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Abstract. Selecting an appropriate model for industrial condition monitoring is challenging due to various fac-
tors. Typically, industrial datasets are small and lack statistical independence because experimental coverage of
all possible operational variations is costly and sometimes practically impossible. Consequently, the resulting
domain shifts pose a significant challenge. Although deep learning (DL) methods have frequently been regarded
as the primary and optimal choice in many applications, they often lack major success factors in condition mon-
itoring tasks. In this study, we benchmark the robustness of typical DL architectures against classical feature
extraction and selection followed by classification (FESC) methods under domain shifts commonly encountered
in industrial condition monitoring. Both DL and FESC methods are employed within an automated machine
learning framework. We benchmarked these methods on seven publicly available datasets, and to simulate do-
main shifts, we employed leave-one-group-out validation on those datasets. Our experiments demonstrate high
accuracy across all tested models for random K-fold cross-validation. However, the overall performance signif-
icantly decreases when faced with domain shifts, such as transferring the trained model from one machine to
another. In four out of seven datasets, FESC methods showed better results in the presence of domain shifts.
Furthermore, we also show that FESC methods are easier to interpret than DL methods. Finally, our results sug-
gest that deep neural networks are not universally preferred over classical, low-capacity models for such tasks,
as typically only a limited number of features from the input signal are needed.

1 Introduction

In industrial environments, mechanical systems undergo
wear and tear, which can lead to faults and breakdowns ne-
cessitating maintenance. Maintenance plays a vital role in
ensuring optimal functionality and prolonging the lifespan
of these systems. Reactive maintenance, the traditional ap-
proach, involves responding to faults and failures as they
arise, often resulting in prolonged periods of downtime. Con-
versely, preventive maintenance utilizes historical data to
perform regular maintenance, aiming to prevent unforeseen
failures; however, it includes unnecessary interruptions and
services (Gertsbakh, 2000).

To overcome the limitations of these approaches, predic-
tive maintenance and automated condition monitoring have
emerged as a promising alternative. By applying advanced

machine learning (ML) techniques, predictive maintenance
analyzes data from various sensors and sources to detect pat-
terns and trends that can be utilized for predicting future fail-
ures. Predictive maintenance minimizes downtime by iden-
tifying potential issues in advance or early stages, leading
to substantial cost savings and improved efficiency (Mobley,
2002).

Industrial condition monitoring and predictive mainte-
nance rely on the utilization of diverse sensors, such as pres-
sure, vibration, and temperature sensors, to detect or predict
approaching faults in industrial systems. Unlike computer vi-
sion tasks that involve extracting complex features from raw
data (Olah et al., 2017), condition monitoring tasks typically
rely on simpler statistical measures and a limited set of fea-
tures (Schneider et al., 2018a). Traditionally, effectively deal-
ing with industrial data requires domain experts’ expertise
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and a feature engineering process to extract dependable fea-
tures (Avci et al., 2021).

In recent years, there has been a noticeable shift in the field
of condition monitoring, similar to the primary applications
of ML, towards employing deep neural networks (DNNs) for
direct analysis of raw data, bypassing the traditional feature
engineering process (Zhao et al., 2019). Although this ap-
proach has shown promising results, it is not without its chal-
lenges. The inherent complexity of DNN models makes op-
timization of their hyperparameters (HPs) difficult, present-
ing a significant challenge. Additionally, the interpretability
of DNN decisions remains an unresolved issue (Selvaraju
et al., 2020). Alternatively, the adoption of automated ma-
chine learning (AutoML) techniques offers a viable solution.
AutoML is an advanced methodology that automates vari-
ous aspects of ML, including feature engineering, model se-
lection, and HP optimization. Its primary goal is to enhance
the accessibility of ML for non-experts by reducing the need
for manual intervention in model development (Truong et al.,
2019). AutoML algorithms can automatically explore a pre-
defined set of models and associated HPs or even perform
neural architecture searches to discover novel model archi-
tectures that deliver optimal performance for a given task
(He et al., 2021). By leveraging these algorithms, users can
smooth the ML process and obtain high-performing models
without extensive manual experimentation.

In supervised ML, a common assumption is that both the
training data and test data are drawn independently and iden-
tically from the same distribution. However, this assump-
tion may not always hold in practical scenarios like condi-
tion monitoring and predictive maintenance, where the pres-
ence of various operational conditions can cause covariate
shifts in the data distribution. These operating conditions,
such as temperature variations, changes in rotational speed,
load variations, pressure fluctuations, or substituting the tar-
get machine with another, can have a significant impact on
the performance and generalization of ML models (Goodarzi
et al., 2022). As a result, it becomes crucial to address do-
main shift challenges to ensure the effectiveness and relia-
bility of the predictive models in real-world critical applica-
tions.

In this research, an experimental approach is employed
to compare the performance of AutoML methods for con-
dition monitoring and predictive maintenance applications.
Our AutoML framework includes classical feature extrac-
tion, feature selection, and classification (FESC) methods,
as well as DNN solutions with automatic HP optimiza-
tion. While existing studies have focused on comparing and
benchmarking ML methods for fault detection in time series
signals, our work distinguishes itself by taking a more com-
prehensive approach, utilizing real-world practical datasets
and considering domain shift problems. Pandarakone et al.
(2019) examined the effectiveness of classical ML classi-
fiers and convolutional neural networks (ConvNets) in de-
tecting bearing faults in induction motors. Buckley et al.

(2022) conducted experiments on benchmark feature extrac-
tion (FE) and feature selection (FS) methods for structural
health monitoring using two datasets. Fawaz et al. (2019) ex-
plored various methods, including deep learning models, for
time series analysis on UCR (University of California, River-
side) and UEA (University of East Anglia) (Dau et al., 2018)
datasets. Data augmentation (Wen et al., 2021) is a technique
used to expand the training data and introduce variation to
the dataset, enhancing the model’s robustness against poten-
tial changes in test data. Implementing data augmentation re-
quires domain knowledge to ensure that the transformations
are meaningful and do not alter the labels. In industrial appli-
cations, data are often complex and challenging to interpret,
requiring expert input to tailor appropriate and effective aug-
mentation strategies for each specific dataset and use case.

In this study, we carefully selected diverse datasets from
the industrial condition monitoring field, varying in both size
and use case. Specifically, they are sourced from sensors
in a time series format, consisting of one-dimensional data.
Moreover, different validation strategies are employed in our
study. Through the comparison of these strategies, we aim to
examine the impact of domain shift (Goodarzi et al., 2022)
on the performance of various ML methods.

This paper contributes by comprehensively evaluating var-
ious ML methods using openly accessible data and address-
ing domain shift issues. We assess the performance of these
methods across different datasets and discuss their relative
strengths and limitations in condition monitoring and predic-
tive maintenance use cases. In this work, HP optimization
and model selection are integral parts of our AutoML frame-
work in realistic real-world application scenarios.

2 Datasets and validation scenarios

In this study, we analyzed various publicly available datasets
in condition monitoring and predictive maintenance. Our se-
lection included datasets of different sizes and numbers of
observations, ranging from simple to large-scale use cases.
The primary focus of this article is on supervised learn-
ing tasks with predetermined target values. Although certain
tasks may involve regression, our primary focus in this study
is on the classification format of these tasks. Furthermore, to
minimize additional HPs and complexities associated with
multi-modality, only a single sensor was selected from each
multi-sensor dataset for the initial analysis. Extending the
methods to fully utilize multi-sensor datasets is a direction
we plan to explore in future work.

2.1 Validation scenarios

Conventional random K-fold cross-validation typically as-
sumes that both training and validation subsets are drawn
from the same distribution. To highlight potential distribution
shifts within these datasets, we employed leave-one-group-
out (LOGO) cross-validation tailored to each dataset’s spec-
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ifications or working conditions. Utilizing LOGO validation
under carefully chosen cross-influence conditions provides
a valuable measure for assessing the model’s ability to gen-
eralize to unseen domains (Gulrajani and Lopez-Paz, 2020).
Condition monitoring datasets are typically the result of care-
fully designed experiments that control working conditions
and can be leveraged for selecting validation groups. In ad-
dition to prior knowledge about the possible underlying data
distributions used to define these groups, several methods ex-
ist to discover meaningful data subsets automatically (Singla
et al., 2021; d’Eon et al., 2022; Atanov et al., 2022). Auto-
mated approaches utilize learned models to identify slices of
data where model performance is suboptimal.

We compared the results of expert-specified LOGO cross-
validation with random K-fold cross-validation to highlight
the challenges that domain shift poses for model selection. To
maintain consistency in the experiments, we used stratified
resampling and ensured that the number of folds in the K-
fold scenario matched the number of distinct groups in the
LOGO validation scenario for a fair comparison. Below is an
overview of the datasets employed in this study.

2.2 The Case Western Reserve University (CWRU)
bearings

The CWRU dataset (CWRU Bearing Data Center, 2019) is
widely recognized in the field of predictive maintenance and
has been extensively utilized in numerous studies. The pri-
mary objective of this dataset is to perform a binary classifi-
cation task, specifically distinguishing between various fault
types and healthy devices. The classes in the dataset include
“healthy”,” “inner ring” faults, “outer ring” faults, and “ball”
faults.

The data comprise vibration signals obtained from bear-
ings experiencing different fault types and varying load con-
ditions. The recordings are specifically collected for differ-
ent motor loads, namely 0, 1, 2, and 3 HPs that are used for
LOGO validation. To ensure consistency, the recordings in
the dataset are sampled at a rate of 12 kHz, and the data are
segmented into non-overlapping slices of 1 k length.

2.3 The ZeMA hydraulic system (HS)

The HS dataset (Schneider et al., 2018b) comprises record-
ings from a test bed equipped with multiple sensors (17) cap-
turing data under various fault conditions. The target variable
in this dataset is the accumulator pre-charge pressure. For
LOGO validation, the cooler performance at 3 %, 20 %, and
100 % is regarded as the crucial control variable.

In this dataset, the analysis focuses solely on recordings
from the first pressure sensor (PS1). Two system variables,
namely the valve state and the accumulator (Acm) state, are
selected as the target variables. As a result, the dataset is split
into two versions for this study, namely HS (valve) and HS
(Acm).

2.4 ZeMA electromechanical axis (EA)

The dataset (Klein, 2018) consists of data collected from 11
sensors during the lifetime measurement of the axis. The
electromechanical axis follows a fixed working cycle of 2.8 s,
including a forward stroke, waiting time, and a return stroke.
For dataset creation, 1 s of the return stroke from every 100th
working cycle was selected. In this dataset, the target variable
is divided into five categories, ranging from 1 representing a
new device to 5 representing a near-failure device. This clas-
sification task is utilized for lifetime estimation.

The dataset specifically utilizes the microphone as the in-
put sensor, with a sampling rate of 2 kHz. In the LOGO val-
idation scenario, the performance of the models is evaluated
using four different devices. This approach helps assess the
generalizability and robustness of the models across various
devices.

2.5 Open guided wave (OGW)

The OGW dataset (Moll et al., 2019a) consists of time series
signals that capture guided waves recorded at various temper-
ature levels, ranging from 20 to 60 °C with 0.5 °C increments.
The signals were collected using 12 ultrasonic transducers ar-
ranged in a sender–receiver configuration. These transducers
were attached to a carbon-fiber-reinforced polymer (CFRP)
plate, which had a detachable aluminum mass positioned at
four different locations to simulate delamination damage.

To generate the signals, a five-cycle Hann-windowed sine
wave was used as the source signal, with frequencies varying
from 40 to 260 kHz in 20 kHz increments. The measurements
were initially conducted on an intact CFRP plate at different
temperature levels. Subsequently, the measurements were re-
peated with simulated damage at each of the four positions,
along with measurements of the intact plate. These four lo-
cations of simulated damage were used for the LOGO val-
idation scenario. The objective of this use case is to detect
whether the CFRP plate is damaged or intact, thereby pre-
senting a binary classification task.

2.6 Paderborn University (PU) bearing

The PU dataset (Lessmeier et al., 2016) is a well-known and
frequently utilized dataset in the field of bearing analysis. It
comprises recordings of high-frequency vibrations and motor
currents from a total of 32 bearings, consisting of 26 faulty
bearings and 6 healthy bearings.

In addition to the vibration and current data, the dataset
provides measurements of speed, load, torque, and temper-
ature, offering comprehensive information for analysis. The
signals were collected under four different working condi-
tions, each representing a distinct operating scenario. These
working conditions are used for the LOGO cross-validation
strategy in this study.
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Table 1. Overview of study scenarios.

Num. Signal Num. Num.
Dataset observations size classes domains

CWRU 1652 1024 4 4
HS (Acm) 1449 6000 4 3
HS (valve) 1449 6000 4 3
EA 11 666 2000 5 4
OGW 684 13 108 2 4
PU 1000 4096 2 4
Naph 1569 160 6 3

2.7 Naphthalene concentration (Naph)

The Naph dataset (Bastuck et al., 2015) consists of record-
ings from a gas sensor operating at different temperatures.
The sensor signals were sampled at a rate of 4 Hz. The dataset
focuses on the detection and analysis of naphthalene concen-
trations in the presence of ethanol as a background or inter-
fering gas. Indeed, despite the dataset not being originally
from the condition monitoring domain, it exhibits similari-
ties with datasets used in condition monitoring, particularly
in terms of signal shape and cross-influence variables. These
similarities make it feasible to employ a meaningful LOGO
validation approach for the study.

The dataset includes measurements of six different con-
centrations of naphthalene. These concentrations were re-
peated for three levels of ethanol, representing different inter-
ference scenarios. The dataset is designed to evaluate the sen-
sor’s performance in detecting and quantifying naphthalene
concentrations accurately in the presence of varying ethanol
levels. To evaluate the performance of algorithms and mod-
els, the dataset employs the LOGO cross-validation strategy
using the ethanol concentrations as distinct groups.

Table 1 provides a summary of the dataset’s features. The
datasets share common characteristics, typically consisting
of fewer than a few thousand observations, and the num-
ber of classes is relatively limited, with most having fewer
than six classes. However, the data size can vary significantly,
ranging from 100 to 10 000 data points. To maintain consis-
tency across all scenarios, we used balanced versions of the
datasets, ensuring that the number of observations from each
class is approximately equal.

3 Methods

3.1 FESC methods

The training, evaluation, and model selection of the FESC
methods are performed using a MATLAB-based (The Math-
Works Inc., 2022) AutoML framework (Schneider et al.,
2018a). The framework employs an exhaustive search strat-
egy to determine the best combination of FE, FS, and classi-
fication methods. The methods are listed in Table 2.

The automated FESC method used in this study has
demonstrated impressive performance, as documented in
multiple previous studies (Schneider et al., 2018a; Goodarzi
et al., 2023; Schnur et al., 2022). Its usage in this investiga-
tion is motivated not only by its performance but also by its
focus on the interpretability and explainability of the models
(Goodarzi et al., 2022). In industrial ML applications, model
interpretability is a vital factor in ensuring the acceptance
and validation of the model by domain experts (Hong et al.,
2020).

In our FESC framework, a variety of FE methods are
employed to cover both the time and frequency domains.
Specifically, three methods, adaptive linear approximation
(ALA) (Olszewski et al., 2001), principal component anal-
ysis (PCA) (Wold et al., 1987), and statistical moment (Stat-
Mom) (Schneider et al., 2018a), are used to extract features
from the time domain, each using distinct approaches to
tackle different use cases. In contrast, the best Fourier coef-
ficient (BFC) (Mörchen, 2003) focuses on the frequency do-
main for FE. The best Daubechies wavelet (BDW) (Mörchen,
2003) and statistical features in time and frequency domains
(TFEx) (Goodarzi et al., 2023) extract features from both
time and frequency domains. Additionally, a “no-feature ex-
traction” (NoFE) approach is employed, which essentially
does not alter the data. This approach can be beneficial when
working with data instances of limited duration or when the
raw data already contain the necessary information for clas-
sification. The collection of FE methods enables the explo-
ration of different feature representations for each classifi-
cation task. The complete evaluation using FESC involves
testing 70 (7 FE methods× 5 FS methods× 2 classification
algorithms) combinations of methods for the desired tasks.

3.2 Deep learning methods

To represent the deep learning methods, we explore four
neural network architectures: multi-layer perceptron (MLP)
(Haykin, 1994), ConvNet (Schmidhuber, 2015), residual net-
work (ResNet) (He et al., 2016), and WaveNet (Oord et al.,
2016). To achieve optimal network configurations, each ar-
chitecture is subjected to HP optimization. The specific pa-
rameters utilized for optimizing each network are outlined in
Table 3. Through this comprehensive evaluation, we aim to
identify the most suitable neural network architecture for the
given tasks.

Training neural networks can be computationally expen-
sive, especially when combined with the challenge of HP
optimization. To address this, early stopping and Bayesian
optimization are employed to reduce the computational load.
The maximum number of iterations for Bayesian optimiza-
tion is set to 100, with a maximum time limit of 3600 s. In
this study, we adopt Adam optimization as the optimization
method for all networks, while employing the cross-entropy
loss function for the training process.
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Table 2. FESC methods implemented in the AutoML framework.

Feature extraction methods

ALA Adaptive linear approximation (Olszewski et al., 2001)
BFC Best Fourier coefficient (Mörchen, 2003)
BDW Best Daubechies wavelet (Mörchen, 2003)
TFEx Statistical features in time and frequency domains (Goodarzi et al., 2023)
NoFE No feature extraction
PCA Principal component analysis (Wold et al., 1987)
StatMom Statistical moments (Schneider et al., 2018a)

Feature selection methods

Pearson Pearson correlation coefficient (Kirch, 2008)
RELIEFF RELIEFF (Kononenko et al., 1997)
RFESVM Recursive feature elimination support vector machines (Lin et al., 2012)
Spearman Spearman correlation coefficient (Spearman, 1904)
NoFS No feature selection

Classification methods

LDAMahal Linear discriminant analysis with Mahalanobis distance classification
SVM Support vector machine with a radial basis function kernel

Table 3. Ranges of hyperparameters for various DNN architectures.

Variable HPs Range Fixed HPs Value

MLP Num. neurons [10, 500] Dropout 40 %

ConvNet Num. neurons [100, 500]
Stride [1, 3]
Global pooling [false, true]

ResNet Stride 2nd stage [2, 8] Stride 1st stage 1
Stride 3rd stage [2, 8]
Global pooling [false, true]
Num. neurons [10, 500]

WaveNet Pooling size [2, 32] Dropout 40 %

Common HPs Num. filters [8, 128]
Num. FC/Conv/Res/Wave
blocks

[3, 10]

Filter size [2, 32]
Filter size, 1st layer [3, 128]
First stride [1, 50]

Training HPs Normalization [none, z score] Mini batch size 64
Normalization dimension [element, all] Max epoch 200

L2 regularization 0.0001
Initial learning rate 0.004
Learn rate drop factor 0.8
Training time limit 60 s
Learn rate schedule piecewise

Bayesian opt. Number of trials 100
Max optimization time 3000 s
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The training process is conducted using Nvidia RTX 5000
GPUs, with a maximum mini-batch size of 64 to accommo-
date hardware limitations.

3.2.1 Multi-layer perceptron

The architecture of the MLP network comprises multiple
blocks, with each block containing a sequence of layers in-
cluding a fully connected layer, a batch normalization layer,
and a ReLU (rectified linear unit) activation layer. Figure 1a
provides a visual representation of the structure of the MLP
network, showcasing the arrangement of its components
within each block. The MLP architecture has been widely
employed in various condition monitoring applications (Avci
et al., 2021; Fawaz et al., 2019), highlighting its relevance
and applicability in the field. In our MLP network design,
the quantity of neurons within each block adheres to the fol-
lowing mathematical expression:

N (i)=Nb/(2i− 1). (1)

In this equation, we use i to signify the block number,
while N denotes the count of neurons, and Nb stands for the
initial neuron count. It is important to note that the architec-
ture of the network is shaped by two fundamental factors:
the number of blocks and the initial neuron count, which is
represented as Nb.

To prevent overfitting, we include a dropout layer at the
end of the network, which randomly drops out some neu-
rons during training. Notably, the number of neurons in each
block decreases as the depth of the network increases. This
progressive shrinking of the number of neurons in deeper lay-
ers helps reduce the overall complexity of the model, mitigat-
ing the risk of overfitting and enhancing the generalization
performance.

3.2.2 Convolutional neural network

The ConvNet architecture in this study consists of multiple
convolutional blocks, each designed to extract features from
the input data (Fig. 1b). The first block has its own filter size
and stride, which are independent of the subsequent blocks.
However, all the remaining blocks share the same filter and
stride size. The number of filters within each convolutional
block is calculated by doubling the initial filter count for each
block, as indicated by the following equation:

Nf(i)=Nfb× 2i−1. (2)

In this equation, Nf represents the filter count in the Con-
vNet block, Nfb is the initial filter count, and i signifies the
ConvNet block number. Once the convolutional layers have
processed the input, we apply global pooling to aggregate the
output of each feature map into a single value. The purpose
of the fully connected layer is to perform classification based
on the learned features.

The ConvNet architecture is a popular choice for image
classification tasks due to its ability to capture spatial re-
lationships and extract relevant features from input images
through convolutional layers. It is also commonly used in
time series classification (Avci et al., 2021; Fawaz et al.,
2019; Kiranyaz et al., 2021). As the number of filters in each
block increases, the network learns more complex and ab-
stract features when going deeper. The global pooling layer
helps reduce the number of parameters in the fully connected
layer, making the model more efficient and reducing the risk
of overfitting. Furthermore, the inclusion of dropouts during
training helps to mitigate the overfitting problem by intro-
ducing randomness during training.

3.2.3 Residual network

Deep neural networks often face the challenge of the van-
ishing gradient problem, which can affect their performance.
To overcome this issue, the ResNet architecture introduces
skip connections. These connections enable gradients to by-
pass several intermediate layers. This method not only helps
to mitigate the vanishing gradient problem but also combines
features from different depths, resulting in effective detection
of intricate patterns.

The ResNet architecture consists of multiple blocks, each
containing convolutional layers, batch normalization, and
ReLU activation functions, as shown in Fig. 2. The first block
of the network has a larger filter and stride size. A larger filter
size helps in capturing abstract features and mitigating input
noise, while a larger stride size reduces the spatial dimen-
sions of the input by downsampling. The subsequent blocks
within the same stage use the same filter and stride sizes to
preserve the feature map dimensions in a deep network.

ResNet uses skip connections to help the network learn
residual mappings, which model the difference between the
desired output and the input. This residual is added back to
the layer’s input to obtain the final output, enabling the net-
work to learn deeper and more descriptive representations.
As demonstrated by Fawaz et al. (2019), this approach im-
proves performance on challenging tasks.

The number of filters (Nf) in each block is determined by
Eq. (2); however, in this case i is the stage number. The over-
all number of blocks (NBl) is divided into stages, with each
stage comprising a set number of blocks (Ns). This number
of blocks per stage, denoted as Ns, is calculated as follows:

Ns = floor(NBl/3). (3)

Here, we use the “floor” function to obtain the largest
whole number less than or equal to the result of dividing NBl
by 3.

3.2.4 WaveNet

The WaveNet architecture (Oord et al., 2016), originally de-
veloped by Google for audio generation, has demonstrated
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Figure 1. Structure of MLP (a) and ConvNet networks (b).

Figure 2. Structure of ResNet. (a) The main structure, (b) the residual block, and (c) the convolutional block.

its effectiveness in various domains including speech recog-
nition, music synthesis, and vibration signal classification
(Zhuang et al., 2019). WaveNet incorporates two distinctive
characteristics that contribute to its success.

One of the key strengths of WaveNet is its use of di-
lated convolutions. This technique allows the model to cap-
ture long-term dependencies in the data by applying convo-
lutional filters with exponentially increasing dilation factors.
By expanding its receptive field, WaveNet can effectively de-
tect patterns across a larger context. This is particularly use-
ful when dealing with long signals, as it helps the network to
capture important information from a wider range of data.

The second feature of WaveNet is the inclusion of skip
connections, which are similar to the ResNet architecture.
These skip connections facilitate the direct transmission of
information between layers, mitigating the loss of informa-
tion as the network grows deeper. By preserving and prop-

agating relevant information, skip connections enhance the
model’s ability to learn complex representations and facili-
tate the training of deep architectures.

The current study defines a parametric WaveNet architec-
ture by using essential parameters such as the number of
blocks, filter length, stride of the initial block, filter size,
number of filters in each subsequent block, and pooling size
of the final stage, as depicted in Fig. 3. The dilation factor
follows an exponential growth pattern, which is similar to
the one outlined in the original WaveNet paper.

3.3 Evaluation and model selection

We evaluated the performance of the models using accuracy
as the metric. Accuracy is a commonly used metric in clas-
sification tasks. It is calculated by dividing the number of
correct predictions by the total number of observations. It in-
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Figure 3. Structure of WaveNet. (a) The main structure, (b) the WaveNet block, and (c) the convolutional block.

dicates how well the models can classify the data correctly. It
is most useful when dealing with balanced datasets, as it pro-
vides an overall measure of the correctness of the model’s
predictions. Alternatively, accuracy (acc) can be expressed
as 1 minus the error rate (err). The error rate is the expected
value of the 0-1 loss across all observations, which is the loss
when a prediction does not match the true label.

err=
1
n

n∑
i=1

[
yi 6= f (xi)

]
(4)

acc= 1− err (5)

3.4 Occlusion map

Deep learning models are often considered black boxes due
to their lack of interpretability and explainability. However,
in situations where it is necessary to explain the model’s de-
cisions, saliency maps can be a helpful tool to provide an ex-
planation and cover this weakness. One such saliency method
is the occlusion map, which works by applying the occlusion
technique to different parts of the input and measuring the
network’s sensitivity to these changes. This helps to create
an attribution map that highlights the crucial regions of the
input that contribute to the decision-making process. It is im-
portant to note that the occlusion map is a local attribution
method, meaning that it explains the model’s decisions re-
garding a specific input and not the general function of the
model.

To effectively perform occlusion mapping, three key pa-
rameters need to be carefully defined. The first parameter is
the mask size, which determines the size of the sliding win-
dow used to occlude different regions of the input. The sec-
ond parameter is the stride size, which determines the step
size for sliding the mask over the input. Finally, the mask
value is the value that replaces the original input value dur-
ing the perturbation process.

Overall, occlusion maps provide an intuitive and easily in-
terpretable approach to understanding the decisions made by
neural networks where interpretability is important, such as
critical industrial tasks.

4 Results

This section presents the evaluation results of both FESC and
DNN methods across the tested datasets. The findings begin
with benchmark comparisons and proceed to an exploration
of feature selection and the interpretability of the methods.

The bar graph in Fig. 4 illustrates the accuracies of the
evaluated models, categorized into two validation strategies:
LOGO and K-fold. For the majority of use cases (five out of
seven), all models demonstrate near-perfect accuracy under
K-fold validation, making it challenging to distinguish per-
formance differences among them. Conversely, LOGO val-
idation reveals a different trend, with near-perfect accuracy
achieved by only a limited number of models in two specific
use cases: CWRU and HS (valve). FESC methods achieve the
highest accuracy in HS and OGW or rank as a close runner-
up with only a marginal difference in CWRU, PU, and Naph.
LOGO validation results on the EA dataset reveal the most
significant performance drop across all methods, with accu-
racies dropping to nearly random guessing. This underscores
the severe generalization challenges arising when models are
applied across different devices.

Figure 4 only shows the accuracy of the best FESC model;
however, our framework explores a variety of models for
each task. The box plots of cross-validation errors from the
models are shown in Fig. 5. Consistent with previous find-
ings, LOGO validation scenarios consistently result in higher
error rates compared to K-fold validation. Furthermore, the
errors in LOGO validation exhibit greater variability across
datasets, with the exception of CWRU and PU, where the
variations in both cases are comparable. Notably, for the HS
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Figure 4. Comparing the accuracy of various networks and FESC methods in both K-fold and LOGO scenarios.

(Acm and valve) datasets, the tested models achieved high
accuracies under LOGO validation of 85 % and 97 %, re-
spectively. However, there was a significant difference of ap-
proximately 60 % between the best and worst accuracies for
the datasets. Figure 5b provides a histogram of the selected
features of the top three FESC methods for each scenario,
revealing that 44 % of the top models use fewer than 20 fea-
tures of the input signal after feature selection.

The remainder of this section provides a comparative anal-
ysis of the interpretability of results obtained from FESC and
DNN methods. As a case study, we focus on the HS (valve)
dataset under LOGO validation. To evaluate the results, we
leverage expert knowledge of the task. Among the observed
signal variations, only the first drop in the signal (depicted in
Fig. 6) is attributed to the valve’s operation, whereas the sub-
sequent steps are related to the designed process. For com-
parison, we selected the models with the highest accuracy
from both method groups.

The FESC model achieving the highest accuracy com-
prises statistical moments as the FE method, Pearson correla-
tion as the feature selection FS method, and SVM as the clas-
sifier. During the classification step, only four features from
the extracted set were employed. By mapping these features
back to the raw signal, it becomes possible to identify the
critical regions of the signal, particularly the switching region
of the valve. A clear visualization of the effectiveness of two
selected features is presented in Fig. 6b, illustrating three dis-
tinct clusters corresponding to each class label. These clus-
ters represent the cooler performance in the LOGO validation
scenario.

Explaining the decisions made by DNNs poses a signifi-
cant challenge, leading to the development of various meth-
ods to interpret their predictions. One such method is the use
of occlusion maps, which visualize the critical regions in the
input data that influence model decisions. For the HS (valve)
dataset, the ConvNet model achieved the best results, and we
leveraged prior knowledge from classical methods to guide

the interpretation of its attributions. Since true labels for the
attributions were unavailable, a grid search was conducted to
optimize the HPs of the occlusion maps.

We imposed constraints on the parameters to enhance fea-
ture identification accuracy. Specifically, the mask size was
restricted to a maximum of 1000 to prevent the overlap of
two transactions of the signal. At the same time, a smaller
mask size was preferred to pinpoint critical features effec-
tively. The grid search spanned mask sizes and strides rang-
ing from 5 to 1000 to identify optimal parameter values.
Figure 7 presents the attribution maps of observations with
100 % cooling performance for three sample mask sizes and
four stride sizes. Although the peak position and magnitude
in the attribution maps vary with parameter selection, the net-
work consistently highlights a similar region in the input data
as the most influential feature.

5 Discussion

The findings of this study highlight the critical importance of
adopting realistic validation scenarios to ensure robust model
performance in the presence of domain shifts.

Figure 4 highlights the clear differences in accuracy be-
tween methods under the two validation strategies. Addi-
tionally, Fig. 5a illustrates that the variation in performance
between methods is significantly higher with LOGO valida-
tion. This underscores the challenges posed by domain shift,
a common issue in real-world scenarios where data distri-
butions often differ between training and application envi-
ronments. FESC methods consistently outperform other ap-
proaches on most tested datasets under LOGO validation,
striking an effective balance between model complexity and
generalization, as described by the bias–variance trade-off
(Hastie et al., 2009).

While no definitive winner emerges among the DNN ar-
chitectures based on Fig. 4, it is evident that for datasets
involving vibration signals (CWRU, PU), the MLP network
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Figure 5. (a) A visual comparison of box plots, depicting the errors of conventional models from the FESC methods in both LOGO and
K-fold validation scenarios. For each task, the model with the highest cross-validation accuracy is indicated by the circles. (b) Histogram
depicting the distribution of the number of selected features for the top three FESC models.

Figure 6. (a) Four representative observations from the HS (valve) dataset. (b) Key features identified by the best model as the most
important.

consistently exhibited the lowest overall mean accuracy. This
highlights its limitations in effectively capturing the underly-
ing patterns in dynamic data. In contrast, ConvNet achieved
the highest overall accuracy among the tested networks. No-
tably, other studies have shown that ResNet, a more advanced
ConvNet architecture, outperforms simpler ConvNet models
as the number of layers increases, enhancing its ability to
learn complex patterns. The observed differences in perfor-
mance may also be influenced by the hyperparameter opti-
mization process and its specific variations across these net-
works. Among all architectures, WaveNet demonstrated su-
perior performance for the two vibration datasets, aligning
with its design strengths, such as handling long input signals
and utilizing receptive fields of varying sizes. These features
make WaveNet particularly effective in extracting meaning-
ful characteristics from vibration data.

In most supervised machine learning tasks related to con-
dition monitoring, the number of target classes is typically

limited and often reducible to just two: healthy and faulty
cases. This stands in obvious contrast to datasets like Au-
dioSet (Gemmeke et al., 2017), which contains over 500
classes, or the well-known ImageNet (Deng et al., 2009),
with 1000 classes. Given the constrained number of obser-
vations, target classes, and required features, low-capacity
models are generally sufficient to achieve effective perfor-
mance. This phenomenon is evident in Fig. 5b, where 44 %
of the top-performing models achieve high accuracy using
fewer than 20 features from the input signal, aligning with the
well-documented curse of dimensionality (Bellman, 1961).

As mentioned in the Results section, the FESC methods of
the AutoML framework offer a significant advantage in terms
of interpretability. These methods are structured as separate
blocks, each serving specific functions, which facilitates the
identification of crucial features. This interpretability is par-
ticularly enhanced when a limited number of features are
used, and linear methods are employed. However, precisely
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Figure 7. Four different combinations of mask size and stride settings for generating occlusion maps.

identifying the specific features within that highlighted re-
gion remains a challenge and requires further investigation.

In the remainder of this section, we explore additional
differences between DNN models and the FESC approach,
starting with HP optimization. HP optimization is a critical
yet resource-intensive phase in model development, demand-
ing significant time and computational resources. As outlined
in Sect. 2, we meticulously optimized the HPs of the neural
networks over an extensive range of parameters. In contrast,
the FESC methods did not undergo explicit HP optimization;
the only parameter adjusted during cross-validation was the
optimal number of features, determined after feature selec-
tion. Consistent with the presented results, this highlights the
substantial number of HPs that must be addressed when em-
ploying DNNs, emphasizing the complexity and computa-
tional demands of these models compared to the FESC ap-
proach.

A final consideration in comparing DNNs and FESC meth-
ods lies in their scalability with respect to the number of ob-
servations and classes. Certain FESC methods, such as one-
vs.-one SVM, face scalability challenges, as their training
time grows quadratically with the number of classes due to
the need for N (N−1)/2 binary classifiers for N classes. Con-
versely, DNNs, with their reliance on backpropagation and
specialized frameworks optimized for high-end GPUs, can
efficiently manage large datasets with numerous observations

and classes. However, in the context of condition monitoring
applications – characterized by limited observations, target
classes, and necessary features – these scalability advantages
of DNNs are less critical. Instead, FESC methods remain vi-
able and computationally efficient, emphasizing their contin-
ued relevance in such domains.

Although the primary focus of this study is on industrial
data and condition monitoring tasks, the methods presented
are applicable to other domains with similar data types. Ex-
amples include human activity recognition using vibrational
and accelerometer sensors (Reyes-Ortiz et al., 2015).

6 Conclusions

In conclusion, this research provides a comprehensive study
comparing AutoML approaches utilizing FESC methods and
DNN models for industrial condition monitoring tasks.

The experimental results reveal several significant in-
sights. Firstly, random K-fold validation demonstrates high
accuracy across most models and datasets in this study.
However, the LOGO validation scenario typically results
in significantly lower accuracies, providing more realistic
and robust evaluation metrics. Notably, under LOGO vali-
dation, FESC methods consistently either achieved the high-
est accuracy or closely competed as the runner-up across all
datasets, with only minor differences observed. Additionally,
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the comparison between FESC methods and DNNs high-
lights their respective strengths. FESC methods offer better
interpretability and facilitate the identification of important
features influencing decisions. In contrast, while DNNs ex-
cel in leveraging complex patterns in data, their lack of in-
terpretability makes understanding the rationale behind their
predictions more challenging.

The experiments also highlighted the significance of FS
in condition monitoring tasks. In many tested tasks and sce-
narios, the best results were achieved using fewer than 20
features extracted from the input signal. This phenomenon
can be attributed to the limited number of classes typically
encountered in condition monitoring tasks, where the focus
is often on distinguishing between healthy and faulty cases.
Consequently, low-capacity models were found to be usually
sufficient for these tasks.

The study encountered certain limitations. None of the
condition monitoring datasets were specifically designed to
address the domain shift problem. While we aimed to high-
light this issue using existing datasets, the degree of shifts in-
troduced by the LOGO validation remains ambiguous. Con-
sequently, the decline in accuracies varies across different
scenarios. Furthermore, this study did not incorporate do-
main adaptation methods to address domain shift challenges.
Techniques such as transfer learning and online learning
can effectively adapt ML models to new working environ-
ments. However, these approaches were considered outside
the scope of this study. Our analysis was conducted under
the assumption that data from the target domain are inacces-
sible, a scenario that differs from the prerequisites of transfer
learning and online learning methods.

The contributions of this study provide valuable insights
into advancing the field, enhancing the effectiveness of ML
techniques, and offering guidance in selecting the most ap-
propriate models for practical industrial applications.
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