J. Sens. Sens. Syst., 14, 169-185, 2025
https://doi.org/10.5194/jsss-14-169-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Introduction

Efficient hardware implementation of interpretable
machine learning based on deep neural network
representations for sensor data processing

Julian Schauer, Payman Goodarzi, Andreas Schiitze, and Tizian Schneider

Lab for Measurement Technology, Saarland University, Saarbriicken, 66123, Germany

Correspondence: Julian Schauer (j.schauer @lmt.uni-saarland.de)

Received: 15 October 2024 — Revised: 29 January 2025 — Accepted: 30 June 2025 — Published: 11 August 2025

Abstract. With the rising number of machine learning and deep learning applications, the demand for imple-
mentation of those algorithms near the sensors has grown rapidly to allow efficient edge computing. Especially
in sensor-based tasks like predictive maintenance and smart condition monitoring, the goal is to implement
the algorithms near the data acquisition system to avoid unnecessary energy consumption caused by extensive
transfer of raw data. Deep learning algorithms achieved good results in various fields of application and often
allow the efficient implementation on dedicated hardware and common Al accelerators like graphic and neural
processing units. However, they often need more interpretability to analyze upcoming results. For this purpose,
this paper presents an approach to represent trained interpretable machine learning algorithms, consisting of a
stack of feature extraction, feature selection, and classification/regression algorithms, as deep neural networks.
This representation retains the interpretability but allows efficient implementation on hardware to process the
acquired data directly on the sensor node. The representation is based on dissembling the inference of the trained
interpretable algorithm into the basic mathematical operations to represent them with deep neural network lay-
ers. The technique to convert the trained interpretable machine learning algorithms is described in detail and
applied to parts of an open-source machine learning toolbox. The accuracy, runtime, and memory requirements
are investigated on four datasets, implemented on resource-limited edge hardware. The deep neural network rep-
resentation reduced the runtime compared to a common Python implementation by up to 99.3 % while retaining
the accuracy. Finally, a quantization method was successfully applied to interpretable machine learning algo-
rithms, gained an additional reduction of 64.8 % in runtime, and reduced the memory requirement up to 75.6 %
compared to the full precision implementation.

part in the total amount of energy consumption (Muhoza et

In recent years, the number of machine-learning (ML)-based
applications in scientific, medical, and industrial environ-
ments has increased considerably. Most of these algorithms
try to predict a specific target value, for example, upcoming
failures of a monitored machine to prevent downtimes (Mob-
ley, 2002). ML-based applications typically rely on a vast
amount of data recorded by different sensors located on or
near the monitored machine or application (Hermansa et al.,
2021). Transferring the recorded raw data to central instances
with high computational power, memory, and energy avail-
ability is highly inefficient and represents the most dominant

al., 2023). Some studies try optimizing these processes re-
garding energy consumption (Ang et al., 2017). However, to
avoid this step of raw data transfer, the focus shifted to pro-
cessing the raw data to complete the ML workflow directly
on the recording sensors (Merenda et al., 2020; Pioli et al.,
2024). These smart sensors allow the entire workflow, from
data recording to data processing, to complete ML applica-
tions on the same board (Singh and Gill, 2023). However,
most sensors and recording hardware are lacking in terms of
computational power and memory requirements. Data pro-
cessing or the entire ML workflow must be efficient regard-
ing computational time, memory requirements, and energy

Published by Copernicus Publications on behalf of the AMA Association for Sensor Technology.

170 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

consumption to allow edge computing solutions. Several ar-
ticles in the literature examine the use of ML applications
in smart sensors and edge hardware (Molinara et al., 2021;
Soro, 2021).

ML-based applications can be divided into two areas. On
the one hand, there is the area of deep learning (DL), which
solves the problem with deep neural networks (DNN5s) (Le-
Cun et al., 2015). On the other hand, the field of “classi-
cal” ML (Ezugwu et al., 2024) employs a variety of steps
such as feature extraction (FE), feature selection (FS), and
classification or regression (C/R) algorithms to develop so-
lutions for a given problem. The DNNs, mainly used in DL,
are highly effective in detecting complex non-linear relation-
ships between input data and targets. However, these corre-
lations are rarely interpretable. Such “black box” systems do
not provide the possibility to interpret the prediction regard-
ing the underlying features and characteristics of the input
data (Buhrmester et al., 2021).

Training a DNN requires a large amount of labeled data,
which is only sometimes available, especially in industrial
ML applications. Due to the need for better explainability,
interpretable ML applications consisting of FE, FS, and C/R
have gained attention (Goodarzi et al., 2022; Schneider et
al., 2018b). This ML approach allows the interpretation of
the input data through the different data processing steps.
This enables deep feature engineering and the physical anal-
ysis of input data characteristics. The ML Toolbox (ZeMA-
gGmbh, 2017) is a framework for this approach, which pro-
vides various FE, FS, and C/R algorithms (FESC/R). Most
of the FESC/R algorithms lack in the implementation on ef-
ficient hardware, which is compared in Nguyen et al. (2019).
Previous studies have focused on efficient programming by
mapping parts of interpretable ML algorithms as matrix mul-
tiplications to accelerate the ML inference on hardware opti-
mized for these operations (Pan and Mishra, 2022). Another
approach is to design and program specialized hardware,
such as ASICs or FPGAs, for efficient implementation of al-
gorithms, which results in high-effort and non-configurable
hardware solutions (Neshatpour et al., 2015; Nguyen et al.,
2016). On the other hand, the most efficient and generic
Al hardware, like graphical processing units (GPUs), neu-
ral processing units (NPUs), and tensor processing units
(TPUs), can infer DNNs with minimal programming effort.
This generic Al hardware allows efficient implementation of
ML algorithms regarding runtime, power, or memory usage
(Ghimire et al., 2022).

To optimize the inference of interpretable ML algorithms,
this paper demonstrates an approach to represent inter-
pretable ML algorithm inference with DNNs for an efficient
implementation on resource-limited hardware and a further
acceleration on optimized edge hardware without the need
for specialized hardware with high-effort access. This allows
the best of both worlds, i.e., efficient hardware implemen-
tation of DNNs while preserving the interpretability of the
ML algorithms. The approach breaks down interpretable ML

J. Sens. Sens. Syst., 14, 169—-185, 2025

inferences into basic mathematical operations to represent
them as DNN layers. Additionally, the resulting model for-
mat and the available parameters and metrics provide a solid
approach for estimating hardware requirements regarding
computational cost, memory usage, and runtime (Jawand-
hiya, 2018). Furthermore, the method allows the usage of
standard techniques such as quantization (Choukroun et al.,
2019; Nagel et al., 2021) to further improve these characteris-
tics. The study focuses on the critical parameters for comput-
ing on dedicated hardware. The most important metric is the
algorithm’s accuracy, which defines the functionality of the
ML model. Runtime is a crucial factor in terms of real-time
application and energy efficiency. The last parameter studied
is memory requirement, which must be highlighted if a lim-
ited hardware implementation is desired. The paper presents
a representation to optimize memory requirements and run-
time of ML algorithms with minimal error, significantly ex-
tending the previous conference contributions (Schauer et al.,
2024a, b).

The rest of the paper is structured as follows: Sect. 2 de-
scribes the materials, metrics, and datasets used for bench-
marking the interpretable ML algorithm. Section 3 presents
a detailed description of the method for representing the
trained interpretable ML algorithm with DNNs. Section 4
presents the results of applying the DNN method to parts of
the open-source ML Toolbox. Section 5 discusses the results
of the significant reduction in terms of runtime and mem-
ory requirement and the accuracy regarding quantization. Fi-
nally, Sect. 6 concludes the paper and gives an outlook on
future work.

2 Material and methods

This paper focuses on converting trained interpretable FES-
C/R algorithm stacks to DNN to implement them efficiently
on smart sensors and limited edge hardware. The trained
models based on the FESC/R algorithm are mathematically
interpretable and represent a static equation to calculate the
output. The idea is to break down the static equation of the
trained model inference into the basic mathematical opera-
tions. To optimize the inference of the trained model, which
is usually programmed in MATLAB, Python, or C/C++, the
mathematical operations are replaced by generic neural net-
work layers. Besides layers with specific functions (ONNX,
2023), like average pooling and maximum pooling, a fully
connected layer allows the implementation of every mathe-
matical operation executable through matrix multiplications.
This enables the implementation of a wide range of differ-
ent Al and signal-processing algorithms. Those DNN rep-
resentations benefit from optimized inference and access to
common Al accelerators, like GPUs, NPUs, or TPUs, with-
out any further programming effort. This method combines
the benefits of interpretable ML and the widespread use of

https://doi.org/10.5194/jsss-14-169-2025

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning 171

DNN frameworks for optimized inference and hardware im-
plementation.

However, an appropriate FESC/R algorithm must be iden-
tified and trained before generating a DNN representation of
the model. Figure 1 illustrates the suggested workflow from
creating FESC/R algorithms, training, model validation, and
representation as a DNN to implementing in a real-world ap-
plication, for example, condition monitoring (CM) or predic-
tive maintenance (PM). This flowchart represents a common
approach and workflow of collaboration between research
and developing new algorithms and their efficient usage on
sensors in real-world applications. The following section de-
scribes the underlying FESC/R Toolbox, the metrics, and the
datasets of the later performed benchmarks.

2.1 FESC/R Toolbox

To demonstrate the novel approach of representing trained
FESC/R algorithms as DNNs, the methods from the open-
source FESC/R Toolbox (ZeMA-gGmbh, 2017) are selected
and trained in advance. The FESC/R Toolbox provides com-
plementary methods, allowing users to explore various do-
main signal representations. The open-source ML Toolbox
provides the functionality to develop and train interpretable
FESC/R algorithms automatically. Therefore, the toolbox
compares the results of combinations of several FS, FE, and
C/R algorithms included in the toolbox and chooses the best
available algorithm for the specific dataset. This open-source
toolbox forms the foundation of the novel approach that can
be represented as DNNs after the final model selection. The
implemented methods of the toolbox are listed in Table 1, and
the three different processing steps are shortly described; the
detailed description can be found in Sect. 3.

2.1.1 Feature extraction

The FE algorithms try to reduce the dimension by extracting
physically interpretable features of the input data. Each FE
algorithm calculates different features from various domains,
allowing the developer to use the physical or systematical
prior knowledge to extract useful features. Representing and
reducing input data involves a trade-off between approxima-
tion error and the number of features. The goal is to minimize
both the approximation error and the number of features. On
the one hand, some of the FE algorithms find optimal seg-
mentations and parameters within a previous training pro-
cess; on the other hand, some of these methods are also not
learnable and can be applied without training. In this study,
methods that extract features in the time and frequency do-
mains are represented as DNNs.

2.1.2 Feature selection

The FS methods are a supervised part of the FESC/R Toolbox
that tries to learn the most significant features extracted by

https://doi.org/10.5194/jsss-14-169-2025

the previously executed FE. The FS methods create a ranking
of the informational value of the extracted features and allow
the user to reduce the amount of data with minimal loss of
information.

2.1.3 Classification and regression

The last element of the FESC/R pipeline is a classifier or a re-
gression algorithm, which calculates the FESC/R output and
is also a supervised trainable workflow element. Classifiers
try to map the given input to the desired categorical output
with a minimal error rate. In contrast, a regression algorithm
tries to predict continuous values as an output, e.g., with a
minimal root mean square error (RMSE).

2.2 Quantization

An appropriate way to prepare DNNs for fast and energy-
efficient hardware implementation is the quantization pro-
cess. With the DNN representation of interpretable ML al-
gorithms, improving the efficiency of the hardware imple-
mentations of interpretable ML algorithms with quantization
is possible. DNN quantization describes a technique to con-
vert floating point-based DNNs to lower-precision or fixed-
point representations and reduces the memory requirements
of the method. This representation and the additional use
of dedicated hardware, which utilizes efficient fixed-point
operations, allows an efficient and accelerated inference of
DNNs. This paper focuses on the post-training quantization
(PTQ) (Nahshan et al., 2021), which converts trained DNNs
from high-precision data types to lower-precision data types
without further training. Since the DNN representation ex-
tracts mathematical-based features, quantization aware train-
ing (QAT) (Bhalgat, 2020) could destroy the interpretable
characteristics of the DNN representations and is not con-
sidered in this paper. On the one hand, the quantization often
leads to a decrease in accuracy but on the other hand to an
increase in runtime and memory efficiency. In the following,
the floating point 32 version, 16-bit integer (INT16) version,
and the quantized 8-bit integer (INT8) version are compared.

2.3 Metrics

To evaluate the DNN representation of the FESC/R algo-
rithm, some metrics must be defined in advance to highlight
and compare the advantages of the novel approach. Some
metrics are exclusive to the DNN representation, but they are
essential in defining the hardware requirements for the used
hardware. To find the optimal way to implement the FES-
C/R algorithm on optimized edge hardware, the accuracy, the
runtime, and the memory requirements should be balanced to
ensure efficient hardware implementation.

J. Sens. Sens. Syst., 14, 169-185, 2025

172 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

feature extraction

accuracy

real application

feature selection

I classification/regression |

— -

Offline model selection, training and validation

runtime performance

memory requirement

[Luntme pertormance |

DNN representation and export

Hardware implementation and inference

Figure 1. Overview from sensor data acquisition, over deep neural network representation, to hardware implementation and sensor data

processing.

Table 1. Overview of the feature selection, feature extraction, classification, and regression algorithms of the AutoML Toolbox implemented

as deep neural networks.

Feature extraction

ALA Adaptive linear approximation (Olszewski, 2001)
BDW Best Daubechies wavelets (Rowe and Abbott, 1995)
PCA Principal component analysis (Wold et al., 1987)
StatMom Statistical moments (Schneider et al., 2018b)

Feature Selection

Pearson Pearson correlation coefficient (Cohen et al., 2009)

RELIEFF RELIEFF (Kononenko et al., 1997)

RFESVM Recursive feature elimination support vector machine (Yong et al., 2006)
Spearman Spearman correlation coefficient (Cohen et al., 2009)

Classification/regression

LDA-MD Linear discriminant analysis with Mahalanobis distance classification (McLachlan, 1999; Riffenburgh, 1957)

PLSR

Partial least squares regression (Geladi and Kowalski, 1986)

2.3.1 Accuracy and validation

The error presents a core metric of the ML algorithm’s qual-
ity and compares the ML algorithm’s prediction with the ac-
tual target. In a classification problem, the accuracy is calcu-
lated as

n
Z [Ypredi 75 Y. actuali]

aCCclass = 1 — =l . (D
n

In the regression problems, the accuracy is calculated by
the calculation of 1 minus the normalized root mean square
error by the following formula:

J. Sens. Sens. Syst., 14, 169-185, 2025

n
Z (Ypredi - Yacluali)2
i=1

n

2

ACCree ! max(Yactual)

The reference for the accuracy in this paper is the results
of the ML Toolbox algorithms implemented in MATLAB.
This accuracy is compared to the prediction of the floating
point 32 (FP32), 16-bit integer (INT16), and the quantized 8-
bit integer (INTS8) versions of the DNN representation of the
interpretable FESC/R algorithm. A 10-fold stratified cross-
validation is used to validate the results; i.e., the dataset is
partitioned into 10 subsets of equal size, and the class distri-
bution within the subsets is nearly equal. For each fold, the

https://doi.org/10.5194/jsss-14-169-2025

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning 173

model is trained on the remaining nine subsets of the dataset,
the resulting model is then applied to the test fold, and the
overall accuracy is calculated based on the test prediction for
all 10 folds.

2.3.2 Runtime

The measurement of the runtime provides a metric to eval-
uate the model’s runtime inference efficiency. To highlight
the advantages of the DNN representations, the runtime of
the ML Toolbox programmed in Python on the edge hard-
ware is compared to the runtime of the DNN implemented in
Python on the same hardware, without any further hardware
acceleration. In addition to runtime performance, the runtime
can indicate a more energy-efficient implementation. Energy
is defined as the power over a specific inference time. When
models are run on efficient hardware, the power consumption
does not increase, but the inference time decreases. This re-
sults in a more energy-efficient implementation. The runtime
was determined within the Python script with a resolution of
1 ns.

2.3.3 Memory requirements

The memory requirement of the DNN is measured to esti-
mate the hardware requirements in terms of storage for the
interpretable FESC/R algorithm. Compared to the FESC/R
Toolbox implementation, which does not provide any metric
to estimate memory requirement, this option displays an ad-
vantage for hardware requirements estimation. Therefore, the
memory requirements of the three different precision DNNss,
based on PTQ, are shown in Sect. 2.2. The memory used
for the DNN representation mainly consists of the stored
weights and parameters. This allows a reasonable estimation
of the required memory to implement the representation of
the FESC/R algorithms on resource-limited edge hardware.
Additionally, the sparsity of the resulting DNN representa-
tion is calculated. Sparsity is a measurable value that de-
scribes the number of zeros in weights and bias values. Effi-
cient hardware can reduce the used hardware storage by only
saving the non-zero values. So the sparsity also represents an
advantage of the DNN representation (Yan et al., 2021).

2.4 Neural network layers

The method for representing the inference of a trained ex-
plainable ML as a DNN is based on different Layers. The
most important and used layers are briefly described in Ta-
ble 2 and defined in the Open Neural Network Exchange
(ONNX, 2023) operation set.

2.5 Datasets

The datasets used in this study are open source and are from
the fields of PM, CM, gas sensing (GS), and structural health
monitoring (SHM), which were investigated in other studies,

https://doi.org/10.5194/jsss-14-169-2025

which also include a comparison between the interpretable
ML algorithms and CNN (Goodarzi et al., 2025). The fol-
lowing section briefly describes the datasets with their most
important characteristics listed in Table 3.

The open guided wave (OGW) dataset described in Moll
et al. (2019) consists of time series signals that capture
guided waves recorded at various temperature levels, rang-
ing from 20 to 60 °C. The signals were collected using 12
ultrasonic transducers arranged in a sender—receiver config-
uration, where one combination was used for training. These
transducers were attached to a carbon fiber reinforced poly-
mer (CFRP) plate with a detachable aluminum mass posi-
tioned at four locations to simulate delamination damage.
The goal is to detect whether there is damage or not.

The hydraulic system (HS) dataset is recorded at a
hydraulic system testbed monitored with several sensors
(Schneider et al., 2018a). The goal is to detect various fault
conditions. The system variables valve state and hydraulic
system accumulator are selected as the target variables for
training the algorithm and, in this paper, are treated as two
independent datasets: HS (Acm) and HS (Valve). The sen-
sor that shows the best correlation with these targets is the
pressure sensor in the work cycle (PS1).

The naphthalene (Napth) dataset (Bastuck et al., 2015)
consists of recordings from a gas sensor operating at different
temperatures. The sensor signals were sampled at a rate of
4 Hz. The dataset focuses on the quantification of the naph-
thalene concentration in the presence of ethanol as a back-
ground or interfering gas.

3 Deep neural network representation

The core of this paper is the novel approach to represent
trained interpretable ML algorithms as DNN to accelerate
them for an efficient implementation on edge hardware and
intelligent sensors, e.g., to allow to the use of generic Al
accelerator hardware. Section 3 breaks down the algorithms
listed in Table 1 into the basic mathematical operations and
gives a detailed description of the corresponding DNN rep-
resentation. The DNN representations of the following algo-
rithms serve as examples of a method that can also be applied
to other ML algorithms. The section first describes the equa-
tion or the structure of each FE algorithm inference and then
shows a detailed layer graph of the DNN representation. The
parameters, which were determined in the previous training
process, are represented through weights, bias, filter coeffi-
cients and other layer parameters to infer them on limited
edge hardware.

3.1 Feature extraction
3.1.1 Adaptive linear approximation

The adaptive linear approximation (ALA) extracts informa-
tion in local details, like edges in the time domain. ALA

J. Sens. Sens. Syst., 14, 169-185, 2025

174 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

Table 2. List of used neural network layers.

Layer Name Description Formula
Addition Executes an elementwise addition of two inputs y=x1+x2
. x
Concatenation Combines a defined number of inputs in a pre-defined dimension y =concat(x,xp) = |: xl]
2
Convolutional Executes a convolutional operation with pre-defined coefficients and a y=x1- We+be
following bias addition
Division Executes an elementwise division of two inputs y=x1/x3

Fully connected
following bias addition

A fully connected layer represents a weight matrix multiplication and a

y=x1 Wi +bg

Multiplication Executes an elementwise multiplication of two inputs y=x1-X)

Pooling Executes a sliding pooling operation based on average/maximum with a y = maxpooling (x1);
defined filter size y = avrgpooling (x1)

Input/output Creates an input/output of a DNN and is not part of the processing layers y=x

SQRT Calculates the elementwise square root of the input y=/C)

Table 3. Overview of the datasets included in the benchmarks.

Dataset Number of Signal Domain Type
observations size

OGW 684 13108 SHM Classification

HS (Valve) 1449 6000 PM/CM Classification

Napth 1569 160 GS Regression

HS (Acm) 1449 6000 PM/CM Regression

divides the input data y; into £ non-equidistant signal seg-
ments, based on the number of samples ¢#;, and for each
segment extracts their mean y, and slope b;. The non-
equidistant splitting does not allow the average pooling layer
to be used to calculate the mean. Instead, the mean must
be calculated within a fully connected layer, represented in
Fig. 4, based on the starting indices for each segment vy.

The parameters [describe the length of each segment and
are calculated as Iy = vg41 — vg. The slope calculation con-
sists of four fully connected layers and one addition layer,
representing the formula for by in Fig. 2. The term in the
nominator is constant for each segment, determined in the
previous training process, and can be calculated within a
fully connected layer without using an additional division
layer.

3.1.2 Best Daubechies wavelets

The wavelet transformation is able to transform the input sig-
nal into a time—frequency representation to extract locally
high-frequency and temporally localized features of the sig-
nal. The benefit of the wavelet transformation is that it offers
low resolution in the time domain and high resolution in the

J. Sens. Sens. Syst., 14, 169—-185, 2025

frequency domain for high-frequency signals and vice versa
for low-frequency signals. The discrete Wavelet transform is
based on discretely sampled wavelets. A very efficient way
to implement the discrete Wavelet transform is to implement
it as a filter bank. The filter bank represents a low-pass and
high-pass filter sequence (see Fig. 3) with filter coefficients
g and h.

The DNN representation rebuilds the wavelet transforma-
tion’s filter stages, including the coefficient multiplication
and the downsampling process. Before the DNN is created,
the filter coefficients and the number of filter stages are cal-
culated based on the available data. The different filters are
represented by convolutional layers with wavelet function-
specific coefficients. The algorithms calculate, in addition to
the transformation, ranking of the coefficients based on the
absolute value. After the ranking only the best coefficients
with the highest absolute value are considered in further cal-
culation. This selection is performed with an additional fully
connected layer.

3.1.3 Principal component analysis

The principal component analysis (PCA) transforms the in-
put data to extract information and features in the general
cycle shape. The PCA reduces the input dataset’s dimension-
ality by applying an orthonormal coordinate system trans-
formation keeping only the first dimensions representing the
highest variance or information content. The first PC is the
axis in the new calculated coordinate system, which explains
the most variance in the dataset. The second one explains
the second largest variance, and with decreasing PC, the ex-
plained variance decreases. This allows for the reduction of
the dimensionality with a minimal loss of information. After

https://doi.org/10.5194/jsss-14-169-2025

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

175

Vk+1 _F _ 5
T = f) = >y, b = hyp = A = B0 =30
- i= k= = Vit =
Vip1 — Vg + 1 Lajzy, 2i=v;(ti —£,)?
Y1 V1 t t,
1 1 0O - 0 0 0 0 0 : H H :
i i M 3 , ty
0 0 0 % % w000 0] k| [T || |||
L 1 2 2 : : : :
Z =0 00 0 0 0 : ; ; C ; f
y ! t . y2 t, f.
n ' ! 1 V1 by 000 000 -1 1 | i
2 _ |7 00 0 > - 0 0 o[y 2 b | MR L
T Lz k2 | =1 T & ERE
Y 5 i b : : ; :
k Yi k H :
! ! , £ t, £
00 0 0 0 0 T T et o] | || |2
t;z f-2 tiz t,
t.i E'k t’,‘ fk
?k | bk
|]]

NN-Layer Legend

[—1 Input/Output
[Fully Connected
| Addition

I Concatenation

Figure 2. Representation of the adaptive linear approximation extractor as a deep neural network.

Select Coefficients

Figure 3. Representation of the best Daubechies wavelet extractor as a deep neural network.

training, the inference of the PCA transformation ypca can
be calculated within a fully connected layer with zero bias,
and the weight matrix W presents the PCA transformation
coefficients as pre-defined weights. So the PCA transforma-
tion only consists of one fully connected layer in the DNN
representation as shown in Fig. 4.

3.1.4 Statistical moments

The statistical moment algorithm can describe the empirical
distribution of single measurement samples. This FE method
calculates the first four empirical statistical moments of the

https://doi.org/10.5194/jsss-14-169-2025

NN-Layer Legend

Input/Output
Fully Connected
Convolutional

Concatenation

I

signal sample, providing information about its characteristics
in the time domain. The first four statistical moments are the
mean (g, the standard deviation oy, the skewness vy, and
the kurtosis wg. One time signal is divided into segments
of equal length to gain a more specific description of the
raw data. This segmentation allows an arbitrarily precise de-
scription of the statistical distribution of the signal. Since the
method divides the data into equidistant segments, the calcu-
lation of the mean can be represented by an average pooling
within the DNN (see Fig. 5). The filter size of the pooling
layer should have the same size as the equidistant signal seg-

J. Sens. Sens. Syst., 14, 169-185, 2025

176 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

Ypca =W y;

yPCA_l] [Wn Wu] [yl]
Ypca_k W1 -+ Wil LYi

4

NN-Layer Legend

[mpuvoutput
[FullyConnected

Figure 4. Representation of principal component analysis as a deep
neural network.

Average Pooling

1.PoolSize
.’‘_\—
2.PoolSize{ 71
Y2 B
51
y3
Vit K2
1 Y4 | stride =[1,2]
Be=—)y ™ L —
Ny . PoolSize = [1x2]
1=V .
Hir-1
Yi-1
Hi
LYi | - -
Input Output

Figure 5. Representation of mean calculation with an average pool-
ing layer.

ments of the input signal. In the example, the segment size
equals two and is initialized through the filter size in the pool-
ing layer. The mean of the signal is then calculated as follows
and is represented by an average pooling layer, where vy de-
scribes the start indices of the corresponding segment. The
end indices of each segment are then described with v 1.
The standard deviation in Fig. 6 within the DNN is based
on the previous calculation of the mean of each signal seg-
ment. The previous calculated mean is resized within a fully
connected layer. The layer creates a new vector u; with the
size of the input data i. The vector consists of a concatena-
tion of each mean value py for the corresponding length of
the segment nx. This allows a simple subtraction of the mean
value of each segment. This subtraction is executed by mul-
tiplying with “—1” using a convolutional layer followed by
an addition layer. The sum and the division by (ny — 1) are
performed within a fully connected layer, as shown in Fig. 6.
The parameter ny represents the length of each segment. The
last step is calculating the square root within a SQRT layer.
To calculate the skewness, i.e., the third statistical mo-
ment, the sum of the standard deviation is reused. The dif-

J. Sens. Sens. Syst., 14, 169—-185, 2025

ference is the factor of the division, which changes to %
but is also divided within a fully connected layer with a
sparse matrix. The denominator is calculated by the three-
time self-multiplication of the standard deviation based on
two element-wise multiplication layers. The numerator is the
three-time self-multiplication of the difference between the
signal and the mean. An elementwise division layer executes
the final calculation (see Fig. 7).

The calculation of kurtosis, i.e., the fourth statistical mo-
ment, is the same as the calculation of skewness, with the
difference of the potency value of the numerator and denom-
inator (see Fig. 8).

The combination of the calculation of all different features
is shown in Fig. 9. Each feature can be seen as a separate cal-
culation path in the DNN, and the paths are combined with a
concatenation layer. The features that build the basis for fur-
ther features are reused within the network and can be seen
as connections between different paths. Additionally, most of
the fully connected layers have weight matrices, where most
entries are zeros, which increases the sparsity value of the
DNN.

3.2 Feature selection

A feature selection algorithm is trained for further dimen-
sionality reduction. The selection algorithm keeps a subset
of the previously calculated features. It removes redundant,
noisy, and irrelevant features to improve the algorithm’s ac-
curacy and avoid overfitting. The FS algorithms are imple-
mented because of the fully automated conversion from the
ML Toolbox but would normally not be necessary for the
inference on which the paper is focused. However, when ex-
tending supervised methods with semi-supervised methods
for novelty detection, which require all features (Klein et al.,
2024), then a simple filter is needed to retain only the selected
features for the inference. Table 4 briefly describes four FS
algorithms included in the ML Toolbox.

The output of each trained algorithm is a vector ranking
the features based on their information value. As shown in
Fig. 10, just one fully connected layer can be used to map
the FS algorithm to DNN.

3.3 Classification and regression
3.3.1 Partial least squares regression

Partial least squares regression (PLSR) is a supervised ML
algorithm designed to model the correlation between the
target variable and the features calculated by subsequent
FE and FS steps. PLSR is particularly useful for overcom-
ing collinearity in linear regression and handling cases with
sparse observations. During training, the PLSR learns the
best linear transformation based on the calculated vector w.
The vector is multiplied with the extracted features and re-
sults in the prediction 3. This prediction of the regression al-

https://doi.org/10.5194/jsss-14-169-2025

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

177

Muttiplication-Layer

SQRT-Layer
! ! 0 0 0 0 0 0 ¥1 !11 ’
- n—1 n—1 y)
1 1 1 ny H1
02| _ 0 0 0 0 0 0 Yny+1 Hz
| = ne—1 n—1 P el
O ; ; 1 ; 1 ¥n, Ha
0 0 0 0 0 0 : :
n—1 ne—1 Vi W
L \—‘f—’
Fully Connected-Layer Addition-Layer

Figure 6. Representation of variance calculation with different deep neural network layers.

Average Pooling Layer

1

o D7 0=)?

3

1 2
(7 TP 00— w0?)

-

Vi =

Division Pooling Layer

SQRT-Layer

Average Pooling Layer

Addition-Layer 2 x Multiplication-Layer

3

[Y1 1 i
Yny 251
y
avrgPool n?“ - Hz
Yn, %)
L y; 1 LM
3
BRI 2
y“1 M1 \
y
avrgPool n?“ - le
Ynz H2
\ Loy 1 Lhd

Addition-Layer 3 x Multiplication-Layer

Figure 7. Representation of skewness calculation with different deep neural network layers.

gorithm can be represented by a single fully connected layer
(see Fig. 11).

3.3.2 Linear discriminant analysis and Mahalanobis
distance classification

The linear projection executed by linear discriminant anal-
ysis (LDA) first transforms the feature space into a new,
(k — 1)-dimensional space by maximizing the between-class
scatter and minimizing the within-class scatter. The dimen-
sion k describes the number of classes within the used dataset
and i the length of the input signal. After the linear transfor-
mation is learned on the used dataset, the execution to cal-
culate the LDA transformed Y1 pa can be represented by ma-
trix multiplication of the transformation matrix W and the
extracted features of a sample yps. The matrix is calculated
with supervised learning and can be replaced with a single

https://doi.org/10.5194/jsss-14-169-2025

fully connected layer in DNN representation with zero bias,
comparable with the PCA transformation (Fig. 12).

After the linear transformation, the Mahalanobis distance
to each class is calculated. The Mahalanobis distance is based
on the covariance matrix Scjass_k, Where k denotes the class
number, the LDA transformed data Y1 pa, and the arithmetic
mean x;. Based on the formula in Fig. 13, the calculation
of the Mahalanobis distance to one class can be executed by
three fully connected, two addition, and one multiplication
layer.

As shown in Fig. 14, each distance to the different classes
must be calculated. The complete DNN size depends on the
number of classes available in the dataset, as demonstrated
in Fig. 14. The actual classification is based on the calculated
Mahalanobis distance to each class. To extract the lowest dis-
tance, the calculated Mahalanobis distances are concatenated
and multiplied by minus 1, within a convolutional layer. The
index of the largest value in the resulting vector is calculated

J. Sens. Sens. Syst., 14, 169-185, 2025

178 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

Addition-Layer

[Y1 7 M1
Yn, M1
Yni+1
avrgPool nf+ — l{z
Yn, Wy 2 x Multiplication-Layer
S -) S owisi
Ny i=v Vi i - L yi | K — ivision
Wi = 1 5 ; "
— YVk+1(y,. —)2 [Y1] M1
(le Z':vk(YL llz)) : :
Yn, M1
Yn;+1
avrgPool nf+ - u;z
/ Yn, Uy 2 x Multiplication-Layer
L y; | Mk
Average Pooling Layer

Addition-Layer

Figure 8. Representation of kurtosis calculation using deep neural network layers.

|
o O Vk Wi

==

NN-Layer Legend

[] mput/output [T Avrg. Pooling
:l Fully Connected : SQRT
- Convolutional - Addition
- Concatenation - Multiplication

Figure 9. Representation of the statistical moment extractor as a deep neural network.

with a max pooling layer and equals the class number with
the lowest Mahalanobis distance (see Fig. 14).

4 Results

The results presented are based on the automated methods
provided by the ML Toolbox (ZeMA-gGmbh, 2017). As
mentioned earlier, the toolbox provides an automated algo-
rithm search for the desired input data and corresponding
targets. As a result, the best combination of FE, FS, and C/R
algorithms is identified based on the best accuracy achieved
with 10-fold cross-validation. The optimal combination of
methods is trained and subsequently converted to a DNN
representation for each dataset individually, as described in
Sect. 3. Figure 14 illustrates a converted model consisting of
the StatMom extractor, Pearson selection, and LDA-MD dis-

J. Sens. Sens. Syst., 14, 169—-185, 2025

tance classifier trained, on the HS (Valve) dataset as a classi-
fication problem. The combination of individual algorithms
results in a sequential chaining of each algorithm to the other.
As shown in Fig. 14, each signal processing step remains in-
terpretable and can be visualized after the layers correspond-
ing to that specific step. A corresponding implementation is
performed for the other three datasets.

4.1 Metrics
4.1.1 Accuracy

The study of the accuracy of the DNN representation in-
volved four different datasets, described in Sect. 2. The eval-
uation consists of two regression and two classification prob-
lems. The datasets were selected to use every implemented
FE, FS, and classification/regression algorithm. The best

https://doi.org/10.5194/jsss-14-169-2025

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning 179

Table 4. Feature selection algorithms.

Selection algorithm Description

Pearson Calculation of the Pearson correlation coefficient, which describes the linear correlation between two variables
(Cohen et al., 2009).

RELIEFF ReliefF is a filter method like Pearson correlation, and it is used in classification tasks when no linear class
separation is possible (Kononenko et al., 1997).

RVESVM The recursive feature elimination support vector machine (RFESVM) is a wrapper method introduced by Yong et
al. (2006).

Spearman Spearman correlation measures the strength of a monotonic relationship between two variables (Wissler, 1905).

Yrs =Yre(indgs)

' Decreasing

Feature Ranking

Vrst 1 o0 <00 0 0 0 O IyFEl
[5] 000001000 OHE]
A : P H)
Ykl o 0 0 0 w0 0 w0 1 - ol DR
Number of Feature
l NN-Layer Legend

:] Input/Output
l:l Fully Connected

Figure 10. Representation of the feature selection algorithms as a
deep neural network.

1
5,:[?’1‘ W
Yi

l Weights
%! /}’1
RS

Vk d; \

l Bias

NN-Layer Legend

[1 Iinput/Output
:] Fully Connected

Wit1] -

Figure 11. Representation of partial least squares regression as a
deep neural network.

FESC/R algorithms and the results for three different DNN
representations are listed in Table 5. The table details the op-
timal algorithm combinations from the toolbox, along with
the classification and regression errors for the FP32, INT16,
and INT8 versions of the algorithms and DNN representa-
tions. The accuracy of the FP32 version of the DNN repre-

https://doi.org/10.5194/jsss-14-169-2025

Yipa =W - yrs

Yipas [W11 Wli] ['.VFS_l]
Yipak Wir -+ Wil Wrsii

!

NN-Layer Legend

[input/Output
:’ Fully Connected

Figure 12. Representation of linear discriminant analysis as a deep
neural network.

sentation matches exactly with the original MATLAB algo-
rithm, indicating correct implementation of the ML stacks as
DNN.

For all four datasets, the 10-fold cross-validation classi-
fication accuracy is nearly perfect, with the lowest accu-
racy being 96.6 % for the OGW dataset for the classifica-
tion and 90.5 % for the Napth as a regression problem. With
decreasing data precision, the accuracy of each model also
decreases. Quantizing the DNN into an INT16 model results
in a maximum accuracy drop of 3.4 % for the OGW dataset
and 1.4 % for the HS (Acm) dataset. In the further step, the
quantizing to the lowest precision, INTS8, results in a signifi-
cant accuracy drop compared to the FP32 version. The largest
drop was observed on the OGW dataset with 8.4 % for the
classification and 5.9 % in the HS (Acm) for regression. To
summarize, the accuracy of a DNN representation decreases
as precision is reduced, as shown in Fig. 15.

4.1.2 Memory requirements

The memory used can estimate the hardware’s requirements
in terms of storage size. The size of the ONNX network
is measured and shown in Fig. 16. Fortunately, specialized
hardware also allows the efficient storage of sparse matri-
ces. Figure 16 shows the sparsity of all DNN representations

J. Sens. Sens. Syst., 14, 169-185, 2025

180 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

Amanal_class_k Yipa) = \/ (Yipa — %) Scassn~ Vipa — %)

_ -1 -1 _

Yipa1 Xk S11_class.k Sni_class_k Yipaa Xk

dMahal_class_k = sum : - :_ . : . : L . : — :_
YLDAJ' Xk Sln,class,k Snn,class,k YLDAJ Xk

'

NN-Layer Legend

Fully Connected

L]
- Concatenation
N
[

Addition
Multiplication

Figure 13. Representation of the Mahalanobis distance of each class as a deep neural network.

Adaptive Linear
Approximation

Pearson

LDA Mahalanobis

Amplitude
s °

5 8 w0 u
Number of Featuro

Valve Condition [%]

Figure 14. A complete FESC/R algorithm, consisting of ALA extraction, Pearson correlation selection, and LDA-MD classifier as a deep

neural network trained on the HS (Valve) dataset.

studied in this paper. The DNN representations show a sig-
nificant sparsity value of at least 90.2 % (see Table 6). So the
real memory requirement can be calculated by multiplying
the measured requirement with the sparsity and subtracting
this number from the measured memory requirement. Espe-
cially the regression datasets resulting in DNN with small
memory requirements up to 19kB for the HS (Acm) data.
Compared to the classification datasets, the memory require-

J. Sens. Sens. Syst., 14, 169-185, 2025

ment reaches up to 970 kB, the regression task represents the
lower memory requirement.

In conclusion, the memory requirement is strongly corre-
lated with the input data length and the task type executed.
The classification algorithms result in higher memory us-
age than the regression algorithms. The comparison of the
OGW algorithm and the HS (Valve) algorithm demonstrates
the strong influence of the input data length regarding the

https://doi.org/10.5194/jsss-14-169-2025

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning 181

Table 5. Accuracy of the different deep neural network representations for each dataset.

Dataset Extractor Selector Classifier/regressor ~ Accuracy Accuracy Accuracy
FP32 [%] INT16 [%] INT8 [%]
OoGW PCA Spearman LDA Mahal 96.6 93.2 88.1
HS (Valve) ALA Pearson LDA Mahal 99.9 99.8 99.4
Napth BDW RELIEFF PLSR 90.5 90.1 89.1
HS (Acm) StatMom RELIEFF PLSR 91.8 90.4 85.9
100 —— i E— 5-1000 OGW [class] oy HS (Valve) [class]
o —&—0GW = =
—&&—HS (Valve) ‘E €
Napth g E
—&—HS (Acm) o @
=] = =
el 2 500 S
o @
95 o 1 © [
3 — 3 3
5 - s :
5 S = ° E
E [
ol —— i Ems Napth [reg] Ezo HS (Acm) [reg]
g, 215
g 2
E 510
85 I I I I I ® 05 &
5 10 15 20 25 30 35 > 25
Number of Bits g g
2 0 2 0
= =

Figure 15. The accuracy of the four different datasets as a function
of the number of bits used including 32-bit, 16-bit, and 8-bit usage.

Table 6. Accuracy of the different deep neural network representa-
tions for each dataset.

Dataset oGwW HS

(Valve)
32181 8665 422

Napth HS
(Acm)

36123

Number of non-zero
Parameters

Resulting sparsity [%] 99.9 99.7 98.9 90.2

required memory. As expected, the quantization reduced the
size from FP32 to INT8 to nearly a quarter of the size for
each algorithm.

4.1.3 Runtime

The runtime comparison ran on the Karo board (Karo elec-
tronics, 2025). The comparison includes the run as a Python
implementation on the CPU and the DNN representation
within a Python script on the CPU. The comparison excludes
the INT16 representation of the FESC/R algorithms as this
cannot be run efficiently on the edge hardware. In the current
version, the ONNX runtime (ORT) package does not support
the efficient inference of the INT16 version. The time given

https://doi.org/10.5194/jsss-14-169-2025

Figure 16. Memory requirements of the deep neural network rep-
resentations including the sparsity of the deep neural networks.

represents the model prediction for 10 000 serial input data,
simulating the serial recording of a sensor. The ORT library
is used to infer the DNN representation. The means of the
other results are listed in Table 7.

The DNN representation results in large improvement
compared to the typical Python libraries implementation re-
garding the runtime. The runtime of the DNN in FP32 for
the HS (Valve) was reduced by 99.3 % compared to the com-
mon Python implementation and demonstrates the largest
improvement. The other runtimes were reduced by 96.6 %
for the HS (Acm), 99.2% for the Napth, and 93.3 % for
the OGW dataset, comparing FP32 DNN with the common
Python implementation. The further quantization of the DNN
to the INTS8 version leads to a further runtime reduction of
56.9 % for the OGW, 67.7 % for the HS (Valve), 64.8 % for
the Napth, and just 25.4 % for the HS (Acm) comparing INT8
inference to the FP32 DNN inference.

5 Discussion
This paper presents an efficient method to represent pre-

trained and interpretable ML algorithms as DNNs to imple-
ment them efficiently on edge hardware. The approach was

J. Sens. Sens. Syst., 14, 169-185, 2025

182 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

Table 7. Mean runtime comparison of the different deep neural network representations for each dataset for 10 000 predictions.

Dataset ML algorithm DNN representation =~ DNN representation

Python [ms] FP32 [ms] INT8 [ms]
OGW 93.34 6.16 2.66
HS (Valve) 158.80 1.12 0.36
Napth 28.77 0.23 0.08
HS (Acm) 6.45 0.22 0.16

based on breaking down the static inference equation into
basic mathematical operations to replace them with generic
DNN layer functions. Besides the efficient implementation,
this enables different hardware implementation optimization
techniques like quantization. The new approach and asso-
ciated techniques were studied in this context with respect
to the accuracy and memory requirements for the differ-
ent DNN versions. Furthermore, the runtime performance
was compared to a standard Python implementation for each
model inference. The benchmarks are based on four datasets
from different application fields (gas measurement, predic-
tive maintenance/condition monitoring, and structural health
monitoring).

The results of the benchmarks demonstrated efficiency in
terms of runtime and memory requirement, as well as the
quantization technique introduced from the DNN optimiza-
tion. Besides the gained optimizations, the method allows a
rough estimation of the hardware requirements of the im-
plemented DNN representation. The presented method al-
lows one to find a good balance between memory require-
ments and runtime regarding the loss of accuracy. This pa-
per demonstrates the potential of achieving a greatly reduced
runtime and memory requirement on limited edge hardware,
even before the use of optimized Al accelerators. Regard-
ing runtime, the DNN representations reduced the runtime
by up to 99.3 % compared to common implementations and
a further reduction of 67.7 % regarding the INTS version. Ad-
ditionally, the memory requirements were reduced by up to
73.4 % by converting the FP32 model into INT8 models, with
a drop in accuracy, which has to be considered. The DNN
representation consists of sparse weight matrixes, which al-
lows for a further decrease in implementation memory re-
quirements. Furthermore, the chosen data type hardly influ-
ences the interpretable ML algorithms. A decrease in the data
precision often results in a significant drop in the model’s ac-
curacy. This is partly caused by the different scale of the ex-
tracted features, which are calculated in the same layer, i.e.,
within a fully connected layer. PTQ defines a single scaling
factor for the entire layer. Due to the wide range of feature
values, this can result in significant information loss.

J. Sens. Sens. Syst., 14, 169—-185, 2025

6 Conclusion and future work

In conclusion, trained explainable ML algorithms can be rep-
resented by DNNs to implement them on limited hardware.
This paper showed that several mathematical and statisti-
cally based ML algorithm inferences can be represented by
DNN layer functions, which also allows the usage of com-
mon DNN-optimized Al accelerators. This paper also visu-
alized the potential of interpretability within the different
DNN stages and the wide range of application fields of in-
terpretable ML algorithms based on the FESC/R structure.
The approach presented in this paper outperformed state-
of-the-art Python implementations for inference on limited
hardware. It also demonstrated the successful usage of com-
mon DNN techniques, like quantization, to further improve
the runtime and memory requirements of the interpretable
ML algorithm. For further improvement of memory require-
ment and runtime performance, the step of FS should be
excluded from the inference process. Instead of selecting
some of the previous extracted features, the focus in infer-
ence should be to only calculate the important features of
the raw data, which are necessary for the performance of the
algorithm. This future implementation step will further de-
crease the number of parameters of the DNN and also in-
crease the runtime performance. Note that this can only be
applied if a pure supervised ML model is required. If in addi-
tion also semi-supervised models are desired, i.e., for novelty
detection or for recognizing out-of-distribution (OOD) data,
then all features should be calculated (Klein et al., 2024). In
further investigation, different standardization or normaliza-
tion techniques should be introduced to decrease the accu-
racy drop caused by the quantization. The runtime compari-
son displays an excellent first outlook of how efficiently in-
terpretable ML can be implemented on edge hardware with-
out further effort, but this study only considered the CPU us-
age of the dedicated hardware. A further investigation of dif-
ferent Al accelerators, which are now useable, without any
further effort, for the interpretable ML algorithms, is crucial
for demonstrating further improvements. The further com-
parison should also include the usage of generic Al accel-
erators like NPUs, TPUs, and GPUs. This efficient imple-
mentation should be compared to lower-level programming
languages like C/C++ to highlight the improvement. An ad-
ditional focus here should be on investigating energy effi-

https://doi.org/10.5194/jsss-14-169-2025

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning 183

ciency and runtime improvements, which expands the inves-
tigations from a previous study (Schauer et al., 2024c). Fur-
thermore, the investigation of common transfer learning (TF)
techniques should be considered (Tan et al., 2018). Because
of the limited selection of TF techniques, mainly consisting
of standardization and normalization, to retrain interpretable
ML algorithms, the now available options of common DNN
TF techniques represent a further research topic.

Data availability. This work reuses open-source datasets; all
data are publicly available, and their sources and characteris-
tics are described in Sect. 2.5. Data can also be found at
https://doi.org/10.5281/zenodo.1323610 (Schneider et al., 2018a).

Author contributions. JS took part in the conceptualization, the
development, and the formal analysis of the presented work. JS
also performed the experimental investigation, performed the vi-
sualization, and prepared the original draft of the manuscript. PG
performed parts of the experimental investigation and data selec-
tion and took part in formal analysis of the work. AS contributed
in terms of project administration and conceptualization as well as
review and editing of the manuscript. TS supervised the work and
reviewed and edited the manuscript.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Journal of Sensors and Sensor Systems.
The peer-review process was guided by an independent editor, and
the authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue
“Sensors and Measurement Systems 2024”. It is a result of the 22.
GMA/ITG Fachtagung Sensoren und Messsysteme 2024, Nurem-
berg, Germany, 11 to 12 June 2024.

Acknowledgements. During the preparation of an earlier version
of this work, the authors used Al-assisted technology (Grammarly)
to improve readability and language. After using this service, the
authors reviewed and edited the content as needed and take full re-
sponsibility for the content of the publication.

Financial support. This work was partly supported by the Ger-
man Ministry for Education and Research (BMBF) within the
project “Edge Power” under code 16ME0574.

https://doi.org/10.5194/jsss-14-169-2025

Review statement. This paper was edited by Rainer Tutsch and
reviewed by two anonymous referees.

References

Ang, K. L.-M,, Seng, J. K. P,, and Zungeru, A. M.: Optimizing En-
ergy Consumption for Big Data Collection in large-scale wire-
less Sensor Networks with mobile Collectors, IEEE Syst. J., 12,
616-626, https://doi.org/10.1109/JSYST.2016.2630691, 2017.

Bastuck, M., Leidinger, M., Sauerwald, T., and Schiitze,
A.: Improved Quantification of Naphthalene using non-
linear Partial Least Squares Regression, arXiv [preprint],
https://doi.org/10.48550/arXiv.1507.05834, 2015.

Bhalgat, Y.: LSQ+: Improving low-bit Quantization through
learnable Offsets and better Initialization, 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 14-19 June 2020, Seattle, WA, USA,
https://doi.org/10.1109/CVPRW50498.2020.00356, 2020.

Buhrmester, V., Miinch, D., and Arens, M.: Analysis of Explainers
of Black Box Deep Neural Networks for Computer Vision: A
Survey, Machine Learning and Knowledge Extraction, 3, 966—
989, https://doi.org/10.3390/make3040048, 2021.

Choukroun, Y., Kravchik, E., Yang, F., and Kisilev, P.
Low-bit Quantization of Neural Networks for Efficient

Inference, in: 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), 27—
28 October 2019, Seoul, Korea (South), 3009-3018,

https://doi.org/10.1109/ICCVW.2019.00363, 2019.

Cohen, 1., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen,
J., Huang, Y., and Cohen, I.: Pearson correlation coefficient,
Noise Reduction in Speech Processing, Springer Topics in Signal
Processing, Vol. 2, Springer, 1-4, https://doi.org/10.1007/978-3-
642-00296-0_5, 2009.

Ezugwu, A. E., Ho, Y.-S., Egwuche, O. S., Ekundayo, O. S., Van
Der Merwe, A., Saha, A. K., and Pal, J.: Classical Machine
Learning: Seventy Years of Algorithmic Learning Evolution,
arXiv [preprint], https://doi.org/10.48550/arXiv.2408.01747,
2024.

Geladi, P. and Kowalski, B. R.: Partial Least-Squares Re-
gression: a Tutorial, Anal. Chim. Acta, 185, 1-17,
https://doi.org/10.1016/0003-2670(86)80028-9, 1986.

Ghimire, D., Kil, D., and Kim, S.: A Survey on Efficient Convolu-
tional Neural Networks and Hardware Acceleration, Electronics,
11, 945, https://doi.org/10.3390/electronics 11060945, 2022.

Goodarzi, P., Schuetze, A., and Schneider, T.: Prediction quality,
domain adaptation and robustness of machine learning meth-
ods: a comparison, in: Sensors and Measuring Systems; 21th
ITG/GMA-Symposium, 10-11 May 2022, Niirnberg, 1-2, ISBN
978-3-8007-5835-7, 2022.

Goodarzi, P., Schiitze, A., and Schneider, T.: Domain shifts in in-
dustrial condition monitoring: a comparative analysis of auto-
mated machine learning models, J. Sens. Sens. Syst., 14, 119—
132, https://doi.org/10.5194/jsss-14-119-2025, 2025.

Hermansa, M., Kozielski, M., Michalak, M., Szczyrba, K., Wrébel,
L., and Sikora, M.: Sensor-based predictive maintenance with re-
duction of false alarms — A case study in heavy industry, Sensors,
22, 226, https://doi.org/10.3390/522010226, 2021.

J. Sens. Sens. Syst., 14, 169-185, 2025

https://doi.org/10.5281/zenodo.1323610
https://doi.org/10.1109/JSYST.2016.2630691
https://doi.org/10.48550/arXiv.1507.05834
https://doi.org/10.1109/CVPRW50498.2020.00356
https://doi.org/10.3390/make3040048
https://doi.org/10.1109/ICCVW.2019.00363
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.48550/arXiv.2408.01747
https://doi.org/10.1016/0003-2670(86)80028-9
https://doi.org/10.3390/electronics11060945
https://doi.org/10.5194/jsss-14-119-2025
https://doi.org/10.3390/s22010226

184 J. Schauer et al.: Efficient hardware implementation of interpretable machine learning

Machine
63-84,

Jawandhiya, P: Hardware Design for
Learning, Int. J. Artif. Intell. Appl, 9,
https://doi.org/10.5121/ijaia.2018.9105, 2018.

Karo electronics: QXSP Documentation, https://karo-electronics.
github.io/docs/getting-started/qsbase3/quickstart-gsbase3.html,
last access: 8 August 2025.

Klein, S., Wilhelm, Y., Schiitze, A., and Schneider, T.: Combina-
tion of Generic Novelty Detection and Supervised Classification
Pipelines for Industrial Condition Monitoring, tm, 91, 454-465,
https://doi.org/10.1515/teme-2024-0016, 2024.

Kononenko, 1., Simec, E., and Robnik-Sikonja, M.: Overcoming the
Myopia of Inductive Learning Algorithms with RELIEFF, Appl.
Intell., 7, 39-55, https://doi.org/10.1023/A:1008280620621,
1997.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep Learning, Nature, 521,
436-444, https://doi.org/10.1038/nature14539, 2015.

McLachlan, G. J.: Mahalanobis Distance, Resonance, 4, 20-26,
https://doi.org/10.1007/BF02834632, 1999.

Merenda, M., Porcaro, C., and lero, D.: Edge Machine Learn-
ing for Al-enabled IoT Devices: A review, Sensors, 20, 2533,
https://doi.org/10.3390/s20092533, 2020.

Mobley, R. K.: An Introduction to Predictive Maintenance, Elsevier,
ISBN 978-0-7506-7531-4, 2002.

Molinara, M., Bria, A., De Vito, S., and Marrocco, C.: Artificial In-
telligence for Distributed Smart Systems, Pattern Recogn. Lett.,
142, 48-50, https://doi.org/10.3390/s20205945, 2021.

Moll, J., Kexel, C., Potzsch, S., Rennoch, M., and Herrmann, A.
S.: Temperature affected guided Wave Propagation in a Compos-
ite Plate Complementing the Open Guided Waves Platform, Sci.
Data, 6, 191, https://doi.org/10.1038/s41597-019-0208-1, 2019.

Muhoza, A. C., Bergeret, E., Brdys, C., and Gary, F.: Power Con-
sumption Reduction for IoT Devices thanks to Edge-Al: Appli-
cation to human activity recognition, Science Direct, 24, 100930,
https://doi.org/10.1016/.i0t.2023.100930, 2023.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., Van Baalen, M., and Blankevoort, T.. A white pa-
per on neural network quantization, arXiv [preprint],
https://doi.org/10.48550/arXiv.2106.08295, 2021.

Nahshan, Y., Chmiel, B., and Baskin, C.: Loss Aware Post-
Training Quantization, Springer, Mach. Learn., 110, 3245-3262,
https://doi.org/10.1007/s10994-021-06053-z, 2021.

Neshatpour, K., Malik, M., Ghodrat, M. A., Sasan, A., and
Homayoun, H.: Energy-efficient Acceleration of Big Data
Analytics applications using FPGAs, in: 2015 IEEE Inter-
national Conference on Big Data (Big Data), 29 October—
1 November 2015, Santa Clara, CA, USA, 115-123,
https://doi.org/10.1109/BigData.2015.7363748, 2015.

Nguyen, G., Dlugolinsky, S., Bobdk, M., Tran, V., Lépez Gar-
cia, A., Heredia, I., Malik, P., and Hluchy, L.: Machine learn-
ing and deep learning frameworks and libraries for large-
scale data mining: a survey, Artif. Intell. Rev., 52, 77-124,
https://doi.org/10.1007/s10462-018-09679-z, 2019.

Nguyen, T. C., Pham, L. D., Nguyen, H. M., Bui, B. G., Ngo,
D. T.,, and Hoang, T.: A High Performance Dynamic ASIC-
Based Audio Signal Feature Extraction (MFCC), in: 2016 Inter-
national Conference on Advanced Computing and Applications
(ACOMP), 23-25 November 2016, Can Tho, Vietnam, 113-120,
https://doi.org/10.1109/ACOMP.2016.025, 2016.

J. Sens. Sens. Syst., 14, 169—-185, 2025

Olszewski, R. T.: Generalized Feature Extraction for Structural Pat-
tern Recognition in Time-Series Data, Carnegie Mellon Univer-
sity, https://api.semanticscholar.org/CorpusID:235628918 (last
access: 8 August 2025), 2001.

ONNX: ONNX Contributors Open Neural Network Exchange,
ONNX 1.18.0 documentation, https://onnx.ai (last access: 8 Au-
gust 2025), 2023.

Pan, Z. and Mishra, P.: Hardware Acceleration of Ex-
plainable Machine Learning, in: 2022 Design, Au-
tomation & Test in Europe Conference & Exhibition,
14-23 March 2022, Antwerp, Belgium, 1127-1130,
https://doi.org/10.23919/DATE54114.2022.9774739, 2022.

Pioli, L., de Macedo, D. D., Costa, D. G., and Dantas,
M. A.: Intelligent Edge-powered Data Reduction: A Sys-
tematic Literature Review, ACM Comput. Surv., 56, 1-39,
https://doi.org/10.1145/3656338, 2024.

Riffenburgh, R. H.: Linear Discriminant
sis, PhD Thesis, Virginia Polytechnic
https://doi.org/10.5281/zenodo.15981771, 1957.

Rowe, A. C. and Abbott, P. C.: Daubechies Wavelets
and Mathematica, Comput. Phys., 9, 635-648,
https://doi.org/10.1063/1.168556, 1995.

Schauer, J., Goodarzi, P., Schneider, T., and Schiitze, A.: Deep
Neural Network Reprisentation fiir interpretierbare Machine
Learning Algorithmen: Eine Methode zur effizienten Hardware-
Beschleunigung, in: Vortrige, 22. GMA/ITG-Fachtagung Sen-
soren und Messsysteme 2024, 11-12 June 2024, Niirnberg, 37—
44, https://doi.org/10.5162/sensoren2024/A1.4, 2024a.

Schauer, J., Goodarzi, P., Schiitze, A., and Schneider, T.
Deep Neural Network Representation for Explainable Ma-
chine Learning Algorithms: A Method for Hardware Ac-
celeration, in: 2024 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), 2024 IEEE
International Instrumentation and Measurement Technology
Conference (I2MTC), 20-23 May 2024, Glasgow, 1-6,
https://doi.org/10.1109/I2MTC60896.2024.10560978, 2024b.

Schauer, J., Goodarzi, P., Schiitze, A., and Schneider, T.
Energy-Efficient Implementation of Explainable Feature
Extraction Algorithms for Smart Sensor Data Process-
ing, 2024 IEEE SENSORS, Kobe, Japan, 2024, 1-4,
https://doi.org/10.1109/SENSORS60989.2024.10784817,
2024c.

Schneider, T., Klein, S., and Manuel, B.: Condition Monitoring
of Hydraulic systems Data Set at ZeMA, Zenodo [data set],
https://doi.org/10.5281/zenodo.1323610, 2018a.

Schneider, T., Helwig, N., and Schiitze, A.: Industrial Condi-
tion Monitoring with Smart Sensors using Automated Fea-
ture Extraction and Selection, Meas. Sci. Technol., 29, 094002,
https://10.1088/1361-6501/aad1d4, 2018b.

Singh, R. and Gill, S. S.: Edge AI: a survey, Inter-
net of Things and Cyber-Physical Systems, 3, 71-92,
https://doi.org/10.1016/j.iotcps.2023.02.004, 2023.

Soro, S.: TinyML for ubiquitous Edge AI, arXiv [preprint],
https://doi.org/10.48550/arXiv.2102.01255, 2021.

Tan, C., Sun, F, Kong, T., Zhang, W., Yang, C., and Liu,
C.: A Survey on Deep Transfer Learning, Artificial Neural
Networks and Machine Learning—ICANN 2018: 27th Inter-
national Conference on Artificial Neural Networks, Rhodes,

Analy-
Institute,

https://doi.org/10.5194/jsss-14-169-2025

https://doi.org/10.5121/ijaia.2018.9105
https://karo-electronics.github.io/docs/getting-started/qsbase3/quickstart-qsbase3.html
https://karo-electronics.github.io/docs/getting-started/qsbase3/quickstart-qsbase3.html
https://doi.org/10.1515/teme-2024-0016
https://doi.org/10.1023/A:1008280620621
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/BF02834632
https://doi.org/10.3390/s20092533
https://doi.org/10.3390/s20205945
https://doi.org/10.1038/s41597-019-0208-1
https://doi.org/10.1016/j.iot.2023.100930
https://doi.org/10.48550/arXiv.2106.08295
https://doi.org/10.1007/s10994-021-06053-z
https://doi.org/10.1109/BigData.2015.7363748
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1109/ACOMP.2016.025
https://api.semanticscholar.org/CorpusID:235628918
https://onnx.ai
https://doi.org/10.23919/DATE54114.2022.9774739
https://doi.org/10.1145/3656338
https://doi.org/10.5281/zenodo.15981771
https://doi.org/10.1063/1.168556
https://doi.org/10.5162/sensoren2024/A1.4
https://doi.org/10.1109/I2MTC60896.2024.10560978
https://doi.org/10.1109/SENSORS60989.2024.10784817
https://doi.org/10.5281/zenodo.1323610
https://doi.org/10.1016/j.iotcps.2023.02.004
https://doi.org/10.48550/arXiv.2102.01255

J. Schauer et al.: Efficient hardware implementation of interpretable machine learning 185

Greece, 4-7 October 2018, Proceedings, Part III 27, 270-279,
https://doi.org/10.48550/arXiv.1808.01974, 2018.

Wissler, C.: The Spearman correlation formula, Science, 22, 309—
311, https://doi.org/10.1126/science.22.558.309, 1905.

Wold, S., Esbensen, K., and Geladi, P.: Principal Com-
ponent Analysis, Chemometr. Intell. Lab., 2, 37-52,
https://doi.org/10.1016/0169-7439(87)80084-9, 1987.

Yan, S., Qifan, S., and Faming, L.: Consistent Sparse Deep
Learning: Theory and Computation, J. Am. Stat. Assoc.,
https://doi.org/10.1080/01621459.2021.1895175, 2021.

https://doi.org/10.5194/jsss-14-169-2025

Yong, M., Daoying, P., Yuming, L., and Youxian, S.: Accelerated
recursive feature elimination based on support vector machine
for key variable identification, Chinese J. Chem. Eng., 14, 65—
72, https://doi.org/10.1016/S1004-9541(06)60039-6, 2006.

ZeMA-gGmbh: LMT-ML-Toolbox, GitHub repository, https://
github.com/ZeMA-gGmbH/LMT-ML-Toolbox, 2017.

J. Sens. Sens. Syst., 14, 169-185, 2025

https://doi.org/10.48550/arXiv.1808.01974
https://doi.org/10.1126/science.22.558.309
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1080/01621459.2021.1895175
https://doi.org/10.1016/S1004-9541(06)60039-6
https://github.com/ZeMA-gGmbH/LMT-ML-Toolbox
https://github.com/ZeMA-gGmbH/LMT-ML-Toolbox

	Abstract
	Introduction
	Material and methods
	FESC/R Toolbox
	Feature extraction
	Feature selection
	Classification and regression

	Quantization
	Metrics
	Accuracy and validation
	Runtime
	Memory requirements

	Neural network layers
	Datasets

	Deep neural network representation
	Feature extraction
	Adaptive linear approximation
	Best Daubechies wavelets
	Principal component analysis
	Statistical moments

	Feature selection
	Classification and regression
	Partial least squares regression
	Linear discriminant analysis and Mahalanobis distance classification

	Results
	Metrics
	Accuracy
	Memory requirements
	Runtime

	Discussion
	Conclusion and future work
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

