2020) further calculated that these sensors might reach
the end of their lifespan after approximately 10 years based
on the downward drift of the voltage signal. Moreover, in-
tense exposure to highly oxidising environments and harsh
conditions can decrease the lifetime of the sensors.
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Table 6. Calibration parameters for River Runner prototypes. Here, only parameters for respective best model combinations are presented
for measurements in air (V0 mod 3 and CH4 mod 4) and for measurements underwater (V0 mod 5 and CH4 mod 5). Model parameters are
sensor-specific.

Prototype Headspace

V0 mod 3 CH4 mod 4

g S a b c d K

RR1 0.03948415 0.91760279 – – – – –
RR2 0.03452434 0.84728192 0.01474928 −1.72824249 137.65160646 40.06797843 −32.76780468
RR3 0.03757990 0.83100920 0.3015809 −4.0545023 6.7753553 −1.9795575 −7.0192549

Submerged

V0 mod 5 CH4 mod 5

g S a b c K

RR2 0.02296599 0.80312184 7.82970298 −1.90113967 0.02550936 0.53696045
RR3 0.02373624 0.83738554 9.89916734 −1.49276160 0.08348767 −7.58530761

Figure 9. Results for the CH4 calibration step for one of the sub-
merged prototypes: sensor voltage signal (a), resistance ratio (b)
and modelled CH4 (using CH4 mod 5, c) vs. the measured CH4
concentration with the MGGA as the reference instrument. Differ-
ent symbols represent individual calibration experiments, colours
show the temperature during calibration experiments and the black
line in panel (c) represents the 1 : 1 line. Note that the vertical axes
and the horizontal axis of panel (c) are on a logarithmic scale.

3.2 Carbon dioxide sensor

After performing the zero calibration in pure nitrogen, the
Senseair Sunrise sensors were exposed to a closed atmo-
sphere with 0, 350 and 10 000 ppm CO2. After pressure cor-
rection, the R2 value between Sunrise sensor readings and
the measurement of the reference instrument was always
higher than 0.99 using at least 85 single measurements (Ta-
ble 7).

A total of 9–23 months after sensor calibration, the sen-
sor performance was investigated in a wide temperature and
humidity range (temperature 15–29 °C and relH 7 %–93 %)
during methane sensor calibration (Fig. 10). Using the RMSE
as a measure of sensor accuracy, we managed to measure
CO2 with an absolute error of ± 87 ppm for RR1, ± 44 ppm

Figure 10. Calibration and long-term evaluation of prototypes RR1
(a), RR2 (b) and R3 (c). Calibration is shown in blue: dots represent
measurement points and the blue line represents the linear regres-
sion between the sensor and reference instrument. Grey symbols
represent measurements during evaluation experiments. Different
symbols illustrate independent validation experiments and the grey
line represents the 1 : 1 line.

for RR2 and ± 164 ppm for RR3 in the range from 400 to
10 000 ppm CO2.

The absolute error between measurement of the Sunrise
sensor and the reference instrument increases linearly with
the CO2 concentration for all sensors. However, the slope
of the linear relationship differs among sensors. As a differ-
ence in the wiring does not influence sensor readings, sensor
behaviour characteristics might stem from variations in sen-
sor manufacturing or from contamination of the main com-
ponents (e.g. infrared source, filter, and infrared detector).
The relative measurement error does not show a clear trend
among prototypes and exceeds the 10 % boundary only once
for RR3 in the low-concentration range (Table 7).

No correlation between elapsed time since sensor cali-
bration and absolute measurement error of the Sunrise sen-
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Table 7. Results of Senseair calibration: R2 values of the linear regression between the Sunrise sensors and the reference instrument during
calibration, RMSE values between the Sunrise sensors and the reference instrument during headspace calibration of the methane sensor, and
number of measurements (N ) used to compute the RMSE. The relative error of sensor reading for different concentration ranges is given as
the mean± standard deviation.

Prototype Calibration Validation Relative error (%) for different concentration ranges (in ppm CO2)
R2 RMSE N 0–1000 1000–2500 2500–5000 5000–7500 7500–10 000

RR1 > 0.99 87.7 1345 1.7± 3.0 1.9± 1.5 3.3± 2.2 3.8± 1.3 3.8± 0.7
RR2 > 0.99 44.6 13 188 5.4± 2.3 3.1± 2.0 1.5± 1.9 1.0± 0.8 1.1± 1.1
RR3 > 0.99 164.3 10 307 16.6± 5.0 10.0± 5.3 9.0± 4.2 7.1 ± 3.5 6.1 ± 2.8

Figure 11. In situ CO2 measurements for one of the RR prototypes.
Black dots are the dissolved CO2 concentration computed with the
readings from the Sunrise sensor and Henry’s law of solubility. Blue
dots represent the mean of grab samples taken in duplicate with
the headspace method at discrete times. The standard deviation of
these measurements is shown with the error bar. The grey line rep-
resents the equilibrium concentration with the atmosphere and was
computed from the background concentration and temperature mea-
sured by the BME280 using Henry’s law of solubility.

sors was found (R2 of 0.39), indicating that even after up
to 23 months and extensive exposure to temperature and hu-
midity variations, no post-correction of the Sunrise sensor
readings was needed. However, we do recommend resetting
the origin of the sensors at times, especially as the effort in-
volved in this step is minor.

With our prototype, we were able to measure the diurnal
concentration dynamics of CO2 in a natural stream in situ.
Measurements from our prototype resulted in a slightly lower
dissolved gas concentration than computed from the discrete
headspace samples taken at arbitrary times. The mean con-
centration difference between the two measurements was
17± 11 µmol L−1 and was highest for the measurements at
a high CO2 concentration. Here, measurements with our pro-
totype resulted in 63 µmol L−1 compared with 90 µmol L−1

from the discrete gas sample. While variance from our sen-
sor signal is small, it is worth noting that deviation in inde-
pendently but simultaneously taken headspace samples can
be notable. The maximum deviation from our grab samples
taken at the same time was 38 µmol L−1 (Fig. 11). This is a
result of the error-prone nature of this sampling method. The

CO2 concentration over the investigated time period varied
by 11 %, which equals a maximum concentration difference
of 23 µmol L−1. The water phase was always supersaturated
in CO2 compared with the atmospheric equilibrium (Fig. 11),
and, unsurprisingly, the CO2 concentration was higher dur-
ing nighttime when photosynthesis is absent and respiration
prevails. To capture these daily dynamics with discrete grab
samples would require a high sampling frequency; thus, it is
a very labour-intensive process. In contrast, our prototype al-
lows one to uncover temporal variability at high resolution
with almost no effort.

4 Conclusions and outlook

In the future, we expect cheap self-built sensors, like the pre-
sented River Runner prototype, to help to identify and quan-
tify sources of GHG emissions and to deliver robust measure-
ments to improve global flux estimates. Especially in fresh-
water ecosystems, where accurate (average) measurements
are particularly difficult to achieve due to spatial heterogene-
ity and temporal variability, our prototype can be used for
continuous measurements of dissolved CH4 and CO2 con-
centrations. By using a larger set of replicate sensors in a
distributed sensor network, the challenges of spatial hetero-
geneity and temporal variability may be addressed simul-
taneously, e.g. at various points across a river network or
as a series of sensors aligned vertically to measure depth
gradients in lakes and reservoirs. To date, such approaches
have simply not been possible or have been limited by the
high equipment cost. The low cost of the presented prototype
makes such endeavours financially feasible.

Our main findings can be summarised as follows:

– The River Runner. We successfully combined an Ar-
duino Pro Mini microprocessor board with a real-time
clock; a microSD card adapter; a voltage regulator; a
sensor for humidity, pressure and temperature; and gas
sensors for CH4 and CO2. The measurements from the
different sensors are saved on the SD card, and the mea-
surement interval is definable by the user. The total ma-
terial cost was less than EUR 200. The prototype head
was covered with a gas-permeable membrane to allow
equilibration between the water phase and a confined
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gaseous headspace, thereby permitting one to measure
dissolved gas concentrations in situ. The membrane of
our choice is made of PTFE with a thickness of 0.25 mm
and shows a good compromise between gas diffusivity,
liquid entry pressure and mechanical strength. Abso-
lute humidity inside the prototype head was computed
from vapour pressure, i.e from the pressure, relative hu-
midity and temperature measured by the BME280 sen-
sor. For freshwater, the molar fraction measured in the
headspace (in ppm) can be directly converted to dis-
solved gas concentration (in µmol L−1) using Henry’s
law of solubility combined with pressure and tempera-
ture readings from the BME280 sensor. The accuracy of
this conversion could be increased by including a resis-
tance thermometer, which is waterproof and can mea-
sure water temperature directly. We did not systemati-
cally investigate the sensor response time. However, the
sensor response time is tied to the equilibration time be-
tween the sensor headspace and the water phase and,
thus, is accelerated by further minimising the headspace
volume or by maximising the membrane surface.

With the use of two Li-ion 18650 batteries, continuous
measurements with an interval of 30 s were possible for
approximately 24 h. However, decreasing the measure-
ment frequency can prolong the battery lifetime. An ad-
ditional software-based option to consider in order to
minimise power consumption is the use of the Arduino
Sleep Mode (Beddows and Mallon, 2018). This func-
tion temporarily turns the Arduino off completely. How-
ever, the TGS2611-E sensor, which in our current as-
sembly is the most power-intense module, would need
to be constantly heated to provide reproducible mea-
surements.

The main drawback of using an Arduino Pro Mini op-
erating at 3.3 V is the ability of the board to read input
voltages only up to 3.3 V. Thus, the sensor signals of the
TGS2611-E sensor, which can theoretically reach up to
5 V, cannot be read when exceeding 3.3 V. This is possi-
ble when the sensor resistance is minimised, e.g at very
high concentrations of oxidising compounds. However,
this is expected to occur at the upper end of the detection
limit of the TGS2611-E (at 12 500 ppm CH4), at con-
centrations higher than those expected in freshwater en-
vironments. This limitation can be avoided by using an
Arduino Pro Mini operating at 5 V. In this case, the step-
up voltage regulator for the TGS2611-E sensor would
need to be substituted with a step-down regulator, as the
BME280 sensor accepts maximum supply voltages of
3.3 V.

Individual sensor calibration, resulting in prototype-
specific parameters, is necessary. However, to ease the
usage of the River Runner prototype, parameters could
be stored on the local SD card and used by the mi-
croprocessor to compute the dissolved gas concentra-

tion. However, the downside to directly obtaining mea-
surements in user-friendly units, like moles of CH4 per
litre, instead of voltage is the higher energy consump-
tion of the microprocessor during these mathematical
signal conversion operations.

– The TGS2611-E sensor. This is a cheap and easy-to-use
sensor to detect CH4 concentrations. In air, absolute hu-
midity had the strongest influence on the reference sen-
sor voltage signal V0. To correct for cross-interference, a
two-step calibration approach was used. Using this pro-
cedure, we were able to measure CH4 with an accuracy
of ± 3 ppm in the range of 2 to 50 ppm. While, not un-
expectedly, measurements below 10 ppm are erratic and
need to be taken with care, higher concentrations can be
assessed with reasonable accuracy.

Using model parameters obtained during calibration in
air to measure the dissolved gas concentration resulted
in an overestimation of CH4 due to a (highly linear) par-
allel shift in the sensor response. We conclude that pa-
rameters from calibration in a gas phase can be used to
assess the relative change in CH4, e.g. over time. How-
ever, measurements of the absolute dissolved CH4 con-
centration require a separate calibration in a submerged
environment.

We report a method and experimental set-up to calibrate
the TGS2611-E sensor underwater. Using a two-step
calibration approach, we calibrated the sensors in CH4
concentrations ranging from 0.01 to 0.3 µmol L−1. Sub-
merging the sensor resulted in an increased influence
of temperature on V0 compared with measurements in
air. The CH4 molar fraction in the prototype head was
measured with an accuracy of ± 13 ppm in the range of
2 to 172 ppm. However, measurements below 10 ppm
have a high measurement error, as the CH4 concentra-
tion is highly overestimated. Again, the measurement
error decreases with increasing CH4 level, making high
concentration measurements more reliable. In general,
the measurement error in water was always higher com-
pared with the same CH4 concentration range in air.
Additionally, sensor accuracy could be increased by in-
cluding the hysteresis effect resulting from the measure-
ment history in the models predicting V0.

In our experiments, we always varied only one of the
two main factors influencing the sensor voltage output
(temperature or CH4 concentration), while keeping the
other constant. In an environment with dynamic temper-
ature variation and a change in CH4 concentration over
time, the sensor signal potentially has difficulties stabil-
ising, which might make measurements of CH4 impos-
sible. This can be overcome by deploying the prototype
only in environments with a stable temperature regime,
like glacial streams or in lakes.
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– The Senseair Sunrise sensor. This is a state-of-the-art
NDIR CO2 sensor that is perfectly suited to battery-
powered applications due its low power consumption
and small size. However, depending on the application,
the Sunrise sensor is not immediately ready to use, and
more specialised programming skills are required to ad-
dress and configure the sensor.

Using the Sunrise sensor, we were able to measure CO2
with an accuracy of ± 58 in the range from 400 to
10 000 ppm CO2 in air. We did not find any correlation
between the relative measurement error and the CO2
concentration nor any evidence of a decrease in sensor
accuracy over time, even after heavy exposure to humid-
ity and temperature variations.

Our prototype allows one to uncover the temporal dy-
namics of dissolved CO2 at a high resolution with al-
most no effort. In fact, we were able to measure diur-
nal concentration dynamics of CO2 in a natural stream
where concentration varied from 50 µmol L−1 during
the day to 72 µ mol L−1 during nighttime.

Appendix A: Prototype information

Figure A1. Pictures of the RR prototypes during different construction phases.
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Appendix B: Membrane diffusivity

B1 Membrane diffusivity test

To facilitate fast equilibration between the gaseous phase and
the aqueous phase, the membrane needs to be highly per-
meable for CH4 and CO2. Five different sheet membranes
were tested for our prototype. The membranes were obtained
from the Porex Filtration Group; they were made from either
polyethylene (PE) or PTFE with a thickness varying from 0.1
to 0.6 mm. As the manufacturer was unable to provide dif-
fusive characteristics for any of the membranes, these were
determined in the laboratory.

Diffusivity measurements were done under quasi-steady-
state conditions following Johnson et al. (2010). Standard
gas, with a high CO2 and CH4 concentration (approximately
25 times higher than the atmospheric concentration), was in-
troduced into a large bottle and allowed one to diffuse out-
wards against ambient air through the bottle opening, which
was covered with a single layer of membrane. The custom-
made Schott bottle had three additional inlet ports: one was
used to insert standard gas, while the other two were used to
connect a micro-portable GHG analyser (MGGA; Los Gatos
Research, USA) in a closed loop. By circulating the gas be-
tween the analyser and the Schott bottle, the CO2 and CH4
concentration could be continuously recorded. Assuming a
very small diffusion time, the transfer coefficient (ka) and
diffusivity (D) can be computed by rearranging respective
equation:

dC

dt
≈

1C

1t
=

A

V
kaC =

A

V
D

dC

dx
, (B1)

where the differential dC
dt

can be approximated by the con-
centration change over time (1C

1t
), A is the opening area

(cm2) covered by the membrane, V is the volume of the
system (cm3) and C is the mean concentration during 1t .
The spatial derivative dC

dx
is the concentration gradient across

the membrane and can be approximated by the difference in
mean concentration over time and the ambient air divided by
the thickness of the membrane. The ambient air was assumed
to be constant at background levels during measurements.

Other significant membrane criteria are mechanical
strength and a high liquid entry pressure. The liquid entry
pressure defines the minimum pressure difference across the
fabric required to overcome hydrophobic forces, which hin-
der liquid water penetrating the membrane.

B2 Results of membrane diffusivity

Diffusivity of the PE membranes was an order of magnitude
higher than of the PTFE membranes (Table B1). Even though
faster equilibration would be reached using a PE membrane,
M5 was chosen as the membrane to cover the sensor head.
M5 is made of PTFE with a thickness of 0.25 mm and rep-
resents a good compromise between diffusivity, liquid entry

pressure and mechanical strength. The diffusion of M5 for
CO2 was slower than the diffusivity of the PTFE membrane
used by Johnson et al. (2010) to cover a submerged CO2 sen-
sor. Nevertheless, the diffusion of M5 is 3 orders of mag-
nitude faster than diffusivities of CO2 and CH4 in water (at
25 °C), which are 1.45× 10−5 and 1.48× 10−5 cm2 s−1 re-
spectively (Jähne et al., 1987). As diffusion of CO2 through
water (1.77× 10−5 cm2 s−1) is about 10 000 times slover
than in air (1.59× 10−5 cm2 s−1; Massman, 1998), the mem-
brane presents a negligible barrier for gas diffusion and, thus,
the temporal response of the sensors.

Appendix C: Calculation of absolute humidity

We computed the absolute humidity (in gm−3) according to
Vaisala (2013) from the water vapour saturation pressure in
the headspace of the prototype. Temperature and relative hu-
midity are measured by the BME280 sensor.

PWS = A · 10( mT
T+Tn )

, (C1)

where PWS is the water vapour saturation pressure over water
(in hPa) at temperature T (in °C), and A, m and Tn are given
specific parameterisations for the temperature range of −20
to +50 °C (Table C1).

PW = PWS ·
relH
100

, (C2)

where PW is the dew point (in hPa) and relH is the rela-
tive humidity (in %). Absolute humidity, the mass of water
vapour in a certain volume can be calculated assuming ideal
gas behaviour:

absH=
C

T + 273.15
·
PW

100
, (C3)

where absH is the absolute humidity (in gm−3) and C a con-
stant (in gKJ−1) (Table C1).

Appendix D: Calculation of gas-specific Henry
constants

The Henry constants for CH4 and CO2 (in mol L−1 atm−1)
for freshwater are computed with the water temperature (TW
in kelvin) according to the equations reported in International
Hydropower Association (2010):

KHCH4(TW)= exp
(
−115.6477+

155.5756
TW/100

+65.2553 · ln
(

TW

100

)
− 6.1698 ·

TW

100

)
·

1000
18.0153

, (D1)

KHCO2(TW)= exp(−58.0931+ 90.5069

·
100
TW
+ 22.294 · ln

(
TW

100

))
. (D2)
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Table B1. Diffusivity and gas transfer coefficients for all investigated membranes. D and ka are reported as the mean ± standard deviation
for all experiments (n= 4). The liquid entry pressure (LEP) for M1 and M2 was not provided by the manufacturer.

Material Thickness LEP DCO2 DCH4 kCO2 kCH4
(mm) (mbar) (cm2 s−1) (cm2 s−1) (cm s−1) (cm s−1)

M1 PE 0.6 – 0.011± 2× 10−03 0.012± 2× 10−03 0.189± 0.043 0.195± 0.045
M2 PE 0.6 – 0.010± 6× 10−04 0.011± 5× 10−04 0.168± 0.010 0.176± 0.008
M3 PTFE 0.1 ≥ 500 0.002± 1× 10−04 0.002± 1× 10−04 0.168± 0.011 0.175± 0.010
M4 PTFE 0.18 ≥ 300 0.003± 1× 10−04 0.003± 2× 10−04 0.175± 0.008 0.179± 0.011
M5 PTFE 0.25 ≥ 400 0.004± 2× 10−04 0.004± 3× 10−04 0.168± 0.008 0.175± 0.01

Table C1. Parameters for the calculation of absolute humidity from
Vaisala (2013).

A m Tn C

6.116441 7.591386 240.7263 2.16679

Code and data availability. R code for model selection and data
evaluation as well as data from calibration experiments are avail-
able from the first author upon request. Please note that the code is
specific to the data structure and requires modification for use with
other data. The CH4 sensor data and the resulting model parameters
are sensor-specific and cannot represent other sensors; individual
calibration is needed. The Arduino code used for the River Run-
ner prototype is explicitly designed for the circuit diagram and sen-
sor wiring presented in this work (Dalvai Ragnoli, 2024). The code
is available at https://doi.org/10.6084/m9.figshare.25055297. A li-
brary specifically designed to use the Sunrise sensor on the River
Runner prototype and the Arduino code to set Sunrise settings and
to do the zero calibration are also available from the aforementioned
DOI.
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