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Abstract. Compared to current industry standards future production systems will be more flexible and robust
and will adapt to unforeseen states and events. Industrial robots will interact with each other as well as with
human coworkers. To be able to act in such a dynamic environment, each acting entity ideally needs complete
knowledge of its surroundings, concerning working materials as well as other working entities. Therefore new
monitoring methods providing complete coverage for complex and changing working areas are needed. While
single 3-D sensors already provide detailed information within their field of view, complete coverage of a com-
plete work area can only be achieved by relying on a multitude of these sensors.

However, to provide useful information all data of each sensor must be aligned to each other and fused into
an overall world picture. To be able to align the data correctly, the position and orientation of each sensor must
be known with sufficient exactness. In a quickly changing dynamic environment, the positions of sensors are
not fixed, but must be adjusted to maintain optimal coverage. Therefore, the sensors need to autonomously align
themselves in real time. This can be achieved by adding defined markers with given geometrical patterns to the
environment which can be used for calibration and localization of each sensor. As soon as two sensors detect the
same markers, their relative position to each other can be calculated. Additional anchor markers at fixed positions
serve as global reference points for the base coordinate system.

In this paper we present a prototype for a self-aligning monitoring system based on a robot operating system
(ROS) and Microsoft Kinect. This system is capable of autonomous real-time calibration relative to and with
respect to a global coordinate system as well as to detect and track defined objects within the working area.

1 Introduction Rather than being fixed, the vision system has to be abl

to move accordingly to provide a complete coverage in a dyt

The ability to autonomously acquire new knowledge throughnamic scenario. To meet the above-mentioned requirement
interaction with the environment has been in the focus of sig-we present a prototype for a self-aligning monitoring system
nificant research in the field of dynamic work area. Challeng-pased on an ROS and Microsoft Kinect. The main tasks o
ing research topics arise in pose estimation, sensor alignmerike vision system are autonomous self-calibration both rela
and object recognition. In order to accurately manipulate thetively and with respect to the global coordinate system ang
objects in a dynamic work area, a reliable and precise vi-target detection and tracking within the working area.
sion system is required in a robotic system to detect and The proposed 3-D monitoring system, comprised of mul
track workpieces and to monitor the operation of the robotstiple Microsoft Kinects, is capable of self-alignment through
to accomplish manufacturing tasks such as assembly plarcalibrating Kinect both individually and as a stereo camera
ning (Ewert et al., 2012). Such a vision system not only haswith reference to markers to obtain the relative location in-
to be aware of the presence and location information in theformation between each other, as well as their pose in th
working site, but also needs to have the information of itsglobal coordinate system. Two Kinects placed with a certair
own real-time position and orientation as sensors. angle and distance with regards to each other can enable
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114 Y. Wang et al.: Work area monitoring in dynamic environments

in which a label must be assigned to an object in the scene,
indicating the category to which it belongs. The second in-

volves the position and orientation estimation of the recog-

nized object with respect to some global coordinate system
attached to the scene. We adopt the viewpoint feature his-
togram (VFH) method to deal with the object recognition and

six-degrees-of-freedom (6DoF) pose estimation will be dis-

cussed. It uses a two-dimensional Cartesian histogram grid
as a world model, which is updated continuously and in real

time with range data sampled by Kinect thus enabling real-
time performance of the vision system.

The remainder of the paper is organized as follows: Sect. 2
presents a brief review of recent literature on object recogni-
tion approaches in industrial vision that are relevant to our
proposed vision system. The architecture and workflow of
industrial vision monitoring systems are discussed in Sect. 3.
Figure 1. The test platform of the monitoring system. Software and hardware tools, sensor alignment and object

recognition approaches that are used in assisting the develop-
ment of the proposed vision systems are presented in Sect. 4.
full view of the working site if their image data are correctly Section 5 summarizes the contribution of this work and plans
aligned and fused. Experimental studies are carried out in théor future work.
test platform which uses two Kinects and two ABB robots to
represent the general case of multiple sensors and robots as
Fig. 1 shows. While single 3-D sensors already provide de2 Related work
tailed information within their field of view, complete cov-
erage of a complete work area can only be achieved by reMuch research attention has been drawn to workpiece posi-
lying on a multitude of these sensors. However, to providetion and orientation estimation in the industrial robot area,
useful information all data of each sensor must be aligned tavhich is the primary requirement of industrial robot mon-
each other, integrated and fused into an overall world pictureitoring. A good variety of approaches have been proposed
Therefore, it is of vital importance for sensors to be aware ofto solve object pose detection and their categorization. Lit-
not only its real-time pose in the real world but also their erature differentiates between model- and view-based ap-
relative position and orientation to each other, so as to reconproaches (Bennamoun and Mamic, 2002; Bicego et al.,
struct a 3-D view of the working site. 2005), feature- and appearance-based approaches or intro-

To be able to align the data correctly, the position and ori-duces several classes (Belongie et al., 2002). Among all other
entation of each sensor must be known with sufficient ex-methods, the model of the object and the image data are
actness. To address this problem, a fixed marker is introrepresented by local geometric features. Geometric feature
duced into the system as an anchor. With the marker in sightmatching is used to interpret images through matching the
the Kinect matches the marker’s location in the 2-D imagemodel of object-to-data feature and estimating 3-D pose of
with that in the real-world coordinate system to get the trans-the model. The shape, texture or the appearance of the ob-
formation from real-world coordinate system to the cameraject is always the center of attention. Because the object
system. As individual Kinects are not fixed in the dynamic identification depends on this information to make reliable
work area, there are circumstances where these Kinects doadgments by matching the model and scene data. We apply
not detect the same geometrical marker for direct estimatiothe model-based pose estimation approach in our research,
of relative pose between each other or where one or botlwhich is done by matching geometric representations of a
Kinects do not detect the anchor marker for self-positioningmodel of the object to those of the image data.
in the real world. Different relationships between Kinectsand Besides object pose estimation, sensor self-positioning is
markers are considered and classified and corresponding sanother topic that researchers have been interested in and
lutions are presented in the following section. many efforts have been made in using and comparing marker

Other than being able to be aware of its sensing element'saind markerless pose estimation. Quite a few vision-based ap-
pose relative to each other and with regards to the world coorplications: camera calibration, augmented reality, etc., have
dinates, a vision based monitoring system is required to interbenefited from the use of artificial 2-D and 3-D markers.
pret a scene, which is defined as an instance of the real worldhese markers are designed to be easily detected and require
consisting of one or more 3-D objects, to a determinationvery simple image processing operations. As to geometry,
of which 3-D objects are where in the scene. Therefore twasome applications are specially designed to avoid the trou-
main problems are involved: the first is object recognition, ble of estimating object pose. Typically, markerless object
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Figure 3. Workflow of the vision monitoring system.
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Figure 2. System architecture.

. . . . . 3 System overview
detection and pose estimation start with feature extraction

(Canny, 1986; Forstner, 1994; Harris and Stephens, 19883 1  system architecture
Smith and Brady, 1997). Other methods based on affine in-
variant regions determined around feature points were proJ he monitoring mechanism of the proposed test system i
posed (Kadir et al., 2004; Matas et al., 2002; Mikolajczyk shown in Fig. 2. The markers form geometric inference,
and Schmid, 2004; Tuytelaars and Gool, 2004) in order towhich is used on a robot software development platform
obtain invariance to out-of-plane rotations and translations ROS, to implement self-alignment of multi-sensors. An ROS
However, these algorithms are too time-consuming to meetS also used to create 3-D object point cloud models which
the requirement of real-time computing speed. A registra-cCOMPose a model database for object recognition and pos
tion method was proposed by State et al., 1996, using stere@stimation by matching module after the overall scene imag
images and a magnetic tracker. Vision techniques, multipldS Processed by segmentation and classification module.
fiducial markers and square markers were used respectively
for identifying 2-D matrix, markers robust tracking and fast 3.2 Workflow
tracking (Neumann et al., 1999; Rekimoto, 1998; Klinker et _. _ o — .
al., 1999). In our research, markers with distinct and simple':Igure 3is the workflow of monitoring object's movement in
geometrical patterns are used to attach on objects for recog}he work area.
nizing and tracking, as they are easy to detect and recognize,
thus achieving both robust and fast tracking.

We are proposing a real-time self-aligning multi-sensor

— Kinect launching: An ROS camera driver launches
Kinect and outputs 2-D/3-D image data.

vision monitoring system for a dynamic work area. Model-  _ Calibration: calibrate a single Kinect with an anchor
based pose estimation approach and VFH method are applied  marker in work area. From the calibration the location
for object recognition and 6DoF estimation; anchor mark-  of the points on the marker and its counterparts in the
ers are used for sensor self-alignment and simple geometri-  image, the transformation between marker and camer

cal markers are attached on objects to distinguish and track  coordinates can be obtained. The location in the world
them, which enables the monitoring system to be aware of  coordinate is already known, thus, Kinect implements|
the real-time position and pose status of sensing elements,  self-positioning.

robots and objects in it.
— Alignment: align every Kinect pair as a stereo camera

As two Kinects detect the same marker, they registe
their captured images at the corresponding points an
compute the relative position and orientation betweert]
the Kinects, thus align the image from the two Kinects
to visualize the work area.
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— Object model creation: create 3-D point-cloud model of
object for later recognition and alignment.

3D Depth Camera

— Object recognition: recognize and position the object
from the scene. Object relative position and orientation
will be obtained through aligning the object model to
the point cloud of current scene.

— Coordinate transformation: transform object pose which
is relative to scene in camera coordinate system to
global coordinate system.

4 Tools and methods RGB Camera _
Tilt Motor
4.1 Tools

4.1.1 Kinect Figure 4. Kinect.

The robot has to rely on its sensory feedback to build a model
of its surroundings. The 3-D sensor used in our research is. . . . .
Microsoft Kinect. It is able to capture the surrounding world S'm“"”?“on’ ete. _The Kinect node packa_ge provides a df"’er
in 3-D by combining the information from depth sensors andfor using the Kinect RGB-D sensor with an ROS, which

a standard RGB camera as shown in Fig. 4. The result of thiéaunches an OpenNI device and loads all nodelets to convert
combination is an RGB-D image with 640480 resolution, raw depth/RGBIIR streams to depth image, disparity image

where each pixel is assigned color information and depth in—fand registered point clouds. So it outputs point clouds, RGB

formation. In ideal conditions the resolution of the depth in- Image messages and |ts. gssomateq camera information for
formation can be as high as 3mm, using 11 bit resolution.cal'bratlon’ object recognition and alignment.

Kinect works with 30 Hz frequency for both RGB and depth

cameras. On the left side of the Kinect is a laser infrared light*-1.3  PCL

source that generates electromagnetic waves with the wavery,o point cloud library (PCL)Http://pointclouds.orgis a
length of 830 nm. Information is encoded in light patterns large-scale, open project for 2-D/3-D image and point cloud
that are'deformed as the light reflects from objects in fro”tprocessing. The PCL framework contains numerous state-of-
of the Kinect. Based on these deformations captured by theyg ot 51g0rithms including filtering, feature estimation, sur-

sensor on the right side of RGB camera, a depth map is Crég, e reconstruction, registration, model fitting and segmenta-
ated. According to the light coding technology PrimeSense o, These algorithms can be used, for example, to filter out-

this is not the time-of—flight method used in.other 3.—D €am- jiers from noisy data, stitch 3-D point clouds together, seg-
eras (Tolgyessy and Hubinsky, 2011). The interaction space,ant relevant parts of a scene, extract key points and com-
is defined by the field of view of the Kinect cameras. To in- pute descriptors to recognize objects in the world based on

crease the possible interaction space, the built-in tilt motory, ., geometric appearance, and create surfaces from point
supports an additionat27 and—27°, which also allows for  |5ds and visualize.

the dynamic interaction in front of the sensor.

4.1.4 OpenCV
41.2 ROS
OpenCV (Open Source Computer Vision Library)

Robot operating system (ROS)t(p://www.ros.or§is asoft-  (OpenCV.org) is an open source computer vision and
ware framework for robot software development, providing machine learning software library. OpenCV was built to
standard operating system services such as hardware abstrggovide a common infrastructure for computer vision appli-
tion, low-level device control implementation of commonly cations and to accelerate the use of machine perception in
used functionality, message passing between processes, afgk commercial products. The library has a comprehensive

package management. It is based on a graph architectuigt of both classic and state-of-the-art computer vision and
where nodes that receive, post and process messages framachine learning algorithms.

sensors, control, state, planning and actuactor.

An ROS is composed of two main parts: the operating sys-
tem ROS as described above and ROS-pkg, a suite of user
contributed packages that implement functionality such as si-
multaneous localization and mapping, planning, perception,
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Kinect2
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Figure 6. The relationship between marker and camera coordinates.
Kinect4
Figure 5. Four possible relative cases of multiple cameras. a. Kinect 1 can position itself by an anchor marker;
Kinect 3 has no anchor marker in its sight but a ge-
ometrical marker.
4.2 Methods and mechanism )
b. Both Kinect 3 and 4 detect no anchor marker but
4.2.1 Sensor alignment geometrical markers.

In the proposed vision monitoring system, multiple sensors
are used and must be aligned to each other and fused intbor case 1, Kinect 1 and 2 can use the anchor marker in sight
an overall world picture. In order to align the sensing datafor their own 3-D pose estimation by relating camera mea
accurately, the position and orientation of each sensor are ofurements with measurements in the real, three-dimensiongl
priority for aligning the sensing data accurately. Our work World. In this model, a marker scene view is formed by pro-
employs two types of 2-D markers respectively fixed on thejecting 3-D points of the marker into the image plane using g
work area as landmarks for camera self-positioning and atPerspective transformation as Fig. 6 shows.

tached on the objects as name tags for object identification, Projective transform maps the poing, in the global

namely anchor markers and geometrical markers. The introworld coordinate systeniX,, Y., Z,) to the points on the
duction of anchor markers and geometrical markers ensureinage plane with coordinates;, y;) and to the points on
the reconstruction of the whole scene of the work area. Incamera plane with coordinatéX, Y., Z.). The projection

stead of being fixed in the work area, Kinect moves up andffom global world coordinate system to camera image coor
down, left and right on its base to obtain visual information dinate system can be summarized as in Eq. (1):
of the work scene from different viewpoints. Therefore, the

spatial relationships of anchor markers, geometrical mark-| X, ri1 ri2 r3 h X

ers and Kinects vary from time to time. The relative pose of | Y. | | r1 712 123 Yo 1)
Kinect can be generally summarized and classified into four| Z. |~ | r31 r32 r33 t3 Zm |’

cases, as shown in Fig. 5: 1 O 0 0 1 1

1. Kinect 1 and Kinect 2 have at least one anchor markerFor case 2, Kinect 2 and 3 capture the same non-anchor
in their intersected vision area. marker. For any given 3-D poinP in object coordinates,
we can putP in the camera coordinatd = R| P + T| and
2. Kinect 2 and Kinect 3 have at least one distinguishing P, = R, P + T, for the left and right cameras, respectively. It
marker and no anchor marker in their intersected visionis also evident that the two views &f (from the two cam-
area. eras) are related tB = R” (P, — T), whereR andT are, re-
spectively, the rotation matrix and translation vector between
3. Two Kinects have no common marker in their inter- the cameras. Taking these three equations and solving for
sected vision area: the rotation and translation separately yields the following
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i [ i i ; Fi 8. Merging of 34 point clouds at 34 different viewpoints.
Figure 7. Overlapping of 7 point clouds at different viewpoints. ~~ © ging P D

to get final transformation and a fithess score to evaluate the
aligning results.
R=R/(R)7, (2) Object recognition is achieved by matching features de-
T =T,—RT|. 3) r_|ved from the scene with stored object model represerjta-
tions. One of the most common ways to create the object

Then the relative rotation and translation from Kinect 1 to model for recognition is to extract the target as a cluster from
Kinect 2 can be obtained, and in the chain of Kinects thatthe point cloud. However, in this way only a partial model is
detect the same marker with Kinect 2 directly or indirectly, created out of the object, which provides very limited infor-
there must be one that has an anchor marker in vision rangénation for object identification.
Therefore, the second case can be solved in the same way as
case 1, only with the corresponding transformations.

For case 3, Kinect 1 and Kinect 3 do not have the sam

marker in their vision ranges. We apply a similar strategy |, thjs research, the approach adopted to create a 3-D point
here by searching for an anchor marker in the chain cOMyjoud model from an object is to use an object recording API
posed of overlapped Kinects to estimate the 6DoF pose of ab the package RoboEarth from an ROS along with a Kinect
least one Kinect and then to make pose estimation of others;mera and a marker pattern. The target object is placed in

simple relations (OpenCV.org):

eModeI creation

through coordinate transformation. the middle of the marker template and either the camera or
marker pattern and object are moved to record a complete
4.2.2 Object Recognition and 6DoF pose estimation pose. It is always a better idea to move the object, otherwise

Object recognition is the process of automatic identificationthe |Ilum|_nat|on. might not be constant and therefore color
%ffects might arise.

nd localization of obj from th n im f n . . .
and localization of objects from the sensed images of scene Figure 7 shows the overlapping of point clouds of the ob-

in the real world. For object recognition in this system, scene, ¢ tured at seven different viewnoints and all th int
point clouds with the object’'s presence are downsampledec captured at seve ere ewpoints and afl the po

by corresponding sampling algorithm from PCL for analy- clouds are created at 34_different viewpo_ints and are finally
sis and computation. To obtain the surface normals of th{_rocessed and merged into one 3-D point cloud model as
specified input point clouds, Kd-Trebt{p://ros.org is used ig. 8 shows.

to search for neighboring point and the radius that defines

each point’s neighborhood. The VFHt{p://pointclouds.ofy  Normal estimation

descriptor is employed as a representation for point clus-

ter recognition and its 6DoF pose estimation. The computaGiven a geometric surface, it is usually trivial to infer the di-
tion of VFH descriptors is implemented from the input point rection of the normal at a certain point on the surface as the
cloud and its surface normals. The resulted features are invector perpendicular to the surface in that point. The problem
variant to image scaling, translation, rotation and partially of determining the normal to a point on the surface is approx-
invariant to illumination changes and affine or 3-D projec- imated by the problem of estimating the normal of a plane
tion. With the normals and local feature descriptors, the ob-tangent to the surface, which in turn becomes a least-square
ject point cloud model is aligned into the current scene cloudplane fitting estimation problem. The solution for estimating
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the surface normal is therefore reduced to an analysis of th€or cogw;), cog;) andg; histograms with 45 bins each are
eigenvectors and eigenvalues of a covariance matrix createcdomputed and a histogram of 128 bins for @3, thus the
from the nearest neighbors of the query point. More specif-VFH descriptor has 263 dimensions (Aldoma and Vincze
ically, for each pointp;, we assemble the covariance ma- 2011).

trix C as follows:

Pose estimation

1 k
C=2> i=prpi=pT, (4) _ _ _

k ; l l As the point cloud data of an object model is stored and the
C.-oj=x;-9;,j€{0,1,2}, (5) corresponding Kd-tree representation is built up, objects arg

=

extracted from the given scene as clusters and for each
wherek is the number of point neighbors considered in the them, an individual cluster; for each cluster, their VFH de-
neighborhood ofp;, p represents the 3-D centroid of the scrlptor from the qurrent' camera'posmon is comput.ed for
nearest neighborg,; is the jth eigenvalue of the covariance searching for candidates in the trained Kd-tree. After find the

matrix, andv; the jth eigenvector (Bradski and Kaehler, best candidate for recognition, the position and orientatior
2008). of the object that the model represents can be determined |

registering the model to the scene point cloud.

Yy

Feature description
5 Conclusions

Features define individual components of an image and can
be categorized into two major groups: global features andn this paper, we have introduced a new approach for worl
local features. Global features are defined as properties of aff€@ monitoring in a dynamic environment using multiple 3-
image based on the whole image. Local features are defineB self-aligning Kinects. The anchor marker is used to cal;
as properties of an image based on a component of the imadgrate Kinect to correct for the main deviations from the

and these will be used for object recognition. Therefore, wePinhole model that Kinect uses, to obtain the transforma
need a way to describe the features of an image. tions from a global coordinate system to a camera coordit

VFH descriptor is a novel representation for point clus- Nate system and relative position and orientation between th
ter recognition and its 6DoF pose estimation. VFH has itsKinects. Inthis way, Kinectis able to have an awareness of it
roots in FPFH (Fast Point Feature Histograms) descripto®Wn positions and 6DoF poses as well as the object’s locatio
and add in viewpoint variance while retaining invariance to in the working scenario at any moment, enabling robots td
scale. The main idea of object recognition through VFH de-accommodate changes in the workpiece position/orientatio
scriptors is to formulate the recognition problem as a near2nd to perform complex operations like automated assen
est neighborhood estimation problem. Lgtandn. be the  bling and sorting. Simple geometrical markers are used t
centroids of all surface points and their normals of a givendistinguish objects, which achieves robust and fast trackin
object partial view in the camera coordinate system (withOf objects in dynamic work sites. In conclusion, addressing
|Incl| = 1). Then @;,v;, w;) defines a Darboux coordinate the requirements of real-time monitoring of a dynamic indus-
frame for each poinp;: trial production area, the proposed vision monitoring system

is able to provide overall vision of the work area and esti-

D

=

u; = ne, (6) mate 6DoF pose of multiple objects with defined geometrical
pi—p markers and anchor markers.
1 (o} ..
Vi = m X Ui, (7) To evaluate and optimize the performance of our propose(
pi— Pe approaches in this vision system, we will involve the fol-
Wi = Ui X V. 8 lowing aspects as future research topics. Firstly, adopt colgr

information for object recognition and extraction; secondly,

The normal angular deviations ges), cog8;) and cosy;)
for each pointp; and its normak; given by

cosda;) =v; - n;, )

cos(By) =n; - L= (10)
[l pcll

cosgi) =u; - P (11)
[lpi — pell

0; =atanAw; -n;, u; -n;). (12)

Note that co&y;), cogB;) and6g;are invariant to viewpoint

changes, given that the set of visible points does not change.

WWW.j-sens-sens-syst.net/3/113/2014/

implement boundary analysis using the combination of
a photogrammetric processing algorithm and point cloud
spatial information; thirdly, compare the results of using
different models to align to scene image: 3-D CAD model,
model generated based on both digital image and point clou
obtained by depth camera, scanned object 3-D point clou
model and object model extracted from the scene image.
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