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Abstract. Rising demand and increasing cost pressure for lightweight materials – such as sandwich structures
– drives the manufacturing industry to improve automation in production and quality inspection. Quality in-
spection of honeycomb sandwich components with infrared (IR) thermography can be automated using image
classification algorithms. This paper shows how principal component analysis (PCA) via singular value de-
composition (SVD) is applied to compress data in an IR-video sequence in order to save processing time in the
subsequent step of image classification. According to PCA theory, an orthogonal transformation can project
data into a lower dimensional subspace with linearly uncorrelated principal components preserving all origi-
nal information. The effect of data reduction is confirmed with experimental data from IR-video sequences
of simple square-pulsed thermal loadings on aramid honeycomb-sandwich components with CFRP/GFRP
(carbon-/glass-fiber-reinforced plastic) facings and GFRP inserts. Hence, processing time for image classi-
fication can be saved by reducing the dimension of information used by the classification algorithm without
losing accuracy.

1 Introduction

Lightweight materials – such as sandwich structures – ex-
perienced and are forecasted to see a rising demand due to
overall increasing transportation volumes especially in avia-
tion. Driven by fuel efficiency requirements, the higher share
of lightweight materials also in the traditional transportation
industry will further augment this demand. This overall in-
crease continuously drives the manufacturing industry to im-
prove automation in production and quality inspection. To-
day, sandwich is – thanks to its excellent combination of me-
chanical strength but also damping properties and the low av-
erage material density – a commonly used macro- and micro-
composite construction. Sandwich components with carbon-
or glass-fiber-reinforced plastic (CFRP/GFRP) facings are
typically deployed in rough environments with locally high
loadings. In order to cope with heavy concentrated loads or
to connect with other structures, components are designed
with molded-in inserts, e.g., made from short glass fiber-

reinforced plastic. These inserts replace the honeycomb core
to absorb stresses in a defined way (Bitzer, 1997). Quality in-
spection requires controlling these inserts for presence, cor-
rect type, and deviation of geometrical location inside the
component after the fabrication step. Due to the mostly in-
transparent sandwich facings, normal visual inspection meth-
ods fail to perform the described tasks, whereas infrared
(IR) thermography combined with image classification algo-
rithms delivers promising results for facing thicknesses be-
low half a millimeter.

Active thermography methods are typically classified by
excitation method – namely optical, electromagnetic and me-
chanical excitation. Most commonly applied methods for
composite materials use optical excitation, since these do not
require electrical conductivity and are contactless. Lock-in
thermography with modulated optical excitation is typically
deployed for defects at high depth relative to their size, being
comparatively time consuming due to the load modulation.
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Pulsed thermography methods are characterized by a shorter
cycle time but lower depth resolution. Both are commonly
used methods and established for the testing of small lots
at laboratory level (Maldague, 2001; Ibarra-Castanedo et al.,
2009).

This study evaluates the potential of the square-pulsed
thermography for detection of macroscopic subsurface struc-
tures in large sandwich components and shows an approach
for automated inspection.

2 Background on principal component analysis and
automated detection in IR sequences

As described, thermography is a very well investigated NDT
(nondestructive testing) method with many different techni-
cal variants for the active testing approach (Maldague, 2001;
Ibarra-Castanedo et al., 2009). All techniques aim at max-
imizing contrast directly in the thermal image or to apply
algorithms to create or improve contrast in a second step.
Principal component thermography (PCT) is a computational
approach for analyzing thermal material behavior over time
(Rajic, 2002), further improvement can be obtained with con-
trast enhancement methods and thermal behavior modeling
(Omar et al., 2010; Feuillet et al., 2012). An automation of
the qualitative PCT approach can be achieved by adding a
supervised learning step for image classification (Marinetti
et al., 2004).

2.1 Principal component analysis (PCA) using singular
value decomposition (SVD)

Principal component analysis is a technique widely used in
the context of machine vision (e.g., face recognition or re-
mote sensing), but also for image and video compression.
PCA applies a linear transformation to a group of correlated
variables in such a way that the obtained set of transformed
variables is uncorrelated (Jackson, 1991). The principal com-
ponents are typically computed via a SVD.

In order to perform a PCA using SVD on infrared video se-
quences (spatial temperature information over time) the 3-D
thermographic data need to be rearranged into a 2-D matrix.
Image information (nx-by-ny), wherenx andny represent the
number of photosensitive elements on the sensor inx and
y direction, is reshaped into annx ·ny-by-1 matrix for ev-
ery time step. This operation preserves the original spatial
information of temperature on the specimen surface, since
the reverse transformation is unique. The subsequent trans-
formation of allnt time steps in the video sequence creates
annx ·ny-by-nt matrix A in which time variations are stored
column-wise and spatial variation row-wise.

According to the theory of SVD, any matrixX (P-by-Q,
P≤ Q) can be factorized as follows:

X =ΩΓVT, (1)

whereΩ is aQ-by-Q matrix,Γ is aP-by-Q matrix with pos-
itive or zero diagonal elements representing the singular val-
ues andVT is the transposed of aP-by-P matrix. The decom-
position of IR-data in the matrixA (M-by-N, M = nx ·ny and
N = nt and thereforeM > N) can be determined by comput-
ing and decomposingAAT or using the “reduced” or “econ-
omy” SVD form to obtain

A = USVT, (2)

whereU is anM-by-N matrix containing spatial information
in the orthogonal space. Since spatial information inA are
arranged vertically, the columns ofU represent a set of or-
thogonal statistical modes called empirical orthogonal func-
tions (EOF) (Emery and Thomson, 2004). The rows ofVT

describe the characteristic time behavior of the correspond-
ing orthogonal function – called principal component vectors
building the principal component space. The vectors can pro-
vide a measure for time behavior and characterize the defect
depths in the material. The matrixS is anN-by-N diagonal
matrix with the singular valuessj of A. The principal com-
ponents are obtained scaling the EOFs by multiplyingU with
Sor by projectingA via a multiplication withV into the prin-
cipal component space.

It can be shown that

AAT = US2UT (3)

to derive that the singular valuessj are the square roots of the
positive eigenvalues ofAAT, which is the co-variance matrix
of A multiplied with the factor (M −1). This relationship al-
lows creating a relative measure for the share of cumulated
variance included in the firsti EOFs.

νEOF(i) =

∑i
j=1 sj∑nt

j=1 sj
i ∈ [1,nt] (4)

Earlier investigations state that more than 95 % of variance
can be contained in the first three to five statistical modes
and respective components (Marinetti et al., 2004).

2.2 Instance-based learning with k-nearest neighbor

Instance-based learning is used for classification when an ex-
plicit description of the target function is not available. The
instance-based algorithms store training data for classifica-
tion of future instances. Thek-nearest neighbor algorithm
is the most basic and very common kind of instance-based
learning classifiers.

The k-nearest neighbor algorithm classifies points in an
n-dimensional space based on the Euclidean distance to the
k nearest points in the training sample. Depending on the
selection ofk the classification result can differ (Mitchell,
1997). The algorithm is a powerful tool for classification of
multi-attribute instances with high robustness to noise for
sufficiently large sets of training data.
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Figure 1. Test field for infrared inspection.

The approach for supervised learning on IR sequences is to
generate sets of training data from EOFs with known geome-
tries for different materials and corresponding test settings.

3 Experimental setup for square-pulsed
thermographic inspection

The following section describes the experimental setup for
the square-pulsed thermographic inspection including test
field configuration, the deployed sandwich specimen, and the
test settings

3.1 Test field configuration

Figure 1 shows the test field setup used for the described ex-
periments. An IR camera (1) is installed equilaterally with
two 400 W halogen lamps at a lateral distance ofdl =250 mm
(2), which are used as heat sources. The halogen lamps as
well as the IR camera have a distance ofdm=200 mm to the
tested sandwich specimen. The deployed IR camera is an Op-
tris PI400 with sensor resolution of 382 pixels by 288 pixels,
a thermal sensitivity of 80 mK, and maximum measurement
frequency of 80 Hz. The halogen lamps are equipped with
a reflector plate in order to homogenize the radiation on
the specimen (3) surface. The camera captures the radiation
emitted by the specimen’s surface.

The synchronization unit (4), which is also linked to the
IR-camera recording software, triggers the halogen lamp via
a relay and applies the thermal loading during the heating
phase. The camera records the heating and the cooling phase.
The algorithms for SVD andk-nearest neighbor described
in Sect. 2 subsequently perform the processing (5) using
MATLAB (version 2012b). LabVIEW (version 2011) cou-
pled with a digital I/O (input/output) device synchronizes the
measurements.

Sandwich construction Fabricated component a b 

Facing 

Adhesive 

Facing 

Core 

Insert 

Close-out 

Figure 2. Schematic setup of sandwich structures with close-out
and inserts(a) and fabricated component(b) according to Bitzer
(1997).

3.2 Tested specimens

Sandwich panels (Fig. 2) are generally built from a dense and
strong facing, an adhesive layer and a core. The role of the
adhesive layer is to bond the facing to the top and bottom
sides of the lightweight core.

Facing material can be metallic such as steel, titanium or
aluminum as well as nonmetallic material such as glass fiber,
Kevlar-reinforced plastic or carbon-fiber-reinforced plastic.
For composite materials such as prepregs, the matrix mate-
rial may substitute the effect of the adhesive layer (Bitzer,
1997). The earliest core material used for aviation purposes
was balsa wood after World War I, and is still in use for
some applications. Mostly for nonaerospace applications, ex-
panded polymer foams and aluminum foams can be found
as core material today. Honeycomb cores clearly dominate
all other cores in aerospace. Honeycomb core structures can
be produced from almost all typical lightweight materials
such as aluminum, regular, and reinforced polymers or paper.
Aramid-fiber paper impregnated with phenolic resin is to-
day’s most used honeycomb material (Karlsson and Åström,
1997).

Figure 2a additionally shows an example for a close-
out and a high-strength insert element. Close-outs fulfill the
function of mechanical protection of the component’s edges
and a barrier for humidity penetration. Close-outs are added
cofabricated during master shaping as polymer filling of the
honeycombs as shown in Fig. 2 (Bitzer, 1997).

3.2.1 Sandwich panel fabrication

Autoclave and pressing are the two main methods for bond-
ing sandwich components at industrial scale. Autoclaves are
used for curve-shaped components. Hydraulic presses are de-
ployed for flat components and can produce large panels with
sizes of up to 3000 mm× 15 000 mm (Euro-Composites©,
2013). Several smaller components are typically fitted onto
lager master plates hence separated and trimmed in a sec-
ondary machining step. The tested specimens are produced
on a multilayer press and are machined into manageable sizes
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of less than 800 mm× 800 mm, but only smaller sections are
inspected.

3.2.2 Specimens material

All specimens used for the experiments are fabricated from
typical aircraft-grade materials and produced under condi-
tion of mass production for the aviation industry.

For test purposes, two types of pressed honeycomb sand-
wich modifications with intransparent facings have been se-
lected – one with a CFRP-based facing and the other with a
GFRP-based facing. The aramid honeycomb core used has a
cell-size of 3.2 mm. The CFRP specimen, with a total thick-
ness of 9.7 mm, is covered with a 0.5 mm facing based on
woven carbon-fiber phenolic resin and bonded to the aramid
honeycomb core. The GFRP specimen, with a total thick-
ness of 15.5 mm, is composed of a 0.3 mm woven fiberglass
facing with phenolic resin and also bonded to an aramid hon-
eycomb. For in-service reasons, the GFRP sample is covered
with a thin but intransparent polymer protection foil. Both
are equipped with GFRP inserts and in the potting step lo-
cally filled with thermoplastic polymer for edge close-out.
The diameter of the inserts, locally replacing the honeycomb
core of the specimens, is 18 mm for the CFRP specimen
and 45 mm for the GFRP specimen. The dimensions of edge
close-outs range from approximately 10 mm for the CFRP
specimen to 20 mm for the GFRP specimen; given the accu-
racy of the potting and the filling behavior of the honeycomb
cells the width varies a few millimeters.

3.3 Test settings

Heating timeth and cooling timetc have to be selected de-
pending on the material of the sandwich facing (see Sect. 4.1
for the exact settings) and the facing layer thickness. CFRP
facings require increased heating time or higher power of
halogen lamps. This is due to the high heat flow transversal
to the test direction given the higher conductivity of carbon
compared to glass fibers. The required spatial resolution for
the purpose of quality assurance defines the distance between
camera and specimen resulting from the field of view.

4 Experimental results

4.1 Contrast improvement via PCA

Video sequences are acquired with heating timeth,GFRP and
cooling timetc,GFRP, each of 10 s, on a GFRP sample result-
ing in a sequence lengthtm,GFRPof 20 s for the total measure-
ment. The CFRP sample was tested at a heating timeth,CFRP

and cooling timetc,CFRP, each of 20 s, resulting in a sequence
lengthtm,CFRP of 40 s for the total measurement. In order to
investigate the influence of the amount of provided input data
on the PCA, measurement frequencyfm is varied with the
steps 0.5, 1, 2, and 3 Hz. The number of resulting images or
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Figure 3. Cumulated and normalized varianceνEOF for the first
25 statistical modes.

dimensionnt of the matrixA is given by the following equa-
tion:

nt = (th+ tc) · fm = tm · fm. (5)

Figure 3 shows the normalized varianceνEOF cumulated in
the firsti so-called statistical modes and corresponding EOFs
for the GFRP sample. According to Eq. (3), this measure
cumulates the firsti singular values inS corresponding to
the firsti spatial components or EOFs in columns of the ma-
trix U. The value is normalized with the total variance.

The first dimension of the video matrixA contains the total
number ofnx ·ny=382·288=110 016 elements. At the max-
imum frequency of 3 Hz and the given recording time, the
number of time steps and second dimensionnt of the video
matrixA equals to 60 elements.

The analysis shows that the relatively slow process of heat
conduction through materials with partially very low ther-
mal conductivity does not require measurement frequencies
above 1 Hz to cover more than 99 % of the time behavior of
sandwich material in the first three EOFs. At minimum, the
Shannon theorem in the time domain must be fulfilled.

For a measurement frequency of 1 Hz raw, thermal data
without emissivity correction are shown on a grayscale in
Fig. 4 (GFRP specimen (a) and CFRP specimen (b)) for three
selected and representative instances. The first image of the
heating phase as well as the first and the last image of the
cooling phase are displayed. The SVD is performed in a sub-
sequent step to obtain the EOFs from the thermal data.

Figures 5 and 6 show the effect of decreasing variance on
the specimen with GFRP and CFRP facings respectively. It
visualizes that the information from an IR-video sequence of
square-pulsed thermal images are compressed into three to
four EOFs. The retransformation of the columns of matrix
U as described in Sect. 2.1 delivers the spatial information
that are scaled to a grayscale image. In contrast to the images
from the GFRP sample, the second statistical mode from the
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Figure 4. Thermal images at the time stepsnt for the GFRP spec-
imen (a) and the CFRP specimen(b) (first image in heating, first
and last image in cooling phase).

CFRP sample contains the direct reflections from the heat
sources occurring at the shiny specimen surface.

This section demonstrated that PCA can be applied to
square-pulsed thermography for inspection of sandwich
components by delivering compressed spatial information
with improved contrast between subsurface elements in sand-
wich structures by preserving time-variation data.

4.2 Automated detection

The aim of the automated detection is to obtain segmented
images for the purpose of further inspection. Thek-nearest
neighbor algorithm requires an amount of preclassified data.
These so-called training data are generated from the sand-
wich samples from known geometric locations (e.g., center
of the insert or close-out, plain honeycomb) that are manu-
ally classified.

Figure 7 visualized such set of training data for the first
three EOFs of the GFRP specimen for approximately 5000
preclassified pixels, which are a subset in the dimensionM
(nx ·ny). Each data point corresponds to the intensity values
from the first three images in Fig. 5 for the same selected
pixel. Thek-nearest neighbor algorithm uses the training data
to classify a “new” instance (in this case the nonclassified
data from the sequence) of data – pixel by pixel – based on
the Euclidian distance to thek-nearest neighbors. For the ex-
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Figure 5. First 6 EOFs of the GFRP specimen.

periments,k varies from three to five depending on the other
test settings. In theory, the algorithm can perform the classi-
fication tasks in real numbersRn, whereas onlyi =nt features
for classification are available from the IR sequence. Based
on the result that 99 % or more of the variance is retained in
the first few EOFs, even a reduction of the dimension of the
feature space has to be considered.

Two types of definitions for classification errors are used
to assess the performance of the algorithm depending on the
dimension of the feature space in terms of classification ac-
curacy and computation speed. An algorithm implements the
definitions to obtain repeatable and automated results. All
inspected parts contain subsurface elements that can be as-
sumed as closed contours on the level of pixel size. If all (or
all but one) neighboring pixels in a classified image differ
from the class of the selected pixel, it is obviously falsely
classified. Figure 8 illustrates the definition of classification
errors type I and type II in a segmented image.

Figure 9 shows the results from the classification perfor-
mance analysis. All data are normalized to 100 % fori = 1
to evaluate the relative performance to the smallest possi-
ble dimension of feature space. The experiment varies the
dimension of the feature space used for classification from
one to the maximum possiblent and evaluates the number of
errors in the classified image as well as meters the elapsed
computation time. Using the ten first instead of only the first
statistical mode as feature space for classification increases
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Figure 6. First 6 EOFs of the CFRP specimen.
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Figure 7. Visualization of first three EOFs of the GFRP-training
sample.

the computation effort by a factor of 100, while significantly
increasing the computation effort, the classification accuracy
does not improve but worsens by 15 % for error type I. Using
only the first EOF as feature space for thek-nearest neighbor
classification is comparable to applying a histogram-based
approach with multiple thresholds. Feature space dimensions
between two and five deliver up to 30 % improved results
for classification accuracy regardless of the type of error def-
inition and show the advantage of reduced ambiguity. Re-
sults from Fig. 3 explain the described effect of falling ac-
curacy when adding statistical modes beyond the fifth one.
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Figure 8. Definition of detectable classification errors by type.
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Figure 9. Normalized plot of computation time and number of oc-
curring errors for classification for the GFRP sample based on the
first i statistical modes.

Every additional mode contains only a very small amount
of additional information useful for classification. It mostly
increases noise in the image due to the high rate of data com-
pression.

Figure 10 shows the final results for the classification of
the GFRP specimen (a) and the CFRP specimen (b). The
GFRP specimen – tested at the setting specified above – is
processed using the three first EOFs and based on the three
nearest neighbors relationship. Heating and cooling time for
the CFRP sample are both increased by 5 s to obtain suf-
ficient contrast. Processing requires including the first five
EOFs and using the five nearest neighbors to improve classi-
fication results. The color code in the images for the different
subsurface structures reflects the classification result. Both
tests show that subsurface structures in sandwich compo-
nents with fully intransparent facing materials are detectable.
The images show a specimen of surface of approximately
100 cm2, which is tested in less than 30 s including process-
ing time for classification. Decreasing the spatial resolution
by pixel in the test setup further improves this ratio.

5 Conclusions

The described experiments demonstrate that PCA on sim-
ple square-pulsed thermography in combination with an
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Figure 10. Classification result for the GFRP specimen(a) and the
CFRP specimen(b).

instance-based classification algorithm detects and separates
subsurface structures in sandwich components with intrans-
parent facing material.

All investigations aimed at identifying suitable test set-
tings to ensure fast and reliable results for the detection. The
experiments confirm the effect of data reduction via PCA into
the first three to five statistical modes from previous investi-
gations and suggest limiting the measurement frequency to
avoid noise from oversampling of a slow thermal process.
The numerical evaluation of the cumulated variance in the
transformed sequences fortifies the result. Principal compo-
nent thermography on sandwich components is a very robust
technique to improve contrast on square-pulsed-tested IR se-
quences and has a lower sensitivity to inhomogeneous light-
ning than e.g., simple threshold methods in image process-
ing.

The combination with thek-nearest neighbor algorithm
enhances the setup to a method for automated detection and
classification of subsurface structures. Three to five statistical
modes covering more than 99 % of variance deliver clearly an
optimum result with respect to classification accuracy and a
relatively low computation effort.

Future investigations focus on a prediction of thermal be-
havior of sandwich material based on numerical simulations.
This will help to improve the current set of training data
in the transition between different subsurface structures and
will show approaches for automated population of training
data.
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