
J. Sens. Sens. Syst., 13, 63–69, 2024
https://doi.org/10.5194/jsss-13-63-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

  

Cutout as augmentation in contrastive learning for
detecting burn marks in plastic granules

Muen Jin and Michael Heizmann
Institute of Industrial Information Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Correspondence: Muen Jin (muen.jin@kit.edu)

Received: 30 September 2023 – Revised: 8 February 2024 – Accepted: 20 February 2024 – Published: 4 April 2024

Abstract. Plastic granules are a common delivery form for creating products in industries such as the plas-
tic manufacturing, construction and automotive ones. In the corresponding sorting process of plastic granules,
diverse defect types could appear. Burn marks, which potentially lead to weakened structural integrity of the
plastic, are one of the most common types. Thus, plastic granules with burn marks should be filtered out during
the sorting process. Artificial intelligence (AI)-based anomaly detection approaches are widely used in the field
of visual-based sorting due to the higher accuracy and lower requirement of expert knowledge compared with
classic rule-based algorithms (Chandola et al., 2009). In this contribution, a simple data augmentation strategy,
cutout, is implemented as a way of simulating defects when combined with a contrastive learning-based method-
ology and is proven to improve the accuracy of the anomaly detection of burn marks. Different variants of cutout
are also evaluated. Specifically, synthetic image data are used due to the lack of real data.

1 Introduction

Plastic granules used in industry have various defect types
(Peršak et al., 2021). A common defect, known as a burn
mark, arises from either overheating during plastic injection
or mechanical stress causing excessive friction or pressure
during processing. Burn marks can be observed in the form
of dark spots or whole discolored granule surfaces. Burn
marks are not merely a visual defect. Moreover, they indi-
cate the degradation of both physical and chemical properties
of the corresponding parts compared with the intact parts.
Plastic granules with burn marks should be identified and fil-
tered out by a sorting system. In Peršak et al. (2021), a color
feature-based classifier was employed to sort various defect
types of granules, including burn marks.

To incorporate machine learning methods for increasing
the detection accuracy of defective granules, sufficiently
well-labeled data are required. Most defective granules take
up only a fraction of the total amount, including those with
burn marks, which increases the cost of labeling for these
granules. Meanwhile, normal granules are easily accessible
in practice, e.g., in a defect-free running period of the produc-
tion. Normal plastic granule images can be obtained using
methods like threshold-based foreground–background seg-

mentation, blob detection, or neural-network-based segmen-
tation, depending on the scene’s complexity. Based on this
assumption, the sorting task is regarded as a one-class clas-
sification problem in this work; i.e., only images of normal
granules are available during training.

Instead of using real-world data without reliable ground-
truth labels, synthetic data of plastic granules generated by
a blender were used in this work. Multiple granule instances
were modeled in each rendering step to simulate the real-
world captured image from line cameras over the conveyer
belt in the sorting system. The synthetic data only contain
normal granules and granules with burn marks; other de-
fect types are not modeled. One advantage of using synthetic
data is that both the precise location and the correspond-
ing ground-truth label of each granule in the rendered image
are accessible without extra effort. Each plastic granule was
cropped from the rendered image and labeled for further pro-
cessing, such as classification or anomaly detection (Fig. 1).

As a large number of normal data are available during
training, some of the synthetic images of normal granules
can be leveraged for pre-training in a self-supervised manner
using a contrastive learning method, since contrastive repre-
sentation shows state-of-the-art performance in visual recog-
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Figure 1. Synthetic images of granules generated using a blender.

nition tasks (Chen et al., 2020; van den Oord et al., 2019;
He et al., 2020). We followed the work of Sohn et al. (2020).
By introducing cutout (DeVries and Taylor, 2017) as an ex-
tra augmentation technique in this framework, the detection
accuracy of granules with burn marks increased. We show
that the increase is largely attributed to the visual similarity
between the burn marks and the cutout masks.

2 Related works

Synthetic data are increasingly utilized to improve model
performance in classification and detection tasks. Synthetic
data are generated through domain randomization to train
deep neural networks for robotic grasping tasks, improving
the model’s generalization to real-world scenarios (Sankara-
narayanan et al., 2017). Semantic segmentation performance
has been enhanced by integrating synthetic data, effectively
augmenting the original dataset and improving the model ro-
bustness (Zhu et al., 2018).

Many algorithms for anomaly detection are based on
learning features from nominal data. This is especially the
case for industrial anomaly detection for bulk materials, as
collecting defect samples can be costly, while nominal sam-
ples are available in a sufficient amount for training feature-
learning-based algorithms. Anomaly detection is regarded
as one-class classification in scenarios where the objective
is to identify and classify outliers as a single distinct class
and only data of nominal samples are available during train-
ing. One-class classification often grapples with the lack of
detailed semantic information. Various techniques, such as
leveraging auto-encoder (Sakurada and Yairi, 2014) or Gaus-
sian mixture models (Zong et al., 2018) or even attention-
guided methods (Venkataramanan et al., 2020), have been
proposed to refine the estimation of nominal feature distri-
butions. Generative models capable of capturing data density
have been employed to discern outliers through low-density
samples (Zong et al., 2018; Schlegl et al., 2017). However,
interpreting density in high-dimensional spaces remains a
challenge. Self-supervised learning, a common strategy for
learning representations from unlabeled data (Noroozi and
Favaro, 2016; Caron et al., 2018), has also been extended
to one-class classification. For instance, contrastive learn-
ing has been employed to enhance out-of-distribution de-
tection within a multi-class setting (Winkens et al., 2020).
Self-supervised contrastive learning learns representations

by training models to distinguish data applied with differ-
ent augmentations (e.g., color jittering) from other data in-
stances. In Sohn et al. (2020), a two-stage framework focus-
ing on learning from a singular class of examples and propos-
ing innovative distribution-augmented contrastive learning
was proposed. In the first stage, a deep neural network is
trained using self-supervised contrastive learning for obtain-
ing a high-level data representation. In the second stage, a
single one-class classification such as kernel density estima-
tion (KDE) or one-class support vector machine is built using
the representation from the first stage. Instead of using sur-
rogate losses (Golan and El-Yaniv, 2018; Hendrycks et al.,
2019), building a separate one-class classifier is proven to
be more faithful to the classification task and hence show-
cases consistent performance improvements. The represen-
tation learned using contrast has two problems when used
for the one-class classifier. The first problem is the class col-
lision, as in contrastive learning the distance between repre-
sentations of different samples should be maximized, even
when they are of the same class. The common practice of
one-class classification however minimizes the distance be-
tween representations with respect to the class center. The
second problem is the uniformity of representations. It is
proven that a perfectly trained model using contrastive learn-
ing will project all data onto the surface of a hypersphere
uniformly, which potentially makes the abnormal data at the
inference time less distinguishable (Ruff et al., 2018). To
overcome these two problems, the distribution augmentation
is introduced in the first stage. Except for the normal data
augmentations, geometric transformations including rotation
and flip are applied to data instances. The distribution aug-
mentation is disjoint from data augmentation. An image and
its distribution-augmented version are considered two sep-
arate instances and hence are encouraged to be distant in
the representation space. Essentially, by introducing distri-
bution augmentation, the number of data instances for train-
ing is increased. Furthermore, the uniformity of representa-
tions in the hypersphere is eased. Another way of learning
representation in a self-supervised manner is augmentation
prediction (Gidaris et al., 2018). By discriminating augmen-
tation applied to data (e.g., the rotation degree of the image),
the model learns deep representations which approximate the
normality score of data used for one-class classification well.
Similarly, Li et al. (2021) introduce cutpaste as an augmen-
tation technique, which cuts a small rectangular area from
the normal image and then pastes it back into the image at a
random location. A model is pre-trained to identify whether
an image is applied with cutpaste. This self-supervised pre-
training method is proven to be beneficial for downstream
defect detection and localization tasks.

This work is mainly based on the two-stage framework in
Sohn et al. (2020). The only modification is the choice of
distribution augmentation. Instead of using geometric trans-
forms, cutout is applied to increase the model’s sensitivity for
detecting burn marks. Cutout involves setting pixel values of
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a random rectangular or square area in the image to zero. It
was originally introduced as an augmentation technique to
train classification models by encouraging models to learn
robust and discriminative features which are invariant to lo-
cal changes. In this work, cutout masks are applied as distri-
bution augmentation to mimic the burn marks. Since the data
instances with and without distribution augmentation are im-
plicitly labeled during contrastive learning, the pre-trained
model is adapted to distinguish between nominal granules
and granules with burn marks in the second stage.

3 Experiments

3.1 Experimental details

Dataset. To study the detection performance of plastic gran-
ules with burn marks, our experiments are performed on the
synthetic grayscale image data of granules generated using
the blender. The synthetic dataset for training contains 4214
images of normal granules, and the dataset for the test con-
tains 1205 images of normal granules and 341 images of
granules with burn marks. Images are resized to 256× 256
and no center crop is applied, as the images are cropped from
the rendering based on a minimal unoriented bounding box.
During the contrastive learning phase, normal data augmen-
tations including crop and resize, flip, random grayscale and
blur are applied.

Distribution augmentation. Except for the rotation and flip
used in Sohn et al. (2020), cutout is applied as the distribu-
tion augmentation. Concretely, each image will be applied
with a rectangular cutout mask at a random location which
set the pixel values within the area to zero before the neces-
sary normalization step. The size of the cutout mask is cho-
sen randomly in the range from 2 % to 80 % of the image
size. The aspect ratio of the cutout mask is also chosen ran-
domly. We choose the rectangular mask instead of the default
square mask due to the variance of the real burn mark shapes.
We also tested different variants of the cutout masks, and the
results are shown in Sect. 3.2.

Model and parameter setting. As in Sohn et al. (2020),
Resnet-18 is used as a feature extractor. We use the momen-
tum stochastic gradient descent as an optimizer to pre-train
the model with 200 epochs with a cycle cosine learning rate
decay for the contrastive learning of the Resnet-18 model.
A kernel density estimation detector is applied in the second
stage for classification.

Metric. Following Sohn et al. (2020), detection accuracy
is measured via the area under the receiver operator curve
(AUROC). Only image-level anomaly detection performance
is measured.

3.2 Experimental results

The result of image-level burn mark detection is shown in
Table 1. The AUROC is averaged over five runs for each pre-

Table 1. Results of burn mark detection. The bold font means the
methodology achieves the best results of all.

Pre-training methodology AUROC (%)

Contrastive 80.7± 1.6
Contrastive + rotation and flip (DA) 86.7± 1.2
Contrastive + cutout (DA) 90.7 ± 0.3
Binary classification + cutout 85.2± 0.9

training methodology. Table 1 reveals that applying distri-
bution augmentation increases the image-level detection ac-
curacy of burn marks, and replacing rotation with cutout as
the distribution augmentation further increases the accuracy
by 4 %. Meanwhile, using cutout as a distribution augmen-
tation leads to smaller variance, which suggests more robust
pre-trained network weights. In addition, we also tested the
simpler pre-training for a binary classification following Li
et al. (2021) but using cutout instead of cutpaste. Compared
with contrastive learning, no data augmentation is applied,
and Resnet-18 is pre-trained to determine whether an image
was applied with cutout or not. The detection accuracy is bet-
ter than contrastive learning without distribution augmenta-
tion but worse than when rotation and flip or cutout is applied
as a distribution augmentation.

In Fig. 2, the features of image data extracted using the
contrastive learning pre-trained network are visualized using
t-distributed stochastic neighbor embedding (t-SNE). The
images of granules with burn marks and the images ap-
plied with cutout masks share similar statistics in the two-
dimensional space. Some of both kinds of data lie in the clus-
ter of normal granules, and the rest form subclusters close to
each other. Such statistics imply that the images applied with
cutout masks do not completely mimic the appearance of the
granules with real burn marks, yet the burn marks and cutout
masks share similar semantic features in feature space. As a
result, applying cutout as the distribution augmentation dur-
ing contrastive learning introduces knowledge of burn marks
to the model initialization without access to images of gran-
ules with real burn marks.

Variants of cutout masks. We investigate the impact of dif-
ferent cutout mask variations, considering factors such as
size, orientation, shape or grayscale. The results of this study
are presented in Table 2. In the case of a fixed mask size, the
mask is chosen as either 2 % or 80 % of the image size with
50 % probability each, which is also the minimal or maxi-
mal size in the default setting. These two values are chosen
based on the sizes of real burn marks. All these variants lead
to slightly worse detection performance compared to the de-
fault setting. Figure 3 shows the features of images extracted
after using fixed-size cutout masks for contrastive learning.
The subclusters of granules with cutout masks and granules
with burn marks on the right are more concentrated and less
overlapped, implying a smaller similarity between them. Fig-
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Figure 2. Visualization of representations pre-trained with
distribution-augmented contrastive learning.

Table 2. Influence of the different cutout masks. The bold font
means the methodology achieves the best results of all.

Cutout mask AUROC (%)

Default (2 %–80 %) 90.7
Fixed size (2 %/80 %) 87.3
Default + rotation 89.3
Circle 88.0
Grayscale 64 88.3
Grayscale 128 88.1
Grayscale 256 90.4

ures 4, 5 and 6 show results of applying cutout masks with
different grayscales. In Figs. 4 and 6, in comparison to the
default mask with a grayscale value of 0, the subclusters of
images applied with gray or white cutout masks are further
from images containing real burn marks. In Fig. 5, the im-
ages applied with cutout masks are almost inseparable from
the main cluster of normal granules without burn marks, as
in this scenario the cutout masks closely resemble the im-
age background. This result illustrates in another aspect the
similarity between black cutout masks and real burn marks.

Lastly, we tested the classification accuracy of the trained
model on 200 images of real granules, while 37 of them have
burn marks. The confusion matrix of the result is shown in
Table 3. The results in parentheses are achieved by a model
that applies the default rotation as the distribution augmenta-
tion during training, while those outside the parentheses are
achieved by a model that applies the cutout as the distribution
augmentation. The F1 score increases from 0.9268 to 0.9606.

Due to the limited number of real test data, we fur-
ther tested both models on an extra synthetic test dataset
which contains 10 000 images, while 1850 of them have burn
marks. The proportion of images containing burn marks is

Figure 3. Visualization of representations after pre-training using a
cutout mask of a fixed size.

Figure 4. Visualization of representations pre-trained using a
cutout mask of grayscale 64.

the same as that of the real test data. We use the Fréchet in-
ception distance (FID) for measuring the similarity between
the real test data and the synthetic test data. A lower FID
score represents a higher similarity. The FID score between
the real data and our synthetic data is 74.8, which is low
enough compared to another recent result of industrial im-
age generation (Zhong et al., 2023), and hence the similarity
between the real test data and the synthetic data can be val-
idated. We tested the same models with the corresponding
thresholds again on the extra synthetic test data and the re-
sults shown in Table 4. Compared to the results on real test
data, similar improvements in the true positive rate and the
true negative rate can be observed. Meanwhile, both the false
negative rate and the false negative rate drop when applying
cutout instead of the default rotation as a distribution aug-
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Figure 5. Visualization of representations pre-trained using a
cutout mask of grayscale 128.

Figure 6. Visualization of representations pre-trained using a
cutout mask of grayscale 255.

mentation for contrastive learning. The F1 score increases
from 0.9292 to 0.9643. This improvement is consistent with
that from the real test data. Besides, the overall performance
on the synthetic test data is better than that on real test data,
which is reasonable since the domain gap between the syn-
thetic test data and the synthetic data used for training is
smaller compared to the real data.

4 Conclusion and outlook

In this study, we have demonstrated the efficacy of employ-
ing the data augmentation strategy cutout in combination
with a contrastive learning-based methodology to enhance
the accuracy of burn mark detection in plastic granules. The
experimental results highlight the substantial improvement

Table 3. Confusion matrix of the classification result on real im-
ages.

Actual

normal defect

Predicted
normal 159 (152) 9 (13)
defect 4 (11) 28 (24)

Table 4. Confusion matrix of the classification result on synthetic
test images.

Actual

normal defect

Predicted
normal 8011 (7623) 454 (634)
defect 139 (527) 1396 (1216)

achieved through this approach, showcasing its potential to
refine anomaly detection processes in industrial settings. The
utilization of synthetic data generated by blender-facilitated
efficient training addressed the challenge of limited well-
labeled real-world data. The augmentation technique proved
particularly effective at enhancing the model’s sensitivity in
detecting burn marks, contributing to a more robust and ac-
curate detection system. Furthermore, the improvements of
burn mark detection accuracy brought by introducing cutout
reveals the potential of defect simulation using simple aug-
mentation without extensive prior knowledge of the visual
characteristics of the defect type. For example, for those
granules with a blurred surface (Peršak et al., 2021), which
are also referred to as cloudy plastic granules, a partial image
blurring can be similarly applied as a distribution augmenta-
tion method for contrastive learning. This is however outside
the scope of this work.

While the results are promising, certain limitations should
be acknowledged. The study focused on a specific defect
type, i.e., burn marks, and utilized synthetic data representing
a simplified scenario. Future research should encompass a
broader spectrum of defect types and incorporate real-world
data to create a more comprehensive and diverse dataset. Ad-
ditionally, investigating the applicability of this methodology
to a wider array of industrial contexts and optimizing the size
and shape of the cutout masks for various defect types would
enhance its versatility and practicality. Further efforts should
be directed towards addressing the challenges posed by over-
lapping defect features and exploring ensemble models to
boost detection accuracy and reliability in complex industrial
environments.

Code and data availability. The synthetic dataset can be down-
loaded using the following link: https://drive.google.com/drive/
folders/190ywN1Yi-C18Nmji0ZoOmZuyKtToF8zy (Jin, 2023).
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