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Abstract. Compared to current industry standards future production systems will be more flexible and robust
and will adapt to unforeseen states and events. Industrial robots will interact with each other as well as with
human coworkers. To be able to act in such a dynamic environment, each acting entity ideally needs complete
knowledge of its surroundings, concerning working materials as well as other working entities. Therefore new
monitoring methods providing complete coverage for complex and changing working areas are needed. While
single 3-D sensors already provide detailed information within their field of view, complete coverage of a com-
plete work area can only be achieved by relying on a multitude of these sensors.

However, to provide useful information all data of each sensor must be aligned to each other and fused into
an overall world picture. To be able to align the data correctly, the position and orientation of each sensor must
be known with sufficient exactness. In a quickly changing dynamic environment, the positions of sensors are
not fixed, but must be adjusted to maintain optimal coverage. Therefore, the sensors need to autonomously align
themselves in real time. This can be achieved by adding defined markers with given geometrical patterns to the
environment which can be used for calibration and localization of each sensor. As soon as two sensors detect the
same markers, their relative position to each other can be calculated. Additional anchor markers at fixed positions
serve as global reference points for the base coordinate system.

In this paper we present a prototype for a self-aligning monitoring system based on a robot operating system
(ROS) and Microsoft Kinect. This system is capable of autonomous real-time calibration relative to and with
respect to a global coordinate system as well as to detect and track defined objects within the working area.

1 Introduction

The ability to autonomously acquire new knowledge through
interaction with the environment has been in the focus of sig-
nificant research in the field of dynamic work area. Challeng-
ing research topics arise in pose estimation, sensor alignment
and object recognition. In order to accurately manipulate the
objects in a dynamic work area, a reliable and precise vi-
sion system is required in a robotic system to detect and
track workpieces and to monitor the operation of the robots
to accomplish manufacturing tasks such as assembly plan-
ning (Ewert et al., 2012). Such a vision system not only has
to be aware of the presence and location information in the
working site, but also needs to have the information of its
own real-time position and orientation as sensors.

Rather than being fixed, the vision system has to be able
to move accordingly to provide a complete coverage in a dy-
namic scenario. To meet the above-mentioned requirements,
we present a prototype for a self-aligning monitoring system
based on an ROS and Microsoft Kinect. The main tasks of
the vision system are autonomous self-calibration both rela-
tively and with respect to the global coordinate system and
target detection and tracking within the working area.

The proposed 3-D monitoring system, comprised of mul-
tiple Microsoft Kinects, is capable of self-alignment through
calibrating Kinect both individually and as a stereo camera
with reference to markers to obtain the relative location in-
formation between each other, as well as their pose in the
global coordinate system. Two Kinects placed with a certain
angle and distance with regards to each other can enable a
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Figure 1. The test platform of the monitoring system 3 
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Figure 2. System Architecture 6 

Figure 1. The test platform of the monitoring system.

full view of the working site if their image data are correctly
aligned and fused. Experimental studies are carried out in the
test platform which uses two Kinects and two ABB robots to
represent the general case of multiple sensors and robots as
Fig. 1 shows. While single 3-D sensors already provide de-
tailed information within their field of view, complete cov-
erage of a complete work area can only be achieved by re-
lying on a multitude of these sensors. However, to provide
useful information all data of each sensor must be aligned to
each other, integrated and fused into an overall world picture.
Therefore, it is of vital importance for sensors to be aware of
not only its real-time pose in the real world but also their
relative position and orientation to each other, so as to recon-
struct a 3-D view of the working site.

To be able to align the data correctly, the position and ori-
entation of each sensor must be known with sufficient ex-
actness. To address this problem, a fixed marker is intro-
duced into the system as an anchor. With the marker in sight,
the Kinect matches the marker’s location in the 2-D image
with that in the real-world coordinate system to get the trans-
formation from real-world coordinate system to the camera
system. As individual Kinects are not fixed in the dynamic
work area, there are circumstances where these Kinects do
not detect the same geometrical marker for direct estimation
of relative pose between each other or where one or both
Kinects do not detect the anchor marker for self-positioning
in the real world. Different relationships between Kinects and
markers are considered and classified and corresponding so-
lutions are presented in the following section.

Other than being able to be aware of its sensing element’s
pose relative to each other and with regards to the world coor-
dinates, a vision based monitoring system is required to inter-
pret a scene, which is defined as an instance of the real world
consisting of one or more 3-D objects, to a determination
of which 3-D objects are where in the scene. Therefore two
main problems are involved: the first is object recognition,

in which a label must be assigned to an object in the scene,
indicating the category to which it belongs. The second in-
volves the position and orientation estimation of the recog-
nized object with respect to some global coordinate system
attached to the scene. We adopt the viewpoint feature his-
togram (VFH) method to deal with the object recognition and
six-degrees-of-freedom (6DoF) pose estimation will be dis-
cussed. It uses a two-dimensional Cartesian histogram grid
as a world model, which is updated continuously and in real
time with range data sampled by Kinect thus enabling real-
time performance of the vision system.

The remainder of the paper is organized as follows: Sect. 2
presents a brief review of recent literature on object recogni-
tion approaches in industrial vision that are relevant to our
proposed vision system. The architecture and workflow of
industrial vision monitoring systems are discussed in Sect. 3.
Software and hardware tools, sensor alignment and object
recognition approaches that are used in assisting the develop-
ment of the proposed vision systems are presented in Sect. 4.
Section 5 summarizes the contribution of this work and plans
for future work.

2 Related work

Much research attention has been drawn to workpiece posi-
tion and orientation estimation in the industrial robot area,
which is the primary requirement of industrial robot mon-
itoring. A good variety of approaches have been proposed
to solve object pose detection and their categorization. Lit-
erature differentiates between model- and view-based ap-
proaches (Bennamoun and Mamic, 2002; Bicego et al.,
2005), feature- and appearance-based approaches or intro-
duces several classes (Belongie et al., 2002). Among all other
methods, the model of the object and the image data are
represented by local geometric features. Geometric feature
matching is used to interpret images through matching the
model of object-to-data feature and estimating 3-D pose of
the model. The shape, texture or the appearance of the ob-
ject is always the center of attention. Because the object
identification depends on this information to make reliable
judgments by matching the model and scene data. We apply
the model-based pose estimation approach in our research,
which is done by matching geometric representations of a
model of the object to those of the image data.

Besides object pose estimation, sensor self-positioning is
another topic that researchers have been interested in and
many efforts have been made in using and comparing marker
and markerless pose estimation. Quite a few vision-based ap-
plications: camera calibration, augmented reality, etc., have
benefited from the use of artificial 2-D and 3-D markers.
These markers are designed to be easily detected and require
very simple image processing operations. As to geometry,
some applications are specially designed to avoid the trou-
ble of estimating object pose. Typically, markerless object
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Figure 2. System architecture.

detection and pose estimation start with feature extraction
(Canny, 1986; Forstner, 1994; Harris and Stephens, 1988;
Smith and Brady, 1997). Other methods based on affine in-
variant regions determined around feature points were pro-
posed (Kadir et al., 2004; Matas et al., 2002; Mikolajczyk
and Schmid, 2004; Tuytelaars and Gool, 2004) in order to
obtain invariance to out-of-plane rotations and translations.
However, these algorithms are too time-consuming to meet
the requirement of real-time computing speed. A registra-
tion method was proposed by State et al., 1996, using stereo
images and a magnetic tracker. Vision techniques, multiple
fiducial markers and square markers were used respectively
for identifying 2-D matrix, markers robust tracking and fast
tracking (Neumann et al., 1999; Rekimoto, 1998; Klinker et
al., 1999). In our research, markers with distinct and simple
geometrical patterns are used to attach on objects for recog-
nizing and tracking, as they are easy to detect and recognize,
thus achieving both robust and fast tracking.

We are proposing a real-time self-aligning multi-sensor
vision monitoring system for a dynamic work area. Model-
based pose estimation approach and VFH method are applied
for object recognition and 6DoF estimation; anchor mark-
ers are used for sensor self-alignment and simple geometri-
cal markers are attached on objects to distinguish and track
them, which enables the monitoring system to be aware of
the real-time position and pose status of sensing elements,
robots and objects in it.
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Figure 3. Workflow of the Vision Monitoring System 3 
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Figure 3. Workflow of the vision monitoring system.

3 System overview

3.1 System architecture

The monitoring mechanism of the proposed test system is
shown in Fig. 2. The markers form geometric inference,
which is used on a robot software development platform,
ROS, to implement self-alignment of multi-sensors. An ROS
is also used to create 3-D object point cloud models which
compose a model database for object recognition and pose
estimation by matching module after the overall scene image
is processed by segmentation and classification module.

3.2 Workflow

Figure 3 is the workflow of monitoring object’s movement in
the work area.

– Kinect launching: An ROS camera driver launches
Kinect and outputs 2-D/3-D image data.

– Calibration: calibrate a single Kinect with an anchor
marker in work area. From the calibration the location
of the points on the marker and its counterparts in the
image, the transformation between marker and camera
coordinates can be obtained. The location in the world
coordinate is already known, thus, Kinect implements
self-positioning.

– Alignment: align every Kinect pair as a stereo camera.
As two Kinects detect the same marker, they register
their captured images at the corresponding points and
compute the relative position and orientation between
the Kinects, thus align the image from the two Kinects
to visualize the work area.
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– Object model creation: create 3-D point-cloud model of
object for later recognition and alignment.

– Object recognition: recognize and position the object
from the scene. Object relative position and orientation
will be obtained through aligning the object model to
the point cloud of current scene.

– Coordinate transformation: transform object pose which
is relative to scene in camera coordinate system to
global coordinate system.

4 Tools and methods

4.1 Tools

4.1.1 Kinect

The robot has to rely on its sensory feedback to build a model
of its surroundings. The 3-D sensor used in our research is
Microsoft Kinect. It is able to capture the surrounding world
in 3-D by combining the information from depth sensors and
a standard RGB camera as shown in Fig. 4. The result of this
combination is an RGB-D image with 640× 480 resolution,
where each pixel is assigned color information and depth in-
formation. In ideal conditions the resolution of the depth in-
formation can be as high as 3 mm, using 11 bit resolution.
Kinect works with 30 Hz frequency for both RGB and depth
cameras. On the left side of the Kinect is a laser infrared light
source that generates electromagnetic waves with the wave-
length of 830 nm. Information is encoded in light patterns
that are deformed as the light reflects from objects in front
of the Kinect. Based on these deformations captured by the
sensor on the right side of RGB camera, a depth map is cre-
ated. According to the light coding technology PrimeSense,
this is not the time-of-flight method used in other 3-D cam-
eras (Tolgyessy and Hubinsky, 2011). The interaction space
is defined by the field of view of the Kinect cameras. To in-
crease the possible interaction space, the built-in tilt motor
supports an additional+27 and−27◦, which also allows for
the dynamic interaction in front of the sensor.

4.1.2 ROS

Robot operating system (ROS) (http://www.ros.org) is a soft-
ware framework for robot software development, providing
standard operating system services such as hardware abstrac-
tion, low-level device control implementation of commonly
used functionality, message passing between processes, and
package management. It is based on a graph architecture
where nodes that receive, post and process messages from
sensors, control, state, planning and actuactor.

An ROS is composed of two main parts: the operating sys-
tem ROS as described above and ROS-pkg, a suite of user
contributed packages that implement functionality such as si-
multaneous localization and mapping, planning, perception,
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Figure 4. Kinect.

simulation, etc. The Kinect node package provides a driver
for using the Kinect RGB-D sensor with an ROS, which
launches an OpenNI device and loads all nodelets to convert
raw depth/RGB/IR streams to depth image, disparity image
and registered point clouds. So it outputs point clouds, RGB
image messages and its associated camera information for
calibration, object recognition and alignment.

4.1.3 PCL

The point cloud library (PCL) (http://pointclouds.org) is a
large-scale, open project for 2-D/3-D image and point cloud
processing. The PCL framework contains numerous state-of-
the-art algorithms including filtering, feature estimation, sur-
face reconstruction, registration, model fitting and segmenta-
tion. These algorithms can be used, for example, to filter out-
liers from noisy data, stitch 3-D point clouds together, seg-
ment relevant parts of a scene, extract key points and com-
pute descriptors to recognize objects in the world based on
their geometric appearance, and create surfaces from point
clouds and visualize.

4.1.4 OpenCV

OpenCV (Open Source Computer Vision Library)
(OpenCV.org) is an open source computer vision and
machine learning software library. OpenCV was built to
provide a common infrastructure for computer vision appli-
cations and to accelerate the use of machine perception in
the commercial products. The library has a comprehensive
set of both classic and state-of-the-art computer vision and
machine learning algorithms.
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Figure 5. Four possible relative cases of multiple cameras.

4.2 Methods and mechanism

4.2.1 Sensor alignment

In the proposed vision monitoring system, multiple sensors
are used and must be aligned to each other and fused into
an overall world picture. In order to align the sensing data
accurately, the position and orientation of each sensor are of
priority for aligning the sensing data accurately. Our work
employs two types of 2-D markers respectively fixed on the
work area as landmarks for camera self-positioning and at-
tached on the objects as name tags for object identification,
namely anchor markers and geometrical markers. The intro-
duction of anchor markers and geometrical markers ensures
the reconstruction of the whole scene of the work area. In-
stead of being fixed in the work area, Kinect moves up and
down, left and right on its base to obtain visual information
of the work scene from different viewpoints. Therefore, the
spatial relationships of anchor markers, geometrical mark-
ers and Kinects vary from time to time. The relative pose of
Kinect can be generally summarized and classified into four
cases, as shown in Fig. 5:

1. Kinect 1 and Kinect 2 have at least one anchor marker
in their intersected vision area.

2. Kinect 2 and Kinect 3 have at least one distinguishing
marker and no anchor marker in their intersected vision
area.

3. Two Kinects have no common marker in their inter-
sected vision area:
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Figure 6. The relationship between marker and camera coordinates.

a. Kinect 1 can position itself by an anchor marker;
Kinect 3 has no anchor marker in its sight but a ge-
ometrical marker.

b. Both Kinect 3 and 4 detect no anchor marker but
geometrical markers.

For case 1, Kinect 1 and 2 can use the anchor marker in sight
for their own 3-D pose estimation by relating camera mea-
surements with measurements in the real, three-dimensional
world. In this model, a marker scene view is formed by pro-
jecting 3-D points of the marker into the image plane using a
perspective transformation as Fig. 6 shows.

Projective transform maps the pointsQm in the global
world coordinate system(Xm,Ym,Zm) to the points on the
image plane with coordinates(xi,yi) and to the points on
camera plane with coordinates(Xc,Yc,Zc). The projection
from global world coordinate system to camera image coor-
dinate system can be summarized as in Eq. (1):

Xc

Yc

Zc

1

 =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1




Xm

Ym

Zm

1

 . (1)

For case 2, Kinect 2 and 3 capture the same non-anchor
marker. For any given 3-D pointP in object coordinates,
we can putP in the camera coordinatesPl = RlP + T l and
Pr = RrP +T r for the left and right cameras, respectively. It
is also evident that the two views ofP (from the two cam-
eras) are related toPl = RT (Pr −T ), whereR andT are, re-
spectively, the rotation matrix and translation vector between
the cameras. Taking these three equations and solving for
the rotation and translation separately yields the following
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Figure 7. Overlapping of 7 point clouds at different viewpoints.

simple relations (OpenCV.org):

R = Rr(Rl)
T , (2)

T = T r − RT l . (3)

Then the relative rotation and translation from Kinect 1 to
Kinect 2 can be obtained, and in the chain of Kinects that
detect the same marker with Kinect 2 directly or indirectly,
there must be one that has an anchor marker in vision range.
Therefore, the second case can be solved in the same way as
case 1, only with the corresponding transformations.

For case 3, Kinect 1 and Kinect 3 do not have the same
marker in their vision ranges. We apply a similar strategy
here by searching for an anchor marker in the chain com-
posed of overlapped Kinects to estimate the 6DoF pose of at
least one Kinect and then to make pose estimation of others
through coordinate transformation.

4.2.2 Object Recognition and 6DoF pose estimation

Object recognition is the process of automatic identification
and localization of objects from the sensed images of scenes
in the real world. For object recognition in this system, scene
point clouds with the object’s presence are downsampled
by corresponding sampling algorithm from PCL for analy-
sis and computation. To obtain the surface normals of the
specified input point clouds, Kd-Tree (http://ros.org) is used
to search for neighboring point and the radius that defines
each point’s neighborhood. The VFH (http://pointclouds.org)
descriptor is employed as a representation for point clus-
ter recognition and its 6DoF pose estimation. The computa-
tion of VFH descriptors is implemented from the input point
cloud and its surface normals. The resulted features are in-
variant to image scaling, translation, rotation and partially
invariant to illumination changes and affine or 3-D projec-
tion. With the normals and local feature descriptors, the ob-
ject point cloud model is aligned into the current scene cloud
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Figure 8. Merging of 34 point clouds at 34 different viewpoints.

to get final transformation and a fitness score to evaluate the
aligning results.

Object recognition is achieved by matching features de-
rived from the scene with stored object model representa-
tions. One of the most common ways to create the object
model for recognition is to extract the target as a cluster from
the point cloud. However, in this way only a partial model is
created out of the object, which provides very limited infor-
mation for object identification.

Model creation

In this research, the approach adopted to create a 3-D point
cloud model from an object is to use an object recording API
of the package RoboEarth from an ROS along with a Kinect
camera and a marker pattern. The target object is placed in
the middle of the marker template and either the camera or
marker pattern and object are moved to record a complete
pose. It is always a better idea to move the object, otherwise
the illumination might not be constant and therefore color
effects might arise.

Figure 7 shows the overlapping of point clouds of the ob-
ject captured at seven different viewpoints and all the point
clouds are created at 34 different viewpoints and are finally
processed and merged into one 3-D point cloud model as
Fig. 8 shows.

Normal estimation

Given a geometric surface, it is usually trivial to infer the di-
rection of the normal at a certain point on the surface as the
vector perpendicular to the surface in that point. The problem
of determining the normal to a point on the surface is approx-
imated by the problem of estimating the normal of a plane
tangent to the surface, which in turn becomes a least-square
plane fitting estimation problem. The solution for estimating
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the surface normal is therefore reduced to an analysis of the
eigenvectors and eigenvalues of a covariance matrix created
from the nearest neighbors of the query point. More specif-
ically, for each pointpi , we assemble the covariance ma-
trix C as follows:

C =
1

k

k∑
i=1

(pi − p̄)·(pi − p̄)T , (4)

C · v̄j = λj · v̄j ,j ∈ {0,1,2}, (5)

wherek is the number of point neighbors considered in the
neighborhood ofpj , p represents the 3-D centroid of the
nearest neighbors,λj is thej th eigenvalue of the covariance
matrix, andvj the j th eigenvector (Bradski and Kaehler,
2008).

Feature description

Features define individual components of an image and can
be categorized into two major groups: global features and
local features. Global features are defined as properties of an
image based on the whole image. Local features are defined
as properties of an image based on a component of the image
and these will be used for object recognition. Therefore, we
need a way to describe the features of an image.

VFH descriptor is a novel representation for point clus-
ter recognition and its 6DoF pose estimation. VFH has its
roots in FPFH (Fast Point Feature Histograms) descriptor
and add in viewpoint variance while retaining invariance to
scale. The main idea of object recognition through VFH de-
scriptors is to formulate the recognition problem as a near-
est neighborhood estimation problem. Letpc andnc be the
centroids of all surface points and their normals of a given
object partial view in the camera coordinate system (with
||nc|| = 1). Then (ui,vj ,wi) defines a Darboux coordinate
frame for each pointpi :

ui = nc, (6)

vi =
pi − pc

||pi − pc||
× ui, (7)

wi = ui × vi . (8)

The normal angular deviations cos(αi), cos(βi) and cos(ϕi)

for each pointpi and its normalni given by

cos(αi) = vi · ni, (9)

cos(βi) = ni ·
pc

||pc||
, (10)

cos(ϕi) = ui ·
pi − pc

||pi − pc||
, (11)

θi = a tan2(wi · ni,ui · ni). (12)

Note that cos(αi), cos(βi) and θiare invariant to viewpoint
changes, given that the set of visible points does not change.

For cos(αi), cos(βi) andθihistograms with 45 bins each are
computed and a histogram of 128 bins for cos(βi), thus the
VFH descriptor has 263 dimensions (Aldoma and Vincze,
2011).

Pose estimation

As the point cloud data of an object model is stored and the
corresponding Kd-tree representation is built up, objects are
extracted from the given scene as clusters and for each of
them, an individual cluster; for each cluster, their VFH de-
scriptor from the current camera position is computed for
searching for candidates in the trained Kd-tree. After find the
best candidate for recognition, the position and orientation
of the object that the model represents can be determined by
registering the model to the scene point cloud.

5 Conclusions

In this paper, we have introduced a new approach for work
area monitoring in a dynamic environment using multiple 3-
D self-aligning Kinects. The anchor marker is used to cal-
ibrate Kinect to correct for the main deviations from the
pinhole model that Kinect uses, to obtain the transforma-
tions from a global coordinate system to a camera coordi-
nate system and relative position and orientation between the
Kinects. In this way, Kinect is able to have an awareness of its
own positions and 6DoF poses as well as the object’s location
in the working scenario at any moment, enabling robots to
accommodate changes in the workpiece position/orientation
and to perform complex operations like automated assem-
bling and sorting. Simple geometrical markers are used to
distinguish objects, which achieves robust and fast tracking
of objects in dynamic work sites. In conclusion, addressing
the requirements of real-time monitoring of a dynamic indus-
trial production area, the proposed vision monitoring system
is able to provide overall vision of the work area and esti-
mate 6DoF pose of multiple objects with defined geometrical
markers and anchor markers.

To evaluate and optimize the performance of our proposed
approaches in this vision system, we will involve the fol-
lowing aspects as future research topics. Firstly, adopt color
information for object recognition and extraction; secondly,
implement boundary analysis using the combination of
a photogrammetric processing algorithm and point cloud
spatial information; thirdly, compare the results of using
different models to align to scene image: 3-D CAD model,
model generated based on both digital image and point cloud
obtained by depth camera, scanned object 3-D point cloud
model and object model extracted from the scene image.
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