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Abstract. This contribution introduces the use of convolutional neural networks to detect humans and col-
laborative robots (cobots) in human–robot collaboration (HRC) workspaces based on their thermal radiation
fingerprint. The unique data acquisition includes an infrared camera, two cobots, and up to two persons walking
and interacting with the cobots in real industrial settings. The dataset also includes different thermal distortions
from other heat sources. In contrast to data from the public environment, this data collection addresses the chal-
lenges of indoor manufacturing, such as heat distortions from the environment, and allows for it to be applicable
in indoor manufacturing. The Work-Life Robotics Institute HRC (WLRI-HRC) dataset contains 6485 images
with over 20 000 instances to detect. In this research, the dataset is evaluated for implementation by different
convolutional neural networks: first, one-stage methods, i.e., You Only Look Once (YOLO v5, v8, v9 and v10)
in different model sizes and, secondly, two-stage methods with Faster R-CNN with three variants of backbone
structures (ResNet18, ResNet50 and VGG16). The results indicate promising results with the best mean aver-
age precision at an intersection over union (IoU) of 50 (mAP50) value achieved by YOLOv9s (99.4 %), the
best mAP50-95 value achieved by YOLOv9s and YOLOv8m (90.2 %), and the fastest prediction time of 2.2 ms
achieved by the YOLOv10n model. Further differences in detection precision and time between the one-stage and
multi-stage methods are discussed. Finally, this paper examines the possibility of the Clever Hans phenomenon
to verify the validity of the training data and the models’ prediction capabilities.

1 Introduction

The expectation is that humans and robots will be able to
work together without compromising efficiency or safety
as collaborative robots (cobots) take on a larger role in
manufacturing (Proia et al., 2022). An important trend
is human–robot co-working in manufacturing, where the
human-collaborative production process will lead to efficient
qualitative production (Khosravy et al., 2024). Therefore,
robots and cobots must be able to detect humans to collab-
orate with them. Another emerging trend is the use of au-
tonomous mobile robots (AMRs) potentially with mounted

cobots to create dynamic and collaborative workspaces.
Some of the challenges in the use of AMRs are dynamic ob-
stacle avoidance, autonomous navigation and path planning
(Alatise and Hancke, 2020). Differentiating between humans
and robots can lead to increased safety and efficiency in col-
laborative, dynamic and smart workplaces. Robots must slow
down or stop in a dangerous situation when humans are ap-
proaching. In the case of approaching AMRs or automated
guided vehicles, there is no need to slow down or even stop.
Consequently, it is important to know the features of a human
to distinguish them from robots or other objects.
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Table 1. List of features of the T440 camera (FLIR, 2013).

Feature Value

Frame rate 60 Hz
Resolution 320× 240 px
Field of view 25°× 19°
Thermal sensitivity at 30 °C 0.045 °C
Spectral range 7.5–13 µm

This contribution deals with the possibilities of the detec-
tion and differentiation between humans and cobots in col-
laborative workspaces based on their thermal radiation power
with the help of convolutional neural networks (CNNs). For
this, a new dataset of infrared images in the human–robot
collaboration (HRC) workspace was created and attributed
to the necessity of data in the manufacturing environment.
We examined the dataset and the possible approaches of de-
tecting and differentiating between humans and robots using
different types of CNNs such as one-stage and multi-stage
detectors.

2 Related work and motivation

Fraden (2016) provides an overview of methods to detect hu-
man presence. One promising approach is to measure the
thermal radiation of humans. Previous work (Himmelsbach
et al., 2023) has shown that low-resolution infrared sensors
(32× 32 px) can detect a human in infrared images using
CNNs such as GoogLeNet and MobileNetV2 with up to
99.48 % accuracy. Interfering heat sources are not consid-
ered. In addition, the detection of the cobot is another im-
portant piece of information in the image to enable further
collaboration between humans and cobots. Interfering heat
sources in real manufacturing environments and cobots as
additional information were considered and evaluated. The
most commonly used public datasets for pretraining models
are MS COCO (Lin et al., 2015), Pascal VOC (Everingham
et al., 2010) and ImageNet (Russakovsky et al., 2015). These
datasets do not contain images based on the radiation power
of objects. The literature provides multiple datasets in the
case of infrared images. There exist published datasets for
autonomous cars or robots in public environments (Hanson
et al., 2023; Lee et al., 2022) or human presence detection
and surveillance in public areas (Noh et al., 2023; Xu et al.,
2024; Gebhardt and Wolf, 2018; Maningo et al., 2023). How-
ever, there is a need to obtain specific data in order to be able
to use infrared cameras in manufacturing environments with
robot applications.

3 Materials and methods

An infrared sensor is needed to gain environmental informa-
tion about thermal radiation. We selected a FLIR T440 cam-

era to collect data and detect the presence of cobots and hu-
mans. The specifications of this infrared camera are listed in
Table 1. Training and testing of the CNNs was performed
on a Windows 10 system. The system has a 10-core cen-
tral processing unit (CPU), 64 GB of RAM, and an NVIDIA
RTX3080 with 12 GB of integrated graphics processing unit
(GPU) memory. Extracting and processing information from
the collected infrared images requires computer vision tech-
niques with object detection algorithms. The main task of
object detection is to find all interesting objects in the im-
age and determine their positions and sizes, which is also
one of the core problems in computer vision (Shf and Zhao,
2020). In 2012, deep convolutional neural networks (DNNs)
had a resurrection and were able to represent an image ro-
bustly at a high level and detect objects in it. With the in-
troduction of DNNs in object detection, two fields of de-
tectors started to develop, two-stage detectors and one-stage
detectors (Zou et al., 2023). The two-stage method gener-
ally achieves higher classification and positioning accuracy,
while the one-stage method achieves faster predictions (Shf
and Zhao, 2020). The main difference is that the two-stage
algorithms divide the object detection into two tasks. First,
they perform a selective search, where they extract regions
of the image (region proposals), and these region proposals
are fed into a CNN for further classification. This method
was initially proposed by Girshick et al. (2014) in the year
2014, with the algorithm named Regional-CNN (R-CNN).
The algorithm was further improved in 2015 with the devel-
opment of Fast R-CNN (Girshick, 2015). In the same year,
the authors of Ren et al. (2015) proposed Faster R-CNN (F-
R-CNN), which is an optimized version of R-CNN and tack-
les the problem of detection speed by getting closer to real-
time detection. In this research, the F-R-CNN as a two-stage
algorithm was used because real-time capability is critical
in HRC. In contrast to the two-stage method, the one-stage
algorithm predicts the probability of a category and the po-
sition of the object simultaneously without any region pro-
posals, but it suffers in accuracy with small or dense ob-
jects (Han, 2022). In 2014, Redmon et al. (2016) proposed
the You Only Look Once (YOLO) model with real-time de-
tection capabilities. Since then, the first author has released
two improved versions, YOLO9000 (Redmon and Farhadi,
2017) and YOLOv3 (Redmon and Farhadi, 2018). The latest
versions are YOLOv5 (Ultralytics, 2021), YOLOv8 (Vargh-
ese and M., 2024), and the two algorithms published in
2024 – YOLOv9 (C.-Y. Wang et al., 2024) and YOLOv10
(A. Wang et al., 2024). An advantage of the YOLO versions
after YOLOv3 is the scalability in the size of the models,
which allows for the consideration of the trade-off between
the higher accuracy of larger models and the faster process-
ing time of smaller models.

The presented algorithms, YOLOv5, YOLOv8, YOLOv9
and YOLOv10, with different model sizes, nano (n) or
tiny (t), the equivalent to nano in YOLOv9, small (s) and
medium (m), as well as the F-R-CNN algorithm with two dif-
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ferent backbone structures, VGG16 (Simonyan and Zisser-
man, 2015) and ResNet in two layer-count sizes, ResNet18
(He et al., 2016a) and ResNet50 (He et al., 2016b), are imple-
mented in this research to evaluate the unique infrared dataset
of the industrial environment and are compared to each other
regarding their detection performance and speed.

3.1 Data acquisition and measurement setup

A total of 10 participants (five male and five female) were
considered in the data collection. The infrared camera was
positioned at a distance of 10 m. This placement allows for
capturing a wide range of interactions between humans and
cobots. The interaction area measures 4.5 m in length and 4 m
in width, as shown in Fig. 1. The setup includes two cobots
and up to two humans in a single image. The cobots used are
the KUKA LBR iiwa 7 (R2) and the KUKA LBR iiwa 14
(R1). These KUKA models differ in size and payload, with
the R2 featuring hand-guiding functionality. Hand guiding
enables manipulation of the cobot by applying force to its
flange. In this research, we utilized the hand-guiding func-
tion to simulate interaction between humans and the cobot,
as shown in Fig. 2. Data acquisition was performed in four
different scenarios using the same system setup as shown in
Fig. 1 and listed below.

(a) In the first scenario, one participant randomly walked in
and out of the interaction area in a figure-eight-shaped
pattern so that the body was visible to the camera from
different angles. Additionally, occluded body parts or
partially visible body parts were generated because the
objects were in a line or the person left the scene later-
ally.

(b) In the second scenario, a second participant joined the
interaction area, and both participants were moving in
and out of the interaction area randomly, generating im-
ages where the participants’ bodies overlap.

(c) In the third scenario, one participant continues walking
randomly in the interaction area, while the other partic-
ipant interacts with the R2.

(d) In the fourth scenario, the third scenario was repeated,
but instead of interacting with R2, the interaction be-
tween participant and cobot was with R1.

Participants were allowed to perform various movements
while walking, including squatting, stretching and other ran-
dom actions. Additionally, in the second and third scenarios,
the second participant was free to interact with the unoccu-
pied cobot. This step was intended to improve the diversi-
fication of the data. The cobots moved automatically as the
participants walked or moved through the interaction area to
avoid a singular pose of the cobot in the dataset. The environ-
mental temperature during the data collection ranged from

21.5 to 22.9 °C. The humidity was at 37 %, and the ambi-
ent lighting in the interaction area varied between 908 and
1381 lx.

3.2 Data preprocessing

The initial step in data preprocessing involved converting
the video stream, based on temperature values, to grayscale.
Frames were extracted from the infrared video stream, with
one frame taken every second using a Python script, result-
ing in a total of 3083 images. These images were labeled as
either person or robot and randomly divided into 70 % for
training and 30 % for validation as shown in Table 2. Data
augmentation (DA) techniques, such as cropping out up to
30 %, blurring up to 4.5 px, and adding noise up to 1.9 px in
size, were applied. These techniques increased the dataset to
6485 images and helped prevent overfitting. Prior to model
training, the datasets were resized from the original resolu-
tion (320× 240 px) of the FLIR camera to 640× 640 px.

The images acquired by the infrared camera have the
FLIR watermark in the bottom-left corner and may trigger
the Clever Hans phenomenon. The phenomenon describes
whether a training strategy is valid or the decision is based
on a false correlation in the training data, e.g., a static wa-
termark symbol or logo (Lapuschkin et al., 2019). In this
case, the model could correctly detect humans and robots
in the images provided despite the watermark, but when de-
ployed in a real world setting, the model could fail if no artifi-
cial watermark is visible. Based on this, further analysis was
made to verify the results of the models and the existence of
the Clever Hans phenomenon. The dataset with 1169 images
of the validation set was modified by cropping the bottom
edge of each image, thus modifying the image dimension
to 640× 575 px and removing the watermark, as shown in
Fig. 3.

4 Metrics

The metrics used in this contribution to evaluate the accuracy
of the models on the validation data are average precision
(AP) and mean average precision (mAP). For the calculation
of the metric AP, the precision (p) and the recall (r) need
to be calculated. p is the capability of a model to identify
the relevant object and determines the percentage of correct
positive predictions, as calculated in Eq. (1). r defines the
percentage of correct predictions based on all ground truths,
as shown in Eq. (2) (Padilla et al., 2020).

p =
Truepos

Truepos+Falsepos
(1)

r =
Truepos

Truepos+Falseneg
(2)

The metric of intersection over union (IoU) allows for deter-
mining when a prediction of a bounding box (BB) is correct.
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Figure 1. The measurement setup for data acquisition was performed in four different scenarios with the interaction area in green and the
camera perception in gray. (a) One person randomly walking in and out of the interaction area, (b) two persons randomly walking in and out
of the interaction area, (c) one person interacting with R2 and one person randomly walking, and (d) one person interacting with R1 and one
person randomly walking (adapted from Süme et al., 2024a).

Table 2. Distribution of training and validation datasets as well as the representation of the classes and their instances after DA.

Before DA After DA

Data split
Instances per object

Total images
Total images Robots Persons

Training (70 %) 1914 9015 5393 4536
Validation (30 %) 1169 3893 2393 1949

Total 3083 12 908 7786 6485

Figure 2. Infrared image in industrial settings with two cobots, a
walking human on the left and a human interacting by hand guiding
the cobot (R2) on the right (adapted from Süme et al., 2024a).

The IoU overlays the predicted BB (Bp) on the ground truth
BB (Bgt) and divides the intersection area by the area of both
boxes, as shown in the following:

IoU=
area (Bp ∩Bgt)
area (Bp ∪Bgt)

. (3)

If the value exceeds a defined threshold, the prediction will
be classified as a true positive. Thus, it is essential to specify

Figure 3. (a) Original image size (640× 640 px) with the water-
mark. (b) Cropped image size (640× 575 px) without the water-
mark.

the threshold that determines whether a prediction is correct
(Padilla et al., 2020). The AP (Salton and McGill, 1983) in
Eq. (4) is applied to evaluate the model classification and
detection capabilities. For every class, the precision and re-
call curve is computed. The AP captures the overall shape
of the precision/recall curve and is defined as the average
precision across 11 equally spaced recall levels (Everingham
et al., 2010).
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Table 3. Results of the evaluated models with the metrics AP50 and AP50-95 of each class and mAP as well as ttotal.

Model
Network AP50 in % AP50-95 in % ttotal

Size Mean Robot Person Mean Robot Person in ms

YOLOv5
n 99.2 99.5 99.0 89.6 91.9 87.4 2.5
s 99.2 99.5 99.0 89.8 92.0 87.5 3.9
m 99.1 99.5 98.7 89.5 92.0 87.0 7.1

YOLOv8
n 99.2 99.5 98.9 89.7 92.0 87.5 2.5
s 99.1 99.5 98.7 90.0 92.1 88.0 4
m 99.2 99.5 98.8 90.2 92.2 88.1 8.1

YOLOv9
t 99.1 99.5 98.6 89.8 92.0 87.6 2.9
s 99.4 99.5 99.2 90.2 92.5 88.0 4.7
m 99.1 99.5 98.8 89.9 92.5 87.4 9.8

YOLOv10
n 98.9 99.5 98.2 89.0 91.7 86.4 2.2
s 98.8 99.5 98.1 89.0 91.8 86.2 3.9
m 99.0 99.5 98.6 89.2 91.2 87.2 7.5

F-R-CNN (ResNet18) – 96.8 – – 72.1 74.2 70.1 29
F-R-CNN (ResNet50) – 98.8 – – 82.6 84.6 80.7 73
F-R-CNN (VGG16) – 97.3 – – 69.0 73.0 65.0 52.5

Table 4. Comparison between the results of the datasets with and without watermark evaluated with the YOLOv9s model and the metrics
AP50 and AP50-95 of each class and mAP.

Dataset
AP50 in % AP50-95 in %

Mean Robot Person Mean Robot Person

With the watermark 99.4 99.5 99.2 90.2 92.5 88.0

Cropped images
99.1 99.5 98.7 89.4 92.1 86.7

without the watermark

AP=
1

11

∑
r∈{0,0.1,...,1}

pinter(r) (4)

At each recall level r , the precision is determined by in-
terpolation. This is done by taking the maximum precision
achieved by a method where the corresponding recall ex-
ceeds or equals r , where p(r̃) is the measured precision at
recall r̃):

pinter(r)= max
r̃:r̃≥r

p(r̃). (5)

The mean average precision (mAP) describes the average
precision across all classes, as shown in Eq. (6), where N

represents the number of classes and APi is the average pre-
cision of the ith class. For instance, mAP50 refers to the AP
of all classes at an IoU of 50, while mAP50-95 varies the IoU
threshold between 50 and 95 in 5 % increments.

mAP=
1
N

N∑
i=1

APi (6)

The assessment of real-time performance integrates the times
for preprocessing (procpre), inference and postprocessing
(procpost) in milliseconds. This will be measured for each
model using the test dataset in total processing time (ttotal),
as illustrated by

ttotal = procpre+ inference+ procpost. (7)

5 Results

The presented algorithms were trained on the training dataset
and deployed and evaluated on the validation dataset, with
their best weights obtained during model training, as listed in
Table 3. We included an early stop function to avoid overfit-
ting. While all YOLO versions and the F-R-CNN ResNet18
ran for the full 50 epochs, the F-R-CNN ResNet50 and
F-R-CNN VGG16 models stopped early because no fur-
ther improvement was achieved. The best results in mAP50
(99.4 %) and mAP50-95 (90.2 %) values were achieved by
the YOLOv9s. The YOLOv8s reaches 90.2 % as well but
performs not as well with a mAP of 99.1 %, as plotted in
Fig. 4. Regarding human safety, the detection rate of persons
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Figure 4. Comparison between the mAP50 (dark blue) and
mAP50-95 (light blue) results of the evaluated models.

Figure 5. Comparison between the ttotal results of the evaluated
models.

at the scene is important. The YOLO models were similar
in the detection rate of persons but with a mAP50 of 99.2 %
and 88.1 %, YOLOv9s and YOLOv8m, respectively, deliver
the best results. The F-R-CNN models achieved similar re-
sults in the mAP50 value as the YOLO models but performed
worse in terms of mAP50-95. As expected, the smaller model
sizes of YOLO are faster (ttotal). The fastest algorithm is the
YOLOv10n, with ttotal showing an improvement of 13.75 %

in speed to the next best models. With a difference of al-
most 31 % in speed reduction between the m-sized and the n-
sized model, the YOLOv8 model size change has the biggest
impact on ttotal. The F-R-CNN models and the method of
the two-stage detection cannot reach the detection speed of
the YOLO architectures, as shown in Fig. 5. The YOLOv9s
model trained on the original dataset and tested on the dataset
without a watermark shows no significant change in perfor-
mance regarding mAP50 and mAP50-95, as presented in Ta-
ble 4.

6 Discussion

The pretrained models with the applied DA methods
achieved better performance without overfitting. The predic-
tion metrics of the models are generally high, which can be
attributed to the optimization of the data during preprocess-
ing, the stationary position and the few objects to be detected
in a single image. In particular, the detection of the cobot
is reliably high due to the stationary position even with DA
methods where the position of the objects can change in an
image. It seems that moving the axes of the cobot during data
acquisition has little effect on reliable detection. In general,
all models predict separated objects in the image with high
confidence, as shown in Fig. 6a0–a7. The exception is the F-
R-CNN ResNet50 model, which also incorrectly predicts the
cobot as a person due to its pose in Fig. 6a6. The predictions
of the occluded person vary in not only the size of the BB,
but also the confidence of the predicted BB. The YOLOv9t
and F-R-CNN ResNet50 models (Fig. 6a3, a6) predict the
BB as a whole-body BB and provide high confidence values,
while some other models predict the size correctly but exhibit
lower confidence levels. This phenomenon could occur if the
dataset is not large and diverse enough and there is an im-
balance of annotations where the BB was placed as a whole
body in similar images. The model learned from these similar
images where the person is a bit more visible and labeled as
a full-body BB, while in this case, it is only the upper body.
Another potential explanation could be the inconsistency in
the labeling of the images. This point has been addressed by
the authors with clear annotation instructions and labeling
examples of this dataset following the guidelines of the VOC
challenge (Everingham et al., 2010).

While the YOLO models produce similarly good results in
terms of detection performance, the different model sizes do
not have a significant impact in the detection accuracy. This
suggests that data optimization and grayscaling techniques
enable smaller YOLO models to achieve results comparable
to those of larger YOLO models. The detection speed de-
creases up to 33 % between the smallest and biggest YOLO
model size. Then again, the F-R-CNN ResNet50 has a signif-
icant improvement of 14.5 % for the mAP50-95 compared to
the F-R-CNN ResNet18. This improvement can be attributed
to the changes from ResNet50v1 (He et al., 2016a) to the op-
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Figure 6. Results of two predicted images on the validation dataset with the ground truth annotation (a0, b0), the respective prediction of
YOLOv5n (a1, b1), YOLOv8n (a2, b2), YOLOv9t (a3, b3), YOLOv10n (a4, b4), F-R-CNN ResNet18 (a5, b5), F-R-CNN ResNet50 (a6,
b6) and F-R-CNN VGG16 (a7, b7).

timized network ResNet50 used in this research, while the
ResNet18 was not optimized by the authors. The two-stage
methods do not perform as well as the one-stage methods
with the mAP50-95 results. Nevertheless, the mAP50 value
is close to the best results of the YOLO models. This indi-
cates that the F-R-CNN model is able to detect the object but
struggles to accurately place the BB of the objects. This issue
of BB precision and placement can be seen in Fig. 6, where
the original annotated image in Fig. 6b0 shows clear over-
lapping BBs of the person and the cobot. The YOLO models
are able to place the BBs in a similar overlapping position
(Fig. 6b1, b2, b3, b4). However, the F-R-CNN18 leaves a
gap (Fig. 6b5) and the F-R-CNN ResNet50 (Fig. 6b6) and

VGG16 (Fig. 6b7) do not sufficiently overlap the BBs of the
objects. This may be due to the fact that the F-R-CNN mod-
els are more dependent on color in images and the feature
extraction struggles with grayscale, especially on the edges
of objects.

The model’s prediction confidence decreases with oc-
cluded objects, but the models are still able to detect the per-
son and cobot in difficult scenarios. In this case, the detection
rate of a person in a manufacturing environment is a key met-
ric for worker safety. The models tend to detect cobots better
than persons due to the stationary position mentioned above.
The average accuracy of the YOLO models in detecting peo-
ple is generally high, ranging from 87.0 % to 88.1 % but still
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not enough to ensure safe recognition as defined by the HRC
safety measure. The F-R-CNN models are not competitive
in terms of human recognition accuracy, and the recognition
speed is also critically low for safety measures, while all the
one-stage methods evaluated in this research meet the expec-
tations of the literature and would meet the criteria of detec-
tion speed in the safety aspect.

The results show no significant change by evaluating the
model on the dataset with the FLIR watermark, suggesting
that the model relies on other patterns in the image to make
its predictions and that while the watermark does not play
a critical role in the model’s prediction process. A possible
explanation could be that the watermark is present in all im-
ages, there are other static visual cues that are also present in
the images, such as the tables and light fixtures above. The
humans and robots are dynamic, and there are no two images
where humans and robots are in the same position. Addition-
ally, data augmentation techniques were used during train-
ing to improve robustness, such as random cropping of up to
30 %, ensuring that there are test images where the logo is not
present, blurring up to 4.5 px, and adding noise up to 1.9 px
in size; therefore, even when the watermark is present, varia-
tions of the watermark are introduced. These augmentations
aim to mitigate phenomena such as Clever Hans.

7 Conclusions

A dataset of infrared images to improve HRC in a manufac-
turing environment was presented. The dataset and the ap-
proach to differentiate between humans and robots were eval-
uated with different CNN methods and model sizes. With 10
participants, equally balanced in gender and varying in sce-
narios, poses, and clothing, a decent amount of diverse in-
frared image data was generated. The two approaches (one-
stage and two-stage method) lead to fundamentally different
results in the detection rate and detection time. The YOLO-
models, especially the improved YOLOv9s, deliver overall
the best results. The results show that one-stage methods are
better-suited for this application than two-stage methods due
to the low complexity of the image based on the measure-
ment setup and data preprocessing resulting in better detec-
tion rate and speed. The aspect of the placement of the BB
is crucial as well to enabling precise collaboration between
a worker and a robot. Therefore, this research revealed that
YOLO models are capable of precise placement of the BB.
The disadvantage lies in the fact that it is not clear which
body part is the nearest to the robot. Thus, it is not possible
to differentiate whether the worker wants to collaborate with
the robot with their hands or whether the worker is in danger
because their head is close to the robot. Based on the acquired
dataset and findings of this research, future work will explore
the possibilities of detecting the human pose in collaborative
workspace to enable more specific context-based HRC.

The results emphasize the need to generalize the training
environment by adding more diverse scenes to the dataset.
In particular, the stationary position of the cobot might sig-
nificantly affect the detection rate; suggesting further analy-
sis and optimization should be considered when the cobot is
placed in different positions in the scene.
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