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Abstract. This study considers the optimal distribution of strain amplitude in a piezoelectric vibrating energy
harvester (PVEH) that maximizes the harvested energy. In many previous studies, it was tacitly assumed that
a uniform distribution of axial strain in the piezoelectric layer ensures that the harvested energy is maximal.
Though this assumption is intuitive, it was not supported by analysis. In this work, we derive and present a formal
analytic proof confirming that, for a given amount of energy in the vibrating structure, a uniform distribution of
strain in the piezoelectric layer ensures that the harvested energy is maximal.

1 Introduction

Piezoelectric vibrating energy harvester (PVEH) devices
have been studied for over 2 decades (Erturk and Inman,
2008, 2009, 2011). These devices are becoming increasingly
relevant as potential power sources for autonomous sensors
and internet of things (IoT) applications. The most preva-
lent PVEHs are constructed from a piezoelectric unimorph,
in which an elastic cantilever is coated with a thin layer of
piezoelectric material. This piezoelectric layer is sandwiched
between a top electrode and a bottom electrode. When the
piezoelectric unimorph is subjected to base excitations at its
natural frequency, the amplitude of vibrations increases. The
periodic modulation of curvature in the cantilever results in
periodic modulation of axial strain in the piezoelectric layer,
which can be used to harvest electric energy. The amount
of energy per vibration cycle that can be harvested depends
on the electric load between the electrodes (e.g., resistor for
direct heating and diode bridge for charging a battery) and
the frequency of vibrations (Erturk and Inman, 2008, 2009,
2011; Karami et al., 2011).

For example, if the electrodes are disconnected (or con-
nected by an infinite resistance), no charge will be transferred
between the electrodes, and a maximal potential difference
will develop between them. In this case, obviously, no power
will be harvested. If, in contrast, the electrodes are shorted
(i.e., connected by a resistor of zero resistance), a maximal
amount of charge will be transferred between the electrodes,

but there will be no voltage difference between them. Clearly,
in this case as well, no power will be harvested.

The maximal amount of energy that can be harvested is
proportional to the charge accumulated when the electrodes
are shorted and the maximal voltage induced when the elec-
trodes are disconnected (Du et al., 2017; Lustig and Elata,
2020). In general, assuming the structure vibrates at its fun-
damental mode, the accumulated charge is maximal when
the structure is completely covered by the piezoelectric layer
and electrodes. However, for disconnected electrodes, a par-
tial coverage of the piezoelectric layer and electrode may be
necessary to achieve the maximal voltage. In many PVEH
devices, the amplitude of curvature in the structure is not uni-
form. In cantilever structures the maximal curvature occurs
in vicinity of the clamped edge. Accordingly, an electrode
that covers that region of the cantilever ensures that voltage
is maximal. Extending the electrode towards the free edge of
the cantilever will result in a reduction in voltage amplitude.
It follows that there is an optimal coverage of electrodes that
maximizes the harvested energy (e.g., Du et al., 2017).

In previous studies, it was identified that an optimal plan-
form of the unimorph cantilever may result in a uniform am-
plitude of axial strain in the piezoelectric layer. In this case,
the voltage difference between disconnected electrodes is in-
dependent of the electrode coverage, and it follows that a
full coverage of electrode maximizes the harvested energy.
This has been demonstrated in PVEH devices which include
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a dominant edge block. Some investigations used simulations
to conclude that in this case, a trapezoidal planform of the
PVEH is optimal, while others used experiments to demon-
strate the same conclusion (Baker et al., 2005; Benasciutti
et al., 2010; Chen et al., 2009; Dietl and Garcia, 2010; Gal-
lina and Benasciutti, 2013; Jia and Seshia, 2016; Lee et al.,
2009; Miller et al., 2011). In a recent publication, we pre-
sented a new model which confirms why a trapezoidal plan-
form is optimal and which could be used for design. For a
given edge block and excitation frequency, the model explic-
itly provides the geometry of the PVEH with no need for
simulations (Salman et al., 2024a).

In the case of PVEH unimorphs that do not include a dom-
inant edge block, a trapezoidal planform is not optimal. For
this case, it has been shown that a tapered planform defined
by Bessel functions ensures that the axial strain in the PVEH
is uniform (Salman et al., 2024c, 2025).

In all the abovementioned investigations, it was tacitly as-
sumed that ensuring a uniform distribution of strain ampli-
tude in the piezoelectric layer ensures that the harvested en-
ergy is maximized. This seems to be intuitively sensible, but
it appears that no formal proof of this has ever been provided.

The aim of the present study is to provide a formal proof
and show that for a given amount of vibration energy in a
PVEH, a uniform distribution of axial strain amplitude en-
sures that the harvested energy is maximal.

2 Analysis

Figure 1 presents a schematic illustration of a piezoelectric
cantilever unimorph that is constructed from an elastic sub-
strate of thickness & coated with a thin piezoelectric layer
of thickness hpe (hpe < h). The beam length is L, and the
width b(x) may be non-uniform. The elastic substrate serves
as a bottom electrode for the piezoelectric layer, and a thin
electrode covers the entire top surface of the piezoelectric
layer. In this study, we consider a piezoelectric material of the
4 mm point group (e.g., aluminium nitride, AIN, and tetrago-
nal lead zirconite titanate, PZT) (Ikeda, 1996; Uchino, 1997),
with the poling pointing in the z direction. When the uni-
morph is subjected to base excitation, it can be used as a
PVEH device.

This study only considers synchronous vibrations, in
which the deflection (i.e., motion in the z axis) can be de-
scribed as the product of a spatial mode w(x) (where w(x)
is a monotonically increasing function of x) and a single
harmonic function of time sin(wt). It is tacitly assumed that
the deflection mode is a cylindrical bending such that at any
cross section x, the deflection w(x) is uniform (i.e., not a
function of y or z).

The aim of this study is to determine the optimal distribu-
tion of strain amplitude that maximizes the energy harvested
by this device. To this end, the electric energy Ug that may
be harvested in one-half of a motion cycle is proportional to
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Figure 1. Schematic description of a PVEH unimorph cantilever.
The unimorph is constructed from an elastic beam of length L,
thickness 2 and non-uniform width b(x). The beam is coated with
a thin piezoelectric layer of thickness hpe that is covered by the top
electrode.

the product of the charge amplitude Qghort that is transferred
between the electrodes, if they are shorted (i.e., connected),
and the amplitude of voltage difference Vopen between the
electrodes, if they are open (i.e., disconnected), the follow-
ing applies (Du et al., 2017; Lustig and Elata, 2020):

1
Ug = 5 QShortVOpen- (D

In Voigt notation (Ikeda, 1996; Meitzler et al., 1988), the con-
stitutive equations of the material are given by
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Here 7; is the component of stress, S; is the component of
strain, C IE is the component of the stiffness matrix (stiffness
at constant electric field), Ey is the component of the electric
field, Dy, is the component of the electric displacement, ey; is
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the component of the piezoelectric coefficient matrix and &y,
is the component of the permittivity matrix under constant
strain (the indices i and j take the values of 1 through 6, and
the indices k and [ take the values of 1 through 3).

In the piezoelectric layer, the poling points in the z direc-
tion such that material directions 1, 2 and 3 are parallel to
the spatial axes x, y and z, respectively. According to the
Euler—Bernoulli beam theory and considering that the piezo-
electric layer is thin, we may deduce that within the piezo-
electric layer several terms vanish. Specifically, within this
layer, the shear strains and stresses are zero (i.e., S4 = S5 =
Se¢ =0 and Ty = T5 = Tg = 0), and the transverse stress 73 is
zero because the top surface of the unimorph is stress-free.
Furthermore, due to geometrical considerations, the com-
ponents of the electric field and electric displacement (i.e.,
flux) along the x and y axes vanish (i.e., E1 = E» =0 and
D1 = D, =0). Finally, for cylindrical bending, we may as-
sume that S =0, and that S; is not a function of y. Be-
cause the piezoelectric layer is thin, we may also consider
S1 within the piezoelectric layer to be independent of z (this
is known as the small-piezoelectricity assumption; Krommer,
2001; Tiersten, 1969) so that overall S1(x) is uniform in each
cross section, though it may vary along the beam.

With these conditions, Egs. (2) and (3) reduce to the fol-
lowing two coupled equations:

T3(x) =0 = CES1(x) + CES3(x) — e33 E, 4
D3(x) = €31 S1(x) + €3353(x) + £33 E3. ®)

Here the unknowns are S7, S3, E3 and D3. The axial strain
S1 is directly related to the deflection curvature, and its dis-
tribution is determined by the distributions of inertia and of
bending rigidity along the beam. In this investigation, we do
not wish to deduce the explicit functional form of S; from the
dynamics of the problem. Rather, we wish to find the optimal
distribution of S for energy harvesting. Later, if it is of any
interest, we may attempt to design a cantilever with specific
distributions of inertia and of bending rigidity such that in pe-
riodic vibrations at some frequency w, the distribution of the
axial strain §; will be equal to the optimal value we derived
(e.g., Salman et al., 2024a). So, practically, we need to solve
the two equations, Egs. (4) and (5), for the three variables
S3, E3 and D3. However, as we show next, the electrostatic
boundary conditions help by imposing constrains on the val-
ues of either E3 or D3, thus leaving only two unknowns to
be solved by the two equations, Egs. (4) and (5).

2.1 Shorted electrodes

When the electrodes are shorted, the electrostatic field in the
z axis vanishes. Substituting E3 =0 into Eq. (4) yields the
relation between S; and S5 for shorted electrodes:

__%
S3x) = ——2 5 1(0). ©)
C33
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Substituting this into Eq. (5) yields

33

CE
D3(x) = (e31 - 632,;3) $1(x). %)

The total charge Qshort accumulated on the top electrode is
given by

L
QShort = / D3(x)b(x)dx
x=0
L
e33C1E3
=\|e3 — 5 S1(x)b(x)dx. (8)
C33 J
x=0
2.2 Open electrodes
From Eq. (4), it follows that
CE CE
Ez=—1381(x0)+ 2 85x). 9)
€33 e33

Substituting this into Eq. (5) yields

€33

CE
D3(x) = (e3] +e§3—13> S1(x)

E
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+ | e a5 =2
€33

The total charge Qopen accumulated on the top electrode is
given by

L

QOpenz / D3(x)b(x)dx
x=0
L

Ch,
— S 13
=1 €31 +833£ / Sl(x)b(x)dx

x=0
L

E
S C33
+ (6‘33 + €33 e—) / S3(x)b(x)dx. (11)
33
x=0
However, when the electrodes are disconnected (i.e., open),
charge cannot migrate from one electrode to the other, and

therefore Qopen must be identically zero. Consequently, by
setting Qopen = 0, it follows from Eq. (11) that

L e S C71t3 L
31+ €33 e33
/ S3(x)b(x)dx = SV AEETAY / S1(x)b(x)dx. (12)
x=0 (6—’33 +e3, ﬁ)x:O

Since the electrostatic potential over each of the electrodes
is uniform, it follows that E3(x) is also uniform. Multiplying
Eqg. (4) by b(x) and integrating along the cantilever yields
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Substituting Eq. (12) into Eq. (13) yields
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It follows that the voltage Vopen is given by

CE
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3 The optimal axial strain that maximizes the
harvested energy

In the previous section, we derived expressions for the volt-
age generated for open electrodes Vopen and the charge trans-
ferred for shorted electrodes Qshort-

Substituting these expressions from Egs. (8) and (15) into
Eq. (1) yields

L 2
<f Sl(x)b(x)dx>
Up=a Y , (16)
f b(x)dx

x=0

where o is a scalar that depends on material parameters and
the thickness of the piezoelectric layer:

o=

E
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The mechanical elastic energy stored in the beam due to
bending is given by

L
UM:% / Ey1(x)k(x)?dx. (18)
x=0

Here «(x) is the bending curvature along the beam, EY is the
Young modulus and / = b(x)h3/12 is the second moment of
the cross section at location x.

The axial strain S7(x) in the piezoelectric layer, at a given
cross section x, is given by

h
S1(x) = —EK(X). (19)

Extracting « (x) from Eq. (19) and substituting it into Eq. (18)
yields

L
Un=p / S2(x)b(x)dx, (20)
=0

X

where B = Eyh/6.

Now, we wish to find the axial strain distribution function
S1(x), which will maximize the electrostatic energy Ug for
an arbitrary distribution of width b(x). This can be written in
the following variational notation:

J[S1(x)] = Ug, 21

where J is a functional of the argument S1(x). However, we
aim to find the maximal electrostatic energy for all possible
distributions of S7(x), which are associated with the same
specific mechanical elastic energy Uy;.

This can be done by considering a constrained Lagrangian
with a Lagrange multiplier A:

L [S1(x), A1 = J[S1(x)] — & - (Um[S1(x)] — Uyy) . (22)
which yields
L S1(x), Al = Ug — A - (Unm — Uyy) - (23)

Substituting Egs. (16) and (20) into Eq. (23) yields

. 2
< / Sl(x)b(x)dx>

L

[ b(x)dx

x=0
L

—r-|B [ S3)b(x)dx — Ugy |- (24)
x=0

HS1(x), Al =«
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Applying the first variation for the functional J, (Eq. 24)
with respect to S1(x) and A yields

L
8]1—2/

f S1(x"Hb(x")dx’

— =B S51v)
+20 beMﬂ
x'=0
L
bM®&MM—M-ﬂ/ﬁ@WWMJ%. (25)
x=0

Our goal is to identify the function form of S;(x) at which
the electrostatic energy reaches its maximum. Therefore, ac-
cording to Eq. (25), the variation must be equal to zero for
any 651(x) and any §A. This requires that each one of the ex-
pressions that appear in curly brackets vanish given that b(x)
cannot be zero.

It follows that

L
[ Si1(x)b(x")dx’
x'=0

Sl(x)— I 7 = const, (26)
f b(x")dx’
x'=0
Uy =8 / Slz(x)b(x)dx. 27

x=0

Equation (26) determines that S7(x) must be uniform and
thus independent of x. Therefore, it follows from the same
equation that

A=—. 28
5 (28)

Substituting the value of X into Eq. (26) yields the solution

for the axial strain S;(x) for the stationary (maximal) elec-
trostatic energy:

Un

S1(x) = (29)

—
B [ b(x)dx

x=0

4 Discussion and conclusion

In this study, we consider flexural vibrations in the transverse
direction of the PVEH unimorph beam and specifically have
the fundamental mode in mind. The same structure may of
course vibrate in higher modes of transverse flexural vibra-
tions as well as in other modes, such as lateral flexural vibra-
tions and torsional (i.e., twisting) vibrations. In recent pub-
lications (Salman et al., 2024a, 2025), we investigated the
optimal planform of a PVEH unimorph that maximizes the
harvested energy. In those studies, the electrode covers the
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entire top side of the unimorph. In these cases, higher modes
of transverse flexural vibrations are not optimal for harvest-
ing energy since the axial strain S; cannot be uniform (i.e.,
due to reversal of strain polarity at nodal points). Further-
more, if the planform of the unimorph is symmetric around
the beam axis (as is often the case), then sideways deflec-
tions and torsional deformations are also ineffective for en-
ergy harvesting because they would result in a zero average
value of S; in the piezoelectric layer.

Another important issue to discuss is how accurate the as-
sumption that bending is cylindrical is, which is the justi-
fication for ignoring the lateral strain S,. To this end, the
analysis of Kaldor and Noyan (2002) is relevant, but in any
case, in most applications in microelectromechanical sys-
tems (MEMS) the piezoelectric layer is deposited over a sin-
gle crystalline silicon substrate with the beam axis in the
stiffer [110] direction. In this [110] direction, the Poisson ra-
tio is v = 0.064, which means anticlastic bending is marginal
(Salman et al., 2024b).

In our analysis, we only consider synchronous vibrations,
in which the deflection is a product of a spatial mode and a
single harmonic function of time. In many realistic scenarios,
vibration may be better described as quasiperiodic, which in-
cludes many modes for which the different frequencies are
not commensurate (i.e., the ratios between the frequencies
is not a rational number). Obviously, in this case, the axial
strain S; cannot be uniform, and therefore for these cases,
the analysis is not applicable.

This study presents a formal proof, showing that for a
given amount of mechanical elastic energy stored in a PVEH,
a uniform axial strain distribution within the thin piezoelec-
tric layer maximizes the electrostatic energy. By designing a
PVEH with specific distributions of inertia and of bending
rigidity, we may achieve a uniform distribution of the axial
strain S7 in the piezoelectric layer, resulting in a maximal
electrostatic energy that can be harvested by the PVEH.
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