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Abstract. The study considers the optimal planform of a cantilever piezoelectric vibrating energy harvester
(PVEH) with an edge block that is patterned only in the device layer. The optimal response of a PVEH is
achieved when the strain in the piezoelectric layer is uniform. It is possible to design the planform of the PVEH
such that when it vibrates at a given frequency of excitation vibrations, the mode shape results in a uniform strain
in the piezoelectric layer. Another design choice is the size of the edge block. The size of the edge block affects
the natural frequency of the structure and hence may be adjusted such that the natural frequency of the PVEH
matches the frequency of the excitation vibrations. Previous studies considered the optimal planform of a PVEH
with a massive edge block that is patterned in both the device and handle layers of the wafer. For this case, it was
found that the optimal planform of such a device is trapezoidal. However, there is another class of PVEH devices
in which the edge block is patterned only in the device layer (i.e., a device-layer edge block). In the present
study, we show that the optimal planform for such a PVEH is defined by Bessel functions, and we demonstrate

the predictive capabilities of our analytic model by comparison to results of finite-element simulations.

1 Introduction

Piezoelectric vibrating energy harvester (PVEH) devices
have been extensively studied because of their potential
to power autonomous sensors. The design of such devices
varies extensively depending on the frequency distribution of
the environmental vibrations. The simplest case is when the
frequency of the environmental vibrations is fixed and a pri-
ori known. In this case, it is possible to optimize a cantilever
PVEH such that its natural frequency is compatible with the
excitation vibrations. In the context of PVEHs that target
a specific excitation frequency, it is often assumed that the
optimal performance is achieved when the strain amplitude
in the piezoelectric layer is uniform (Salman et al., 2024b,
2025).

In typical cantilever PVEH devices that are made using
silicon-on-insulator (SOI) wafer technology (Cowen et al.,
2014; Du et al., 2017; Jia and Seshia, 2016; Pillai et al.,
2019), the cantilever is patterned only in the device layer,
whereas the edge block is patterned in both the device and

handle layers of the wafer. A massive edge block will in-
crease the amplitude of vibrations and therefore may enhance
the performance of the system. However, if the excitation vi-
brations are at a sufficiently high frequency, a massive edge
block may be detrimental, and the edge block is patterned
only in the device layer. This simplifies the fabrication pro-
cess and may also simplify packaging because the cantilever
can vibrate freely and it is not necessary to prepare extra
space to allow for the vibrations of a handle-layer edge block.

In a recent paper (Salman et al., 2024a), we considered a
cantilever PVEH with a massive edge block that extends into
the handle layer. The inertia of this edge block dominates the
vibration response of the structure. We showed that for such
a massive edge block, the optimal planform of the PVEH is
a trapeze. The same conclusion was presented in many pre-
vious studies which were based on experiments, simulations
or a combination of the two (Ben Ayed et al., 2009, 2014;
Baker et al., 2005; Benasciutti et al., 2010; Chen et al., 2009;
Dietl and Garcia, 2010; Gallina and Benasciutti, 2013; Gold-
schmidtboeing and Woias, 2008; Halvorsen and Dong, 2008;
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Figure 1. Schematic description of a PVEH device, which is pat-
terned only in the device layer. The PVEH is constructed from a
cantilever and an edge block. The cantilever has a length L, a uni-
form thickness 4 and a rectangular cross section with a width w(x)
which changes along the x axis. The edge block has a length Lgp
and a width wgg, and it is connected at x = L.

Hosseini and Hamedi, 2016; Jia and Seshia, 2016; Lee et al.,
2009; Mateu and Moll, 2005; Matova et al., 2013; Miller et
al., 2008, 2011; Muthalif and Nordin, 2015; Park et al., 2012;
Raju et al., 2018; Rosa and De Marqui Junior, 2014; Roundy
et al., 2005; Salmani et al., 2015; Yang et al., 2009; Zhang et
al., 2017). However, our work was the first rigorous analysis
of the problem, and we presented an explicit functional form
of the optimal trapeze planform (Salman et al., 2024a). That
model was the first ever to offer predictive capabilities. In
contrast to those devices, there is a different class of PVEHs
in which the edge block is patterned only in the device layer
(e.g., Fig. 1) and does not extend into the underlaying handle
layer. In this case, the inertia of the beam is as significant as
the inertia of the edge block.

In the present study, we show that the optimal planform
of a cantilever PVEH with a device-layer edge block is not
a trapeze with straight contours but rather a planform with
curved contours described by Bessel functions. We validate
our model and demonstrate its predictive capabilities using
finite-element simulations.

2 Analysis

Figure 1 presents a schematic description of a cantilever with
an edge block that is patterned only in the device layer. The
beam has a length L, a uniform thickness 4¢ and a rectan-
gular cross section with varying width w(x). The edge block
at the far edge has a mass m; and a moment of inertia I .
The moment of inertia /7 refers to the z axis, and it is given
relative to the center point (i.e., y = z =0) of the edge cross
section x = L. The distance from that point to the center of
mass of the edge block is d in the x direction.
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It is assumed that the Euler—Bernoulli beam theory is ap-
plicable, where the governing equation that determines the
out-of-plane displacement y(¢, x) in free vibrations, and is
given by

32y(t, x) _ - 92 (

phu)(x)T = _E]yya_xz

2
0 y(t,x))O 0

w3

Here, p is the density of the elas~tic material and E is the
Young modulus. The term w(x)E Iy is the effective bending
rigidity of the beam cross section, where Iy is given by

h/2
- 1
Iy = 2dy = —h>. 2
¥y / ydy =13 ()
y=—h/2
We assume that the vibrations of the cantilever can be de-

scribed as the product of a time-periodic function 7'(¢) and a
deflection mode Y (x):

y(t,x) =T(1)-Y(x). 3)

The amplitude of the axial strain at the top surface of the
beam is therefore given by

d*Y(x) h

= )
dx> 2
The aim here is to determine the functional form of w(x)
such that the strain on the top surface is uniform (e, (x) = €).

Substituting this into Eq. (4) yields

Exx(X) =—

d*Y(x) h
dx2 2’

£=— ®)
From Eq. (5), we can deduce that the curvature along the
beam must be uniform. It follows that
g, dY(x) 28 d*Y(x) 28
Y = - 2 = —_—— —_— =,
(=3 & R dx? h
where the boundary conditions Y (0) =0 and Y’(0) =0 have
been imposed.
Substituting Egs. (3) and (6) into Eq. (1) yields

(6)

d*T(t) - 28, d’w(x)
— 2 _ = e
pw(x)ex o —EIy p T (1) o2 @)
which may be rearranged in the form

1 d*1T@®) .2 1 d*wk) 5
TN a2 = Ely— 2 2 T e ®)
T@) dt oh w(x)- x> dx
It follows that the time harmonic solution must satisfy
410 +*T(t) =0 9)

1)) =0,
dr?

and without loss of generality, we may consider the solution

T(t) = cos(wt). (10)
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Figure 2. The loads applied by the device-layer edge block on the
far edge of the cantilever beam.

Accordingly, the cantilever width w(x) must satisfy the fol-
lowing differential equation:
d*w(x) ph

2.2
——w x wx)=0. (11)
dx2  2EI,

Due to the edge block accelerations, a resultant transverse
force and a resultant moment are applied at the beam’s far
edge, as illustrated in Fig. 2.

From Eq. (6), it follows that at the far edge of the beam,
the transverse and angular accelerations of the edge block are
given by

92 28 L2

=0 cos(on), (12)
82| _, h 2

82 /dy 2% 21 cos(et) 13
—_— —_— = —w COS(wt).

otz \ dx |,_, h

The resultant force and moment at the far edge x = L that are
applied by the edge block and induced due to the edge block
transverse and angular accelerations are given by

82y 8% (dy
sz_mL[ +d-—<— )] (14)
x=L 912 \ dx x=L

at2
M L2 (W empd. 22 (15)
=—|IL—(— mpd-—= .
L oz x|, S TEN

At the far edge, the resultant shear force and the resultant
bending moment are given by

=9 3%y(t,x)
VL = —Elyy a <w(x)§7>

x=L

. 2 d
=Elyy zg cos(wt) lg)(x)
x

, (16)
x=L

. 3% y(t, x)
M = El,, — 7
L VY (w(x) 9x2 >

x=L

. 2t
= —Elyyzcos(a)t)w(L). a7

After substituting Egs. (12) and (13) into Eq. (14) and com-
paring to Eq. (16), it follows that
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dw(x)
dx

2T1
Lo |:§L2+d-L] (18)

x=L Elyy

Substituting Egs. (12) and (13) into Eq. (15) and comparing
to Eq. (17) yields

2L 1
w(L) =2 [IL+—mL-d~L]. (19)
E]yy 2

Now, Eq. (11) can be solved analytically from x = L back to
x =0 beginning with the two edge conditions for w(x) given
by Egs. (18) and (19). The analytic result of this is given by

w h
w(x) = ajv/x - loas | x>~ P +ar/x
2\ 2El,,
w ph
- Koos [ x2= — |. (20)
2\ 2El,,

Here, Iy s and K25 are modified Bessel functions, and the
constants a; and a, are determined from the boundary con-
ditions (18) and (19).

3 Simulations

We consider a typical cantilever PVEH with a device-layer
edge block. The edge block has a width of wgg =200 um
and various lengths, Lgg =100, 200, 300 and 400 um.
We target a vibrations frequency w =30000rads™! (i.e.,
f =4.774kHz), the cantilever length is L =2000 um, and
the width w(x) varies along the beam. The considered PVEH
devices are patterned only in the device layer, which has a
uniform thickness 2 = 10 um. For mechanical properties, we
consider devices that are made using SOI wafer technology
from single-crystalline silicon (SCS) in the (110) orientation,
where the density is p =2330kgm~> and the material mod-
uli are Ey, =169.7GPa, Gy, =80GPa and v,, =0.0606.
For each of the edge block lengths Lgg, the constants a; and
ap were computed by applying the boundary conditions in
Egs. (18)-(19), using MATLAB (R2023a). These constants
were substituted into Eq. (20) to compute the beam width
w(x). An example of an optimal Bessel tapered planform is
presented in Fig. 3.

To validate our model, we simulate the eigenfrequency
for each PVEH using COMSOL"™ 6.0 finite-element code
(COMSOL, 2022). Each simulation includes a Bessel ta-
pered planform with a matching device-layer edge block.
Figure 4 presents a typical geometry and mesh. In the simu-
lations, we used quadratic serendipity quadrilateral elements,
with a restriction on each element size (i.e., minimum and
maximum length). It was verified that the simulation results
converge with mesh refinement.
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156

w(x) um
800 ¢
600 ¢
400 -
200 |

-200
-400 |
-600
-800 |

500 1000 1500 2000 XHmM

Figure 3. The optimal Bessel tapered planform for an edge block
length of Lgg =400 um. The blue lines mark the beam width w(x),
and the orange lines mark the edge block.

Figure 4. A typical geometry and mesh used in the finite-element
simulations. The zoomed-in view focuses on the connection of the
edge block to the beam.

The aim of our work is to optimize the planform of the
PVEH such that the strain distribution over the top surface of
the cantilever is uniform. To this end, we define the measure
of nonuniformity S, . of the axial strain over the top surface
of the cantilever ey by

L L
[ &2 wlx)dx J A€k w(x)dx
_ x=0

x=0
L L
J wx)dx J wx)dx
x=0 x=0
Saxx L (2 1 )
A& w(x)dx
x=0
L
J wx)dx
x=0

The measure of nonuniformity in Eq. (21) is identically zero
(i.e., S;,, =0) only when the axial strain over the top surface
of the cantilever &, is uniform (i.e., &xy is not dependent on
X or 2).

For each length of edge block Lgg, Table 1 presents the
width of the beam at the clamped edge w(0) and the far edge
w(L), the simulated eigenfrequency w, and the simulated
nonuniformity of axial strain S, .
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Figure 5. The axial strain distribution of the optimal Bessel tapered
planform for edge block length Lgg = 300 pm. The uniform color
suggests that the strain is rather uniform. The reddish corners at
the clamped edge suggest that some strain concentration occurs at
these corners (zoomed in). The color scale is between red (maxi-
mal strain) and blue (minimal strain) with green at the average of
maximal and minimal strains.

The values of the simulated frequency w,, in Table 1 val-
idate our model, which considered the target frequency of
@ =30000rads~!. The relative errors in w, suggest that
there is a discrepancy between the analysis and the simula-
tions. Our analysis considers the Euler—Bernoulli beam the-
ory, which neglects shear deformations that are not neglected
in the finite-element simulations, resulting in a discrepancy
of 1 %.

The low values of the nonuniformity Sg, . in Table 1 sug-
gest that the strain is indeed rather uniform. To examine the
scale of these low-value nonuniformities, we compare the
optimal Bessel tapered planforms to non-optimal planforms.
As a test case, we consider the third entry in Table 1, with
LEB =300 pm.

Figure 5 shows the strain distribution over the top sur-
face of the optimal Bessel tapered beam for the third entry
in Table 1. For this optimal Bessel tapered beam, the related
nonuniformity is Se, =3.037 x 1074, and it is clear from
Fig. 5 that the strain over the top surface is rather uniform.

For comparison, we consider a non-optimal cantilever
beam for the same edge block, in which the Bessel edges are
replaced with straight lines. This beam consists of the same
widths at the clamped and the far edge (i.e., same w(0) and
w(L)), but this is a width that is linearly tapered.

Figure 6 shows the axial strain distribution over the
top surface of the trapezoidal beam. For this non-optimal
trapezoidal beam, the nonuniformity is S, = 1.643 x 1072,
which is 50 times larger than the value obtained for the opti-
mal planform.

For the other cases of Lgg =100, 200 and 400 um, the
strains of the Bessel tapered planforms were more uniform
relative to the related trapezoidal planforms by a factor of
~ 580, ~ 175 and ~ 18, respectively.
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Table 1. The optimal parameters for different device-layer edge blocks and the simulated axial strain nonuniformity.

LEB w(0) w(L) wp Relative error  Nonuniformity
(um)  (um) (um) (rads™!)  of w, (%) Sery

100 227.2 32 29993 0.023 2.585 x 1079
200 509.8 13.4 29954 0.151 8.773 x 107
300 853.7  32.0 29869 0.435 3.037x 1074
400 1264.6  60.1 29697 1.007 9.877x 1074

Figure 6. The axial strain distribution of a non-optimal trapezoidal
planform for edge block length Lgg =300 um. The color scale is
between red (maximal strain) and blue (minimal strain) with green
at the average of maximal and minimal strains.

4 Discussion and summary

To simplify our model, we assume that the device-layer edge
block responds like a rigid body. This facilitates the calcula-
tion of the resultant shear force and resultant moment at the
edge cross section, where the edge block is connected to the
cantilever. If, however, the edge block length and width are
significantly large such that deformation of the edge block
is substantial, then deriving the relevant resultant shear force
and resultant moment may require more rigorous analysis.

For the sufficiently small edge blocks considered in the
present study, our simulations confirm that the edge block
deformation is marginal, and therefore the beam planform
predicted by our model results in very small simulated strain
nonuniformities in the piezoelectric layer.

In any case, the strain nonuniformities predicted by our
model are small, and the difference between a trapezoidal
planform and a Bessel function planform may not be large.
However, in previous studies it was identified, through sim-
ulations, that in some cases with a nondominant edge block,
the performance of a PVEH with curved contours is superior
(Ben Ayed et al., 2014; Dietl and Garcia, 2010; Park et al.,
2012; Salmani et al., 2015). The present study provides an
analysis that explains why curved contours may be superior,
and provides a model with predictive capabilities.

This study presents a derivation of the optimal planform of
a PVEH with a device-layer edge block. It is shown that the
optimal planform of such a device is defined by Bessel func-

https://doi.org/10.5194/jsss-14-153-2025

tions. Using our model, it is possible to design a PVEH with
an optimal performance such that the amplitude of the strain
in the piezoelectric layer is uniform. Finite-element simula-
tions show good agreement with the analytic derivation, val-
idating the presented model.

The relevance of this model is that it provides a tool with
predictive capabilities for designing PVEH devices with op-
timal performance.
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