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Abstract. Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a
generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles
this description includes a multi-port circuit or network representation with lumped elements for a beam part
of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural
frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are
developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear
network theory is applied in order to determine network parameters and to simplify the circuit representation.
The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit
simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this
multi-domain system through basic principles of general system theory.

1 Introduction

Two-layer flexure beams have been present in engineer-
ing for more than 200 years. In the year 1766, a thermal
bimetal strip was used for the first time in a practical applica-
tion when it compensated environmental temperature influ-
ences in chronometers (Kašpar, 1960). Since then, a variety
of two-layer problems that show the same effect have be-
come known, but their operation is based on various physical
causes (Fig. 1). In contrast with volume transducers, two-
layer beams achieve significantly larger displacements, typ-
ically at the expense of a reduction in blocked force output.
The mechanical transduction between deflection and stress
is an essential property for sensor and energy-harvesting
applications of two-layer beams, too. All these beams are
described in the following in a unified representation as
partially discussed byGerlach and Lenk(1985). The large

spectrum of technically possible realizations is limited to the
problem of the plate strip.

The paper is organized as follows. In Sect.2 the defini-
tion of themodeling of a unified one-dimensional two-layer
beam elementis narrowed down. The model is based on the
material behavior state equations(Sect.3) and ideal bound-
ary conditions. Section4 describes adifferential beam ele-
ment without shear forces and external pressure. From the
beam element thegeneral differential equation system of the
actuating two-layer beam element for large anglesand the
differential equation system of the two-layer beam element
for small anglesare derived in Sects.5 and6, respectively.
The latter is interpreted in Sect.7 as alinear equivalent cir-
cuit of actuating two-layer beam elements, which is the main
focus of the publication. The circuit description is extended
in Sect.8 to the compactlow-frequency linear equivalent
circuit of actuating two-layer beams. A number of coupled
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Figure 1. Two-layer flexure beams with excitation by(a) tem-
peratureϑ or humidity 9, (b) pressurep0, (c) piezoelectric and
(d) piezomagnetic interactions.

finite beam elements model the dynamic behavior including
the first natural frequency of a beam in Sect.9 as a demon-
stration of ahigh-frequency linear equivalent circuit of an
actuating two-layer beam. For piezoelectric and piezomag-
netic interactionsmulti-port models of reversible transduc-
ersare developed in Sect.10. This includes both piezoelec-
tric and piezomagnetic unimorph transducers. Linear net-
work theory is applied in order to determine network param-
eters and to simplify the circuit representation. Such a graph-
ical representation of the system supports the understanding
of the involved physical phenomena. Furthermore, it enables
the usage of powerful circuit simulators to calculate the dy-
namic behavior of the system efficiently.

2 Model of a unified one-dimensional
two-layer beam element

In the following, a one-dimensional two-layer beam ele-
ment is part of a plate strip or beam. It consists of two ho-
mogeneous layers with different elastomechanical properties
(Fig. 2). The influence quantity3, e.g., temperature, humid-
ity etc., which is constant with respect to the space coordi-
nates, induces a strain in the beam element.

At the beam sections oriented in directionx1, a given dis-
tributed stressT1(x3) and a transverse forceF3 act. The task
is to determine the deflectionsξ1(x1) andξ3(x1), depending
on the load pressures and forces incorporating the boundary
conditions.

In order to solve the problem the following assumptions
are made:

– The bond layer between the laminae is infinitesimally
small and there is no flaw or gap in the bond layer. There
is no shear deformation in the bond layer, i.e., the lami-
nae cannot slip relative to each other.
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ment is narrowed. The model is based on the Material be-
havior state equations (Sec. 3) and ideal boundary condi-40

tions. Sec. 4 describes a Differential beam element without
shear forces and external pressure. From the beam element
the General differential equation system of the actuating
two-layer beam element for large angles and the Differ-
ential equation system of the two-layer beam element for45

small angles are derived in Sec. 5 and 6, respectively. The
latter is interpreted in Sec. 7 as a Linear equivalent cir-
cuit of actuating two-layer beam elements, which is the
main intention of the publication. The circuit description is
extended in Sec. 8 to the compact Low-frequency linear50

equivalent circuit of actuating two-layer beams. A number
of coupled finite beam elements model the dynamic behavior
including the first natural frequency of a beam in Sec. 9 as
a demonstration of a High-frequency linear equivalent cir-
cuit of an actuating two-layer beam. For piezoelectric and55

piezomagnetic interactions Four-port models of reversible
transducers are developed in Sec. 10. This includes both,
piezoelectric and piezomagnetic unimorph transducrs. Lin-
ear network theory is applied in order to determine network
parameters and to simplify the circuit representation. Such60

a graphical representation of the system supports the under-
standing of the involved physical phenomena. Furthermore,
it enables the usage of powerful circuit simulators to calcu-
late the dynamic behavior of the system efficiently.

2 Model of a unified one-dimensional two-layer beam65

element

In the following a one-dimensional two-layer beam element
is part of a plate strip or beam. It consists of two homoge-
neous layers with different elastomechanical properties (Fig.
2). The influence quantity Λ, e.g. temperature, humidity etc.,70

which is constant with respect to the space coordinates, in-
duces a strain in the beam element.

At the beam sections oriented in direction x1 a given dis-
tributed stress T1(x3) and a transverse force F3 act. The task
is to determine the deflections ξ1(x1) and ξ3(x1) depending75

on the load pressures and forces incorporating the boundary
conditions.

In order to solve the problem the following assumptions
are made:

- The bond layer between the laminae is infinitesimally80

small and there is no flaw or gap in the bond layer. There
is no shear deformation in the bond layer, i.e. the lami-
nae cannot slip relative to each other.

- The bond layer has infinite stiffness and hence the com-
posite beam behaves like a single-material beam ele-85

ment with integrated properties.

- Ideal elastic material behavior, i.e. validity of Hooke’s
law.
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Fig. 2. a) Dynamic and b) kinematic conditions at the two layer
beam element where Λ is the influence quantity; x1,x2,x3 are
coordinates; ξ1, ξ3 are deflections; h1,h2 are the thicknesses of
the layers 1 and 2, resp.; c is the location of the neutral axis;
p,p0,pa = p0 + p,pb = p0 are pressures; F3 is a force; and T1 is
the normal stress

- According to Bernoulli’s hypothesis the structure is
rigidly stiff. Rotational inertia is neglected and cross90

sections, originally perpendicular to the neutral plane
or zero line, remain planar during deformation. In con-
junction with Saint-Venant’s principle it is assumed that
a distributed stress at the boundary T1(x3) passes over
after a short distance ∆ x1 in a stress which is deter-95

mined by a displacement function ξ1(x1;x3). Mean and
moment of this displacement function are determined
by the related quantities of the boundary distribution.

- The stress in x3-direction is negligible (T3 = 0).

Figure 2. (a) Dynamic and(b) kinematic conditions at the two-
layer beam element, where3 is the influence quantity;x1,x2,x3
are coordinates;ξ1,ξ3 are deflections;h1,h2 are the thicknesses of
the layers 1 and 2, respectively.;c is the location of the neutral axis;
p,p0,pa = p0 + p,pb = p0 are pressures;F3 is a force; andT1 is
the normal stress.

– The bond layer has infinite stiffness and hence the com-
posite beam behaves like a single-material beam ele-
ment with integrated properties.

– Ideal elastic material behavior, i.e., validity of Hooke’s
law.

– According to Bernoulli’s hypothesis, the structure is
rigidly stiff. Rotational inertia is neglected and cross
sections, originally perpendicular to the neutral plane or
zero line, remain planar during deformation. In conjunc-
tion with Saint-Venant’s principle, it is assumed that,
after a short distance1x1, a distributed stress at the
boundaryT1(x3) changes into a stress which is deter-
mined by a displacement function. Mean and moment
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of this displacement function are determined by the re-
lated quantities of the boundary distribution.

– The stress inx3 direction is negligible(T3 = 0).

– Contributions of shear deformations to the displacement
ξ3(x1) can be neglected, i.e., the shear strains yieldS4 =

S5 = S6 = 0.

– The coordinate originx3 = 0 is placed at the distance
c from the bond layer. In this position the translational
system points are located at the beam ends.

– Deflections of these system points atx3 = 0 are labeled
either withξ1 andξ3 or ξ1(x1) andξ3(x1); deflections
of arbitrary positions within the beam are labeled with
(ξ1(x1;x3),ξ3(x1;x3)).

3 Isotropic material behavior state equations

All following considerations assume that isotropic material
behavior can be described by the following state equations:

S1 =
1

E0
T1 −

ν0

E0
T2 −

ν0

E0
T3 + α03, (1a)

S2 = −
ν0

E0
T1 +

1

E0
T2 −

ν0

E0
T3 + α03, (1b)

S3 = −
ν0

E0
T1 −

ν0

E0
T2 +

1

E0
T3 + α03. (1c)

Reversibility is not considered at this stage but only actua-
tion behavior. In order to be consistent with one-dimensional
bending theory,S2 and S3 and T2 and T3 are defined by
boundary conditions or viewed as strain-induced disturbance
variables.

In the simplest case of a very small beam element without
constant pressurep0 (Fig. 3a), no stress components inx2
andx3 direction occur(T2 = T3 = 0) and Eq. (1a) simplifies
to

S1 =
1

E0
T1 + α03. (2)

In the case of a very wide beam, which is fixed at both
ends(w � l) as depicted in Fig.3b, the boundary condi-
tion S2 = 0 is acting internally. When, in addition, no con-
stant pressurep0 acts, for the stressT3 = 0 follows, and for
Eq. (1a) it yields

S1 =
1− ν2

0

E0
T1 + (1+ ν0) α03. (3)

In some micro-mechanical constructions the beam ends
are not blocked as depicted in Fig.3b, but the influence
quantity3 loads the very wide beam element with a strain
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- Contributions of shear deformations to the displacement100

ξ3(x1) can be neglected, i.e. the shear strains yield S4 =
S5 = S6 = 0.

- The coordinate origin x3 = 0 is placed at the distance
c from the bond layer. At this position the translational
system points are located at the beam ends.105

- Deflections of these system points at x3 = 0 are labeled
with ξ1 and ξ3 or ξ1(x1) and ξ3(x1), respectively; de-
flections of arbitrary positions within the beam are la-
beled with (ξ1(x1;x3), ξ3(x1;x3)).

3 Isotropic material behavior state equations110

All following conderations assume that isotropic material be-
havior can be described by the state equations:

S1 =
1

E0
T1 −

ν0

E0
T2−

ν0

E0
T3 +α0Λ (1a)

S2 =− ν0

E0
T1 +

1

E0
T2−

ν0

E0
T3 +α0Λ (1b)115

S3 =− ν0

E0
T1−

ν0

E0
T2 +

1

E0
T3 +α0Λ (1c)

Reversibility is not considered at this stage but only actua-
tion behavior. In order to be consistent with one-dimensional
bending theory, S2, S3 and T2, T3 are defined by boundary120

conditions or viewed as strain-induced disturbance variables.
In the simpliest case of a very small beam element without

constant pressure p0 (Fig. 3a) no stress components in x2-
and x3-direction occur (T2 = T3 = 0) and Eq. (1a) simplifies
to:125

S1 =
1

E0
T1 +α0Λ. (2)

In case of a very wide beam, which is fixed at both ends
(w� l) as depicted in Fig. 3b, the boundary condition S2 =
0 is acting internally. When, in addition, no constant pressure
p0 acts, for the stress T3 = 0 follows and for Eq. (1a) yields:130

S1 =
1− ν2

0

E0
T1 + (1 + ν0) α0Λ. (3)

In some micro-mechanical constructions the beam ends
are not blocked as depicted in Fig. 3b but the influence quan-
tity Λ loads the very wide beam element with a strain S2 =135

αRΛ via influence coefficient αR (Fig. 3c). With p0 = 0
Eq. (1a) yields here:

S1 =
1− ν2

0

E0
T1 + [(1 + ν0) α0− ν0αR] Λ. (4)

In the special case of αR = α0, i.e. that the ends consist of
one of the layers, Eq. (1a) simplifies further to:140

S1 =
1− ν2

0

E0
T1 +α0Λ. (5)
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Fig. 3. Ideal boundary conditions at the beam
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In case of a constant pressure p0, which also acts on the

surfaces perpendicular to axis x3, T2 = T3 =−p0 yields con-
ditions such that Eq. (1a) simplifies further to

S1 =
1

E0
T1 +

2ν0

E0
p0 . (6)145

All considered cases can be described by the unified linear
relation

S1 =
1

E
T1 +αΛ . (7)

The meaning of 1/E and α in each case is summarized in150

Table 1. Even in the case of anisotropic material properties
generalized Eq. 7 applies.

Figure 3. Ideal boundary conditions at the beam.

S2 = αR3 via influence coefficientαR (Fig.3c). Withp0 = 0
Eq. (1a) here yields

S1 =
1− ν2

0

E0
T1 + [(1+ ν0) α0 − ν0αR] 3. (4)

In the special case ofαR = α0, i.e., that the ends consist of
one of the layers, Eq. (1a) simplifies further to

S1 =
1− ν2

0

E0
T1 + α03. (5)

In the case of a constant pressurep0, which also acts on
the surfaces perpendicular to axisx3, T2 = T3 = −p0 yields
conditions such that Eq. (1a) simplifies further to

S1 =
1

E0
T1 +

2ν0

E0
p0 . (6)

All considered cases can be described by the unified linear
relation

S1 =
1

E
T1 + α3. (7)

The meaning of 1/E andα in each case is summarized in
Table 1. Even in the case of anisotropic material properties,
generalized Eq. (7) applies.

4 Differential beam element without shear forces
and external pressure

4.1 Stresses and strains

The object to be studied next is an arbitrary differential
two-layer beam element of the plate strip. The layers are
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Table 1. Uniaxial stress conditions for real isotropic bimorph
layers.

Boundary condition
in direction S1 =

1
E

T1 + α3
see

x3 x2 E α Fig.

T3 = 0

T2 = 0 E0 α0 3a

S2 = 0
E0

1−ν2
0

(1+ ν0)α0 3b

S2 = αR3 (1+ ν0)α0 − ν0αR

3c
S2 = α03 α0

T3 = −p0 T2 = −p0 E0 2ν0/E0 3d

characterized by their material propertiesE1,α1 andE2,α2
as well as their thicknessesh1 andh2. From Bernoulli’s hy-
pothesis follows that the deflectionξ1(x1;x3) at a defined po-
sition is a linear function of coordinatex3:

ξ1 (x1;x3) = Ca (x1) · x3 + Cb (x1) . (8)

The same conclusion applies to the strain:

S1 (x1;x3) =
dξ1

dx1
=

dCa

dx1
· x3 +

dCb

dx1
. (9)

The differential beam element in Fig.4, which is bent about
the angleϕ(x1), illustrates the meaning of dCa/dx1 and
dCb/dx1:

S1 (x1;x3) =
dϕ

dx1
· x3 + S0 , (10)

whereS0 is the strain atx3 = 0:

S0 =

(
∂ ξ1 (x1;x3)

∂x1

)
x3=0

=
1 ξ1,0

1 x1
=

dξ1,0

dx1
. (11)

Considering the material state equations which are valid in
each region, the stress in the beam element yields

T1 (x1;x3) =


E1

(
dϕ
dx1

x3 +
dξ1,0
dx1

− α13
)

for c − h1 6 x3 6 c − 0

E2

(
dϕ
dx1

x3 +
dξ1,0
dx1

− α23
)

for c + 06 x3 6 c + h2

. (12)
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4 Differential beam element without shear forces and
external pressure

4.1 Stresses and strains155

The object to be studied next is an arbitrary differential two-
layer beam element of the plate strip. The layers are charac-
terized by their material properties E1,α1 and E2,α2 as well
as their thicknesses h1 and h2. From Bernoulli’s hypothesis
follows that the deflection ξ1(x1;x3) at defined position is a160

linear function of coordinate x3:

ξ1 (x1;x3) = Ca (x1) ·x3 +Cb (x1) . (8)

The same conclusion applies to the strain:

S1 (x1;x3) =
dξ1
dx1

=
dCa
dx1

·x3 +
dCb
dx1

. (9)

The differential beam element in Fig. 4, which is rotated165

about the angle ϕ(x1), illustrates the meaning of dCa/dx1

and dCb/dx1:

S1 (x1;x3) =
dϕ
dx1
·x3 +S0 (10)

where S0 is the strain at x3 = 0:

S0 =

(
∂ ξ1 (x1;x3)

∂x1

)
x3=0

=
∆ ξ1,0
∆ x1

=
dξ1,0
dx1

. (11)170

Considering the material state equations which are valid in
each region, the stress in the beam element yields:

T1 (x1;x3) =



E1

(
dϕ

dx1
x3 +

dξ1,0

dx1
−α1Λ

)
for c−h1 6 x3 6 c− 0

E2

(
dϕ

dx1
x3 +

dξ1,0

dx1
−α2Λ

)
for c+ 06 x3 6 c+h2

(12)

4.2 Introduction of internal force F1 and Moment M175

as coordinates

From Eqn. (12) the balancing normal force F1 and balancing
moment M for the section follow with Fig. 5:

F1 (x1) =−w
c+h2∫
c−h1

T1 (x3) dx3

=−w
{[
−1

2

(
E1h

2
1−E2h

2
2

)
+ (E1h1 +E2h2)c

]
dϕ
dx1

+ (E1h1 +E2h2)
dξ1,0
dx1

− (α1E1h1 +α2E2h2)Λ

}
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(13)
180

M (x1) =−w
c+h2∫
c−h1

T1 (x3) ·x3 dx3

=−w
{[

1

3

(
E1h

3
1 +E2h

3
2

)
+ (E1h1 +E2h2)c2

−
(
E1h

2
1−E2h

2
2

)
c

]
dϕ
dx1

−
[

1

2

(
E1h

2
1−E2h

2
2

)
− (E1h1 +E2h2)c

]
dξ1,0
dx1

−Λ
[
−1

2

(
α1E1h

2
1−α2E2h

2
2

)
+ c(α1E1h1 +α2E2h2)

]}
(14)

When c is chosen at

c= cS =
1

2

E1h
2
1−E2h

2
2

E1h1 +E2h2
=
χζ2− 1

1 +χζ
· h2

2
, (15)

with χ=
E1

E2
and ζ =

h1

h2
,

then F1 depends not on dϕ/dx1 andM not on dξ1/dx1. This185

distance from the material interface is the well-known loca-
tion of the neutral layer in case of an external moment. This

Figure 4. Strains and stresses in a two-layer beam:(a) bimorph
element in non-deformed and deformed state;(b) strain and stress
distributions at the cross section.

4.2 Introduction of internal force F1 and moment M as
coordinates

From Eq. (12) the balancing normal forceF1 and balancing
momentM for the section follow with Fig.5:

F1 (x1) = −w

c+h2∫
c−h1

T1 (x3) dx3 (13)

= −w

{[
−

1

2

(
E1h

2
1 − E2h

2
2

)
+
(
E1h1 + E2h2

)
c

]
dϕ

dx1

+
(
E1h1 + E2h2

) dξ1,0

dx1
− (α1E1h1 + α2E2h2)3

}
,

M (x1) = −w

c+h2∫
c−h1

T1 (x3) · x3 dx3 (14)

= −w

{[
1

3

(
E1h

3
1 + E2h

3
2

)
+ (E1h1 + E2h2)c

2

−

(
E1h

2
1 − E2h

2
2

)
c

]
dϕ

dx1

−

[
1

2

(
E1h

2
1 − E2h

2
2

)
−
(
E1h1 + E2h2

)
c

]
dξ1,0

dx1

− 3

[
−

1

2

(
α1E1h

2
1 − α2E2h

2
2

)
+ c (α1E1h1 + α2E2h2)

]}
.
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Whenc is chosen at

c = cS =
1

2

E1h
2
1 − E2h

2
2

E1h1 + E2h2
=

χζ 2
− 1

1+ χζ
·
h2

2
, (15)

with χ =
E1

E2
and ζ =

h1

h2
,

thenF1 does not depend on dϕ/dx1 norM on dξ1/dx1. This
distance from the material interface is the well-known loca-
tion of the neutral layer in the case of an external moment.
This case is in the following referred to as sensing case. With
cS , normal force and moment yield

F1 (x1) = EA

(
α3 −

dξ1,0

dx1

)
, (16)

M (x1) = −EI
dϕ

dx1
+ M3 , (17)

with the equivalent linear expansion coefficient

α =
α1E1h1 + α2E2h2

E1h1 + E2h2
, (18)

the length-related translational compliance or extensional
stiffness of a homogeneous beam

EA = w(E1h1 + E2h2) , (19)

the length-related rotational compliance or bending stiffness
of a homogeneous beam

EI =
w

12

E2
1h4

1 + E1E2h1h2
(
4h2

1 + 6h1h2 + 4h2
2

)
+ h4

2E
2
2

E1h1 + E2h2

=
w

12

1+ χ2ζ 4
+ 4χζ 3

+ 6χζ 2
+ 4χζ

χζ + 1
· h3

2E2 , (20)

and the moment source

M3 =
w

2

[
E1α1

(
−h2

1 + 2cSh1

)
+ E2α2

(
h2

2 + 2cSh2

)]
3

= −
w

2

E1E2h1h2 (h1 + h2)

E1h1 + E2h2
(α1 − α2)3 (21)

driven by3.
When a mean stressT 1 = F1/A is related to forceF1 then

this stress determines the strainS0 = dξ1,0/dx1. In addition,
the differenceT1 (x1;x3) − T 1 (x1) = TB (x1;x3) represents
the mean-free part of the stress distribution, whose moment
determines the angle change dϕ/dx1 (Fig. 5).

4.3 Curvature and neutral layer

When there is no external force, i.e.,F1 = 0, it follows from
Eq. (13) that the strain dξ1,0/dx1 is given by

dξ1,0

dx1
=

(
1

2

E1h
2
1 − E2h

2
2

E1h1 + E2h2
− c

)
dϕ

dx1
(22)

+
α1E1h1 + α2E2h2

E1h1
3,
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M (x1) =−EI dϕ
dx1

+MΛ (17)

with the equivalent linear expansion coefficient
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stiffness of a homogeneous beam

EA= w (E1h1 +E2h2) , (19)

the length-related rotational compliance or bending stiffness
of a homogeneous beam

EI =
w

12

E2
1h

4
1 +E1E2h1h2

(
4h2

1 + 6h1h2 + 4h2
2

)
+h4

2E
2
2

E1h1 +E2h2
200

=
w

12

1 +χ2ζ4 + 4χζ3 + 6χζ2 + 4χζ

χζ + 1
·h3

2E2 (20)

and the moment source

MΛ =
w

2

[
E1α1

(
−h2

1 + 2cSh1

)
+E2α2

(
h2

2 + 2cSh2

)]
Λ
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=−w
2

E1E2h1h2 (h1 +h2)

E1h1 +E2h2
(α1−α2)Λ (21)

driven by Λ.
When a mean stress T 1 = F1/A is related to force F1 then

this stress determines the strain S0 = dξ1/dx1. The differ-
ence T1 (x1;x3)−T 1 (x1) = TB (x1;x3) represents in addi-210

tion the mean-free part of the stress distribution, whose mo-
ment determines the angle change dϕ/dx1 (Fig. 5).

4.3 Curvature and neutral layer

When there is no external force, i.e. F1 = 0, it follows from
Eq. (13) that the strain dξ1,0/dx1 is given by:215

dξ1,0
dx1

=

(
1

2

E1h
2
1−E2h

2
2

E1h1 +E2h2
− c
)

dϕ
dx1

+
α1E1h1 +α2E2h2

E1h1
Λ

(22)

which is substituted in Eq. (14) to get the curvature:

dϕ
dx1

=
6E1h1E2h2(h1 +h2)(α2−α1)Λ

h4
2E

2
2 + 2E2E1h2h1 (2h2

1 + 3h1h2 + 2h2
2) +E2

1h
4
1

=
6

(h1 +h2)
· (1 + ζ)

2

1

χζ
+ 4(1 + ζ2) +χζ3 + 6ζ

(α2−α1)Λ (23)220
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Fig. 5. Forces and moments at the differential beam element without
shear forces and difference pressure

as shown, e.g., by Guerrero and Wetherhold (2003) for mag-
netostrictive unimorphs. For a given total bimorph thick-
ness h= h1+h2, the well-known maximum curvature results
for χ= 1/ζ2. Geometry and transduction coefficients have
a larger effect on the deflection than a variation of Young’s225

modulus (Gerlach and Dötzel, 2008).
Backsubstitution of Eq. (23) in Eq. (22) gives the location

of the neutral layer in the actuation case:

cA =−h2

6

(
4ζ2 +

1

ζχ

)
A+ 3ζ (A+ 1) + ζ3χ+ 4

(ζ + 1)(A− 1)
(24)

with A=
α2

α1
. The same location follows for the minimum230

of the potential energy of the deflected beam w.r.t. c for
dξ1/dx1 = 0:

d
dc

1

2

∆x∫
0

M2
Λ

EI
dx1

= 0 . (25)

In case of only layer 1 being active (α2 = 0), Eq. (24) sim-235

plifies to

cA|α2=0 =−1

6

h3
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2
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3
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Figure 5. Forces and moments at the differential beam element
without shear forces and difference pressure.

which is substituted in Eq. (14) to get the curvature

dϕ

dx1
=

6E1h1E2h2(h1 + h2)(α2 − α1)3

h4
2E

2
2 + 2E2E1h2h1

(
2h2

1 + 3h1h2 + 2h2
2

)
+ E2

1h4
1

=
6

(h1 + h2)
·

(1+ ζ )2

1
χζ

+ 4
(
1+ ζ 2

)
+ χζ 3 + 6ζ

(α2 − α1)3 (23)

as shown, e.g., byGuerrero and Wetherhold(2003) for mag-
netostrictive unimorphs. For a given total bimorph thickness
h = h1 + h2, the well-known maximum curvature results for
χ = 1/ζ 2. Geometry and transduction coefficients have a
larger effect on the deflection than a variation of Young’s
modulus (Gerlach and Dötzel, 2008).

Back substitution of Eq. (23) in Eq. (22) gives the location
of the neutral layer in the actuation case:

cA = −
h2

6

(
4ζ 2

+
1

ζχ

)
A+ 3ζ (A+ 1) + ζ 3χ + 4

(ζ + 1)(A− 1)
, (24)

with A=
α2
α1

. The same location follows for the minimum of
the potential energy of the deflected beam with regard toc

for dξ1/dx1 = 0:

d

dc

1

2

1x1∫
0

M2
3

EI
dx1

= 0. (25)
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In the case of only layer 1 being active(α2 = 0), Eq. (24)
simplifies to

cA|α2=0 = −
1

6

h3
1E2 + 3E1h1h

2
2 + 4E1h

3
2

h2E1 (h1 + h2)
(26)

= −
h2

6

3ζ + 4+ χζ 3

1+ ζ
.

When the active layer is thin(h1 ≈ 0), the neutral layer is
located at−h2 · 2/3 and not at−h2/2, where it is located in
the sensing case, i.e., for an external moment. This location
matches that found byStoney(1909) for thin films.

With the result in Eq. (24), the two-layer beam actually
unveils pure bendingM 6= f (S0) for two locations of the ori-
gin. Both locations,cA andcS , give the same curvature for an
induced stress. Figure6 depictsc normalized to the substrate
thickness as a function of a given excitationα13, normalized
to the curvature. Therefore, the curvature or the deflection
angle, respectively, can be calculated withcS countenancing
S0. Then the source moment can be treated as an external
moment acting on the unimorph with the compliancenR as a
prerequisite for a reversible transducer model in Sect.10.

5 General differential equation system of the
actuating two-layer beam element for large angles

In addition to the previous considerations, the influence of
a shear forceF3 and of a difference pressurep on the two-
layer beam element is now taken into account. In order to
obtain a general differential equation system model of the
two-layer beam element, the deformed element is considered
in the transformed coordinate system

(
x∗

1,x2,x
∗

3

)
according

to Fig. 7, where(x1,x2,x3) serves as reference system for
the deflectionsξ1 and ξ3. This leads to the following rela-
tionships:

– As illustrated by Fig.7b, the length of the deformed –
originally 1x1-long – bimorph element becomes

1x1 ·
(
1+ S∗

0 (x1)
)
= 1x1 + 1ξ∗

1,0 (x1)

=
1

cosϕ

(
1x1 + 1ξ1,0 (x1)

)

1x1 ·
(
1+ S∗

0 (x1)
)
=

1

cosϕ
1x1 · (1+ S0 (x1)) . (27)

For the strainS0 (x1) = dξ1,0/dx1,

S0 (x1) = cosϕ ·
(
1+ S∗

0 (x1)
)
− 1 (28)

and for the relationship between the deflectionsξ1,0 (x1)

in thex1 direction andξ∗

1,0 (x1) in thex∗

1 direction

dξ1,0

dx1
= cosϕ ·

(
1+

dξ∗

1,0

dx1

)
− 1. (29)
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Fig. 6. Solution of Eq. (14) with dξ1/dx1 = 0 and α2 = 0 to
the neutral layer position c normalized to h2 exemplarily for
h1 = 1mm, E1 = 23GPa, h2 = 5mm, E2 = 71GPa, w = 5mm,
l = 0.1m and α2 = 0

When the active layer is thin (h1 ≈ 0) the neutral layer is
located at −h2 · 2/3 and not at −h2/2 where it is located in
the sensing case, i.e. for an external moment. This location240

matches that found by Stoney (1909) for thin films.
With the result in Eq. (24), the two-layer beam actually

unveils pure bendingM 6= f(S0) for two locations of the ori-

gin. Both locations, cA and cS , give the same curvature for
an induced stress. Fig. 6 depicts c normalized to the substrate245

thickness as function of a given excitation α1Λ, normalized
to the curvature. Therefore, the curvature or the deflection
angle, respectively, can be calculated with cS countenancing
S0. Then the source moment can be treated as an external
moment acting on the unimorph with the compliance nR as250

prerequisite for an reversible transducer model in Sec. 10.

5 General differential equation system of the actuating
two-layer beam element for large angles

In addition to the previous considerations now the influence
of a shear force F3 and of a difference pressure p on the255

two-layer beam element is taken into account. In order to
obtain a general differential equation system model of the
two-layer beam element, the deformed element is considered
in the transformed coordinate system (x∗1,x2,x

∗
3) according

to Fig. 7 where (x1,x2,x3) serves as reference system for260

the deflections ξ1 and ξ3. This leads to the following rela-
tionships:

- As illustrated by Fig. 7b, the length of the deformed —
originally ∆x1-long — bimorph element becomes

∆x1 · (1 +S∗0 (x1)) =∆x1 +∆ξ∗1,0 (x1)

=
1

cosϕ
(∆x1 +∆ξ1,0 (x1))

265

c

1c h−

0

( )1xϕ

3x2c h+ 1x∆
1ξ∆

1x
w

c

1c h−

02c h+

1F∗3x∗
( ) ( ) ( )1 1 1 1 1 1 1x x x xξ ξ ξ∆ ∆+ = +

1x∗
3F ( )1 1x xϕ ∆+( )1 1 1F x x∆+

( )1 01F p w x S∆ ∆ ∗= ⋅ ⋅ ⋅ +
( )1 01 sinp w x S ϕ∆ ∗⋅ ⋅ ⋅ + ⋅( )1 01 cosp w x S ϕ∆ ∗⋅ ⋅ ⋅ + ⋅

c

1c h−

02c h+ 3x∗ ( )0 1S x∗ ( ) 11 1 1ddS x xξ∗∗ =
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w
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Fig. 7. Definitions at the two-layer beam element with respect to large angles

Figure 6. Solution of Eq. (14) with dξ1,0/dx1 = 0 and α2 = 0
to the neutral-layer positionc normalized toh2 exemplarily for
h1 = 1 mm, E1 = 23 GPa,h2 = 5 mm, E2 = 71 GPa,w = 5 mm,
l = 0.1 m andα2 = 0.

– The forceF ∗

1 (x1), which acts at the cross section of
the element, consists of two components in thex1- and
x3 directions:

F ∗

1 (x1) = F1cosϕ + F3sinϕ . (30)

– A pressurep acting on one side of the beam element
causes two acting force components in thex1 andx3 di-
rections, too (Fig.7).

For the deformed beam element in coordinate system(
x∗

1,x2,x
∗

3

)
, the following holds, which is consistent with

Eqs. (16) and (17) from Sect.4.2:

F ∗

1 (x1) = EA

(
α3 −

dξ∗

1,0

dx1

)
, (31)

M (x1) = −EI
dϕ

dx1
+ M3 . (32)

The coefficientsα, EA, EI andM3 are identical with the
coefficients in Eqs. (16) and (17).

From Fig.7 the following relations can also be derived:

– horizontal balance of forces:

F1 (x1 + 1x1) − F1 (x1) (33)

+ p · w · 1x1 ·
(
1+ S∗

0

)
· sinϕ = 0;

– vertical balance of forces:

F3 (x1 + 1x1) − F3 (x1) (34)

− p · w · 1x1
(
1+ S∗

0

)
· cosϕ = 0;
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Figure 7. Definitions at the two-layer beam element with respect to large angles.

– balance of moment:

M (x1 + 1x1) − M (x1) (35)

− F1 (x1 + 1x1) · 1x1 ·
(
1+ S∗

0

)
· sinϕ

+ F3 (x1 + 1x1) · 1x1 ·
(
1+ S∗

0

)
· cosϕ

≈ p · w · 1x1 ·
(
1+ S∗

0

)
·
1x1 ·

(
1+ S∗

0

)
2

≈ 0;

– kinematics (Fig.7b):

ξ3 (x1 + 1x1) − ξ3 (x1) = 1x1 (1+ S0) · tanϕ . (36)

Equations (33)–(36) together with Eqs. (27) and (32) consti-
tute the differential equation set of a general plate strip ele-
ment in set of equations (SOE) (37). Its validity is restricted
by

– the assumption of small deflections d2ξ1/dx2
1;

– the limited validity of Bernoulli’s hypothesis;

– nonlinear stress–strain relations that occur in reality and

– the idealized formulation of the boundary conditions for
S2 andT2.

dF1

dx1
= −p · w · sinϕ ·

[
1+ α3 (37a)

−
1

EA
(F1cosϕ + F3sinϕ)

]
dξ1,0

dx1
=S0 = cosϕ ·

[
1+ α3 (37b)

−
1

EA
(F1cosϕ + F3sinϕ)

]
− 1

dF3

dx1
=p · w · cosϕ ·

[
1+ α3 (37c)

−
1

EA
(F1cosϕ + F3sinϕ)

]
dξ3

dx1
= tanϕ ·

[
1+ α3 (37d)

−
1

EA
(F1cosϕ + F3sinϕ)

]
dM

dx1
=(F1sinϕ − F3cosϕ) ·

[
1+ α3 (37e)

−
1

EA
(F1cosϕ + F3sinϕ)

]
dϕ

dx1
= −

1

EI
(M + M3) (37f)

For F1 (ξ1(x1) = 0) > 0, i.e., if the beam is axially com-
pressed, courses of the functionsF3,ξ3,M,ϕ = f (x1) can
result which do not fulfill the demand for biuniqueness.
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This problem must be solved with stability theory methods
(Pflüger, 1975).

6 Differential equation system of the two-layer beam
element for small angles

Contrary to the previous considerations, Fig.8 depicts the
definitions of the involved quantities and directions when
small angles and deflections are assumed. With these defi-
nitions the following relations can be derived:

– balances of forces:

F1 (x1 + 1x1) − F1 (x1) = 0, (38)

F3 (x1 + 1x1) − F3 (x1) − pw1x1 = 0; (39)

– balance of moment:

M (x1 + 1x1) − M (x1) (40)

+ F1 (x1 + 1x1) · 1x1 · ϕ (x1)

+ F3 (x1 + 1x1) · 1x1 = pw1x1 ·
1x1

2
≈ 0;

– kinematics:

ξ3 (x1 + 1x1) − ξ3 (x1) = ϕ (x1) · 1x1 . (41)

From Eqs. (16) to (41) SOE (42) can be derived. With
this set of differential equations almost all problems can be
solved where|ϕ (x1) | � 1 and F1 6 0 hold. For the case
F1 (ξ1 (x1)) > 0, the same remarks as in Sect.5 apply.

dF1

dx1
= 0 (42a)

dξ1,0

dx1
= S0 = α3 −

1

EA
F1 (42b)

dF3

dx1
= p · w (42c)

dξ3

dx1
= ϕ (42d)

dM

dx1
= F1ϕ − F3 (42e)

dϕ

dx1
= −

1

EI
(M + M3) (42f)
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Fig. 8. Definitions at the two-layer beam element for small angles:
a) non-deformed and b) deformed bimorph

- Balance of moment:

M (x1 +∆x1)−M (x1)

+F1 (x1 +∆x1) ·∆x1 ·ϕ(x1)

+F3 (x1 +∆x1) ·∆x1 = pw∆x1 ·
∆x1

2
≈ 0

(40)

- Kinematics:

ξ3 (x1 +∆x1)− ξ3 (x1) = ϕ(x1) ·∆x1 . (41)

From Eqs. (16) to (41) SOE (42) can be derived. With325

this set of differential equations almost all problems can be
solved where |ϕ(x1) | � 1 and F1 6 0 hold. For the case
F1 (ξ1 (x1))> 0, the same remarks as in Sec. 5 apply.

dF1

dx1
= 0

dξ1,0
dx1

= S0 = αΛ− 1

EA
F1

dF3

dx1
= p ·w

dξ3
dx1

= ϕ

dM
dx1

= F1ϕ−F3

dϕ
dx1

=− 1

EI
(M +MΛ)

(42a)

(42b)

(42c)

(42d)

(42e)

(42f)

7 Linear equivalent circuits of actuating two-layer330

beam elements

The differential equation system (42) is nonlinear due to the
coupling F1 ·ϕ. The nonlinearity can be avoided in two ways:

1. For small forces F1 the condition |F1 ·ϕ| � F3 is as-
sumed. This will change Eq. (42e) to335

dM
dx1

=−F3 . (43)

2. The force F1 is treated as time- and motion-independent
source quantity.

In order to obtain a circuit representation of the linearized set
of equations (42) the time-dependent complex coordinates340

angular velocity

Ω =
dϕ
dt

= jωϕ (44)

and velocity

υ1,3 =
dξ

1,3

dt
= jωξ

1,3
(45)

are introduced. Here, ω is the angular frequency and j the345

imaginary unit. Integration of (42) over x1 then gives the so-
lution:

F 1 = F 1 (x1) (46a)

υ1 = jωαΛx1− jω
x1

EA
F 1 (x1) + υ1 (x1) (46b)350

F 3 = p ·w ·x1 +F 3 (x1) (46c)

M =
F1∆x

jω
Ω (x1 +∆x1)− p ·w x

2
1

2
−

F 3 (x1)x1 +M (x1)

(46d)

355

Ω =
jω
EI

(
p ·w x

3
1

6
+F 3 (x1)

x2
1

2
−M (x1)x1

−MΛx1

)
+Ω (x1)

(46e)

υ3 =
jω
EI

(
p ·w x

4
1

24
+F 3 (x1)

x3
1

6
−M (x1)

x2
1

2

−MΛ
x2

1

2

)
+Ω (x1)x1 + υ3 (x1) .

(46f)

Application of the left-side boundary conditions F 1,3 (x1),
υ1,3 (x1), M (x1), Ω (x1) and right-side boundary con-360

ditions F 1,3 (x1 +∆x1), υ1,3 (x1 +∆x1), M (x1 +∆x1),
Ω (x1 +∆x1) acting at a beam element of length ∆x1 and
using the approximation of Eq. (40) yields:

~1 : F 1 (x1 +∆x1) = F 1 (x1) (47a)

Figure 8. Definitions at the two-layer beam element for small an-
gles:(a) non-deformed and(b) deformed bimorph.

7 Linear equivalent circuits of actuating two-layer
beam elements

The differential equation system (42) is nonlinear due to the
couplingF1·ϕ. The nonlinearity can be avoided in two ways:

1. For small forcesF1 the condition|F1 · ϕ| � F3 is as-
sumed. This will change Eq. (42e) to

dM

dx1
= −F3 . (43)

2. The force F1 is treated as a time- and motion-
independent source quantity.

In order to obtain a circuit representation of the linearized set
of Eq. (42) the time-dependent complex coordinates angular
velocity

� =
dϕ

dt
= jωϕ (44)

and velocity

υ1;3 =

dξ
1,0;3

dt
= jωξ

1;3
(45)

are introduced. Here,ω is the angular frequency and j the
imaginary unit. Integration of Eq. (42) overx1 then gives the
following solution:

F 1 = F 1 (x1) , (46a)
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υ1 = jωα3x1 − jω
x1

EA
F 1 (x1) + υ1 (x1) , (46b)

F 3 = p · w · x1 + F 3 (x1) , (46c)

M =
F11x1

jω
�(x1 + 1x1) − p · w

x2
1

2
(46d)

− F 3 (x1)x1 + M (x1) ,

� =
jω

EI

(
p · w

x3
1

6
+ F 3 (x1)

x2
1

2
− M (x1)x1 (46e)

− M3x1

)
+ �(x1) ,

υ3 =
jω

EI

(
p · w

x4
1

24
+ F 3 (x1)

x3
1

6
− M (x1)

x2
1

2
(46f)

− M3

x2
1

2

)
+ �(x1)x1 + υ3 (x1) .

Application of the boundary conditions at the left side of the
differential bending elementF 1,3 (x1), υ1,3 (x1), M (x1) and
�(x1) and at the right sideF 1,3 (x1 + 1x1), υ1,3 (x1 + 1x1),
M (x1 + 1x1) and�(x1 + 1x1) acting at a beam element of
length1x1 and using the approximation of Eq. (40) yields
the following:

~1 : F 1 (x1 + 1x1) = F 1 (x1) , (47a)

	1 : υ1 (x1 + 1x1) = 1υ3−jω1n·F 1 (x1)+υ1 (x1) , (47b)

~2 : F 3 (x1 + 1x1) = 1F + F 3 (x1) , (47c)

~3 :M (x1 + 1x1) = M (x1) −
�(x1 + 1x1)

jω1nF1

(47d)

−
(
1F + F 3 (x1)

)1x1

2
− F 3 (x1)

1x1

2
,

	2 :�(x1 + 1x1) ≈ �(x1) − 1�3 (47e)

− jω1nR ·

M (x1) − F 3 (x1)
1x1

2
+ 1F

1x1

6︸ ︷︷ ︸
≈0

 ,

	3 :υ3 (x1 + 1x1) ≈ υ3 (x1) + �(x1)
1x1

2
(47f)

+ �(x1 + 1x1)
1x1

2
− jω1nR

1x2
1

12
· F 3 (x1)︸ ︷︷ ︸

≈0

,
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	1 : υ1 (x1 +∆x1) =∆υΛ−jω∆n·F 1 (x1)+υ1 (x1) (47b)

~2 : F 3 (x1 +∆x1) =∆F +F 3 (x1) (47c)

~3 :M (x1 +∆x1) =M (x1)− Ω (x1 +∆x1)

jω∆nF1

− (∆F +F 3 (x1))
∆x1

2
−F 3 (x1)

∆x1

2

(47d)370

	2 :Ω (x1 +∆x1)≈Ω (x1)−∆ΩΛ−

jω∆nR ·

M (x1)−F 3 (x1)
∆x1

2
+∆F

∆x1

6︸ ︷︷ ︸
≈0

 (47e)

	3 :υ3 (x1 +∆x1)≈ υ3 (x1) +Ω (x1)
∆x1

2
+

Ω (x1 +∆x1)
∆x1

2
− jω∆nR

∆x2
1

12
·F 3 (x1)︸ ︷︷ ︸

≈0

(47f)

with375

∆υΛ = jωαΛ∆x1 (48)

∆n=
∆x1

EA
(49)

∆nF1
=− 1

(F1∆x1)
(50)

∆F = p ·w ·∆x1 (51)

∆nR =
∆x1

EI
(52)380

∆ΩΛ = jω∆nR ·MΛ . (53)

Following Kichhoff’s laws, sums of flow quantities consti-
tute nodes — marked with ~ and sums of across quantities
constitute meshes — marked with 	. Figs. 9 and 10 depict385

the resulting circuit representation of the two-layer beam el-
ement for the two linearization cases of the first paragraph
in Sec. 7. The angular velocity source ∆ΩΛ can also be in-
terpreted as moment source MΛ acting on ∆nR. These net-
works include forΛ= 0 and h1 or h2 = 0 the case of a homo-390

geneous monomorph-plate strip which is subject to bending.
The approximations in Eqs. (47e) and (47f) do not apply for
a large ∆x. This case is treated in Sec. 8.

All following equivalent circuits assume that |F1 ·ϕ| � F3

and that no pressure load occurs.395

8 Low frequency linear equivalent circuit of actuating
two-layer beams

In the previous section a beam element of finite length ∆x
was derived. In order to describe a long beam of length l
for quasistatic processes without pressure load (p= 0) and400

with the assumption |F1 ·ϕ| � F3, the beam elements in
Fig. 9 can be connected chain-like. This chain circuit can
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Fig. 9. Circuit representation of a two-layer beam element when
|F1 ·ϕ| � F3 in direction x1 (a) and direction x3 as well as of
the dynamic rotational behavior (b), and system model with ideal
rods as rotational-translational transducers (introduced by Schroth
(1968)) (c). The axial velocity source∆υΛ is related to the location
cS (∆υΛ = 0 at the neutral axis cA).
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Fig. 10. Circuit representation of a two-layer beam element when
F1 6= F1(t) (source quantity)

Figure 9. Circuit representation of a two-layer beam element when
|F1·ϕ| � F3 in directionx1 (a)and directionx3 as well as of the dy-
namic rotational behavior(b), and system model with ideal rods as
rotational–translational transducers (introduced bySchroth, 1968)
(c). The axial velocity source1υ3 is related to the locationcS

(1υ3 = 0 at the neutral axiscA).

with

1υ3 = jωα31x1, (48)

1n =
1x1

EA
, (49)

1nF1 = −
1

(F11x1)
, (50)

1F = p · w · 1x1, (51)

1nR =
1x1

EI
, (52)

1�3 = jω1nR · M3 . (53)

Following Kirchhoff’s laws, sums of flow quantities consti-
tute nodes – marked with~ and sums of across quantities
constitute meshes – marked with	. Figures9 and10 depict
the resulting circuit representation of the two-layer beam el-
ement for the two linearization cases of the first paragraph
in Sect.7. The angular velocity source1�3 can also be in-
terpreted as moment sourceM3 acting on1nR. For 3 = 0
andh1 or h2 = 0, these networks include the case of a homo-
geneous monomorph-plate strip which is subject to bending.
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Fig. 10. Circuit representation of a two-layer beam element when
F1 6= F1(t) (source quantity)

Figure 10. Circuit representation of a two-layer beam element
whenF1 6= F1(t) (source quantity).

The approximations in Eqs. (47e) and (47f) do not apply for
a large1x. This case is treated in Sect.8.

All following equivalent circuits assume that|F1 ·ϕ| � F3
and that no pressure load occurs.

8 Low-frequency linear equivalent circuit of
actuating two-layer beams

In the previous section a beam element of finite length1x

was derived. In order to describe a long beam of lengthl for
quasi-static processes without pressure load(p = 0) and with
the assumption|F1·ϕ| � F3, the beam elements in Fig.9 can
be connected in a chain-like manner. This chain circuit can be
simplified to a much smaller four-port circuit as long as the
links between the coordinates at the beam ends (I) and (II)
are of interest. These coordinates becomeF I = F 3 (0), υ I =

υ3 (0), M I = M (0) and�I = �(0) at the left side andF II =

F 3 (l), υ II = υ3 (l), M II = M (l) and�II = �(l) at the right
side, as depicted in Fig.11. With n0 = l3/EI , integration of
SOE (42) over beam lengthl and application of the boundary
conditions at (I) and (II) gives

F II = F I , (54a)

M II = F I − lM I , (54b)

�II = −jω
n0

l2

(
M I + M3

)
+ jω

n0

2l
F I + �I (54c)

= −jω
n0

2l2

(
M I − l F I︸ ︷︷ ︸

M II

+M3

)

−jω
n0

2l2

(
M I + M3

)
+ �I︸ ︷︷ ︸

�T

,
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be simplified to a much smaller 4-port circuit as long as the
links between the coordinates at the beam ends are of in-
terest. These coordinates become F I = F 3 (0), υI = υ3 (0),405

M I =M (0), ΩI =Ω (0) at the left side and F II = F 3 (l),
υII = υ3 (l), M II =M (l), ΩII =Ω (l) at the right side as de-
picted in Fig. 11. Integration of SOE (42) over beam length
l and application of the boundary conditions at ©I and ©II
gives with n0 = l3/EI:410

F II = F I (54a)

M II = F I− lM I (54b)

ΩII =−jω
n0

l2
(M I +MΛ) + jω

n0

2l
F I +ΩI

=−jω
n0

2l2

(
M I− lF I︸ ︷︷ ︸

M II

+MΛ

)

−jω
n0

2l2
(M I +MΛ) +ΩI︸ ︷︷ ︸

ΩT

(54c)415

υII =−jω
n0

2l
(M I +MΛ) + jω

n0

6
F I + lΩI + υI

= l · (ΩI−ΩT)︸ ︷︷ ︸
υT

+ jω
n0

6
F I + υI

(54d)

The equivalent circuit is shown in Fig. 11 for the example
of a left-side fixed-free beam. The prevented movement and
rotation at the left side are short-circuited across quantities.420

The translational domain includes the negative compliance
−n0/6 which can be handled by circuit simulators. However,
the total compliance of the bending beam is positive.

When only the translational behavior in direction 3 is of
interest, then the network can be simplified. Fig. 12 shows425

the result of the transformation of the rotational elements
into the translational domain with F 3 =M/l and n= nR ·l2.
The force source linked to the transformed moment generates
the velocity υW , which appears as υII when no force F II is
present:430

υT =−υII =−jωξ
II

=−jω
n0

2

MΛ

l
. (55)

With

ΩII = jωϕ
II

=− jωn0

l2
·MΛ . (56)

follows

ξ
II

=− l
2
ϕ

II
. (57)435
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Fig. 12. Translational linear equivalent circuit of an actuating fixed-
free two-layer beam

9 High-frequency linear equivalent circuit of an actuat-
ing two-layer beam

If no pressure difference is considered but the average mass
is assumed for each beam element, then Eqs. (47a, c and d)440

change in the case of |F1 ·ϕ| � F3 to

~1 : F 1 (x1 +∆x1) = F 1 (x1) +∆Fm,1 (58a)

	1 : υ1 (x1 +∆x1) =∆υΛ− jω∆n ·F 1 + υ1 (x1) (58b)
445

~2 : F 3 (x1 +∆x1) =∆Fm,3 +F 3 (x1) (58c)

~3 : M (x1 +∆x1) =M (x1)

− (Fm +F 3 (x1))
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2
−F 3 (x1)
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(58d)

Figure 11. Low-frequency linear equivalent circuit of an actuating
fixed–free two-layer beam without direction 1.
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ing two-layer beam

If no pressure difference is considered but the average mass
is assumed for each beam element, then Eqs. (47a, c and d)440

change in the case of |F1 ·ϕ| � F3 to

~1 : F 1 (x1 +∆x1) = F 1 (x1) +∆Fm,1 (58a)

	1 : υ1 (x1 +∆x1) =∆υΛ− jω∆n ·F 1 + υ1 (x1) (58b)
445

~2 : F 3 (x1 +∆x1) =∆Fm,3 +F 3 (x1) (58c)

~3 : M (x1 +∆x1) =M (x1)

− (Fm +F 3 (x1))
∆x1

2
−F 3 (x1)

∆x1

2

(58d)

Figure 12. Translational linear equivalent circuit of an actuating
fixed–free two-layer beam.

υ II = −jω
n0

2l

(
M I + M3

)
+ jω

n0

6
F I + l�I + υ I (54d)

= l ·
(
�I − �T

)︸ ︷︷ ︸
υT

+ jω
n0

6
F I + υ I .

The equivalent circuit is shown in Fig.11 for the exam-
ple of a fixed–free beam. The prevented movement and ro-
tation at the left side are short-circuited across quantities.
The translational domain includes the negative compliance
−n0/6 which can be handled by circuit simulators. However,
the total compliance of the bending beam is positive.

When only the translational behavior in direction 3 is of
interest, then the network can be simplified. Figure12shows
the result of the transformation of the rotational elements
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Fig. 13. High-frequency linear equivalent circuit of direction 3 and dynamic rotational behavior of an actuating two-layer beam

with

∆Fm,1 = jω∆mυ1 (x1 +∆x1) (59)450

and

∆Fm,3 = jω∆mυ3 (x1 +∆x1/2) . (60)

The beam element describing direction 3 includes its mass
instead of the pressure-related force source in Fig. 9. Fig. 13
shows the resulting mechanical network with distributed pa-455

rameters without direction 1 when the beam is discretized
over x3 into N finite beam elements. A finite beam element
in direction 1 is represented by a circuit similar to Fig. 9a
with the difference of the included mass ∆m, which is con-
nected to the mechanical reference (ground).460

A though experiment leads to the conclusion that the
source moment is coupled at the beam ends and that it is not
branched into the inner beam, i.e.

∆MΛ (∆x1) =MΛ (l) . (61)

Therefore the unimorph can be grouped to a bending wave465

guide with the moment source as an additional boundary con-
dition, as shown in Fig. 13.

The structures constitute a longitudinal wave guide in di-
rection 1 and the bending wave guide in Fig. 13. The be-
havior of this network can be investigated with standard470

circuit simulators, like pSpice. An example is presented in
Sec. 10.2.3. When the elements are connected chain-like then
two connected translational-rotational transducers of length
∆x1/2 can be combined to one single transducer of length
∆x1 as demonstrated in Fig. 32.475

ΩM Rotational- translational transducer V 3jω I Translational domain Interacting domain X Rotational domain X-rotational Transducer  X-translational Transducer 1v1Fx1 x3 
3v3F

1jω I
 

Fig. 14. Difference and flow coordinates in the circuit description
involving the interacting domain X

10 Four-port models of reversible transducers

Eq. (7) describes the relation between the mechanical field
pair (S,T ) and a transduction relation between the two phys-
ical domains. Reversibility entails by a second set of material
state equations, which relates field pair components (Λi,Ki)480

of the interacting domain X to each other in addition to the
transduction mechanism. From this second set only the rela-
tion between the influence quantity Λ, stress T 1 or strain S1,
obtained with Eq. (7), and quantity K is considered:

K = αT 1 +βTΛ= αES1 +
(
βT −α2E

)︸ ︷︷ ︸
βS

Λ (62)485

Figure 13. High-frequency linear equivalent circuit of direction 3 and dynamic rotational behavior of an actuating two-layer beam.

into the translational domain withF 3 = M/l andn = nR · l2.
The force source linked to the transformed moment gener-
ates the velocityυW , which appears asυ II when no forceF II
is present:

υT = −υ II = −jωξ
II

= −jω
n0

2

M3

l
. (55)

With

�II = jωϕ
II

= −
jωn0

l2
· M3 , (56)

it follows that

ξ
II

= −
l

2
ϕ

II
. (57)

9 High-frequency linear equivalent circuit of
an actuating two-layer beam

If no pressure difference is considered but the average mass
is assumed for each beam element, then Eqs. (47a), (47c) and
(47d) change in the case of|F1 · ϕ| � F3 to

~1 : F 1 (x1 + 1x1) = F 1 (x1) + 1Fm,1 , (58a)

	1 : υ1 (x1 + 1x1) = 1υ3 − jω1n · F 1 + υ1 (x1) , (58b)

~2 : F 3 (x1 + 1x1) = 1Fm,3 + F 3 (x1) , (58c)

~3 : M (x1 + 1x1) = M (x1) (58d)

−
(
Fm + F 3 (x1)

)1x1

2
− F 3 (x1)

1x1

2
,

with

1Fm,1 = jω1mυ1 (x1 + 1x1) (59)

and

1Fm,3 = jω1mυ3 (x1 + 1x1/2) . (60)

The beam element describing direction 3 includes its mass
instead of the pressure-related force source in Fig.9. Fig-
ure 13 shows the resulting mechanical network with dis-
tributed parameters without direction 1 when the beam is dis-
cretized overx3 into N finite beam elements. A finite beam
element in direction 1 is represented by a circuit similar to
Fig. 9a with the difference of the included mass1m, which
is connected to the mechanical reference (ground).

A thought experiment leads to the conclusion that the
source moment is coupled at the beam ends and that it is not
branched into the inner beam, i.e.,

1M3 (1x1) = M3 (l) . (61)

Therefore, the unimorph can be grouped into a bending wave
guide with the moment source as an additional boundary con-
dition, as shown in Fig.13.

The structures constitute a longitudinal wave guide in di-
rection 1 and the bending wave guide in Fig.13. The behav-
ior of this network can be investigated with standard circuit
simulators, like SPICE (Simulation Program with Integrated
Circuit Emphasis). An example is presented in Sect.10.2.3.
When the elements are connected in a chain-like manner
then two connected rotational–translational transducers with
a length of1x1/2 can be combined to one single transducer
with a length of1x1 as demonstrated in Fig.32.

10 Multi-port models of reversible transducers

Equation (7) describes the relation between the mechanical
field pair(S,T ) and a transduction relation between the two
physical domains. Reversibility is entailed by a second set of
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with

∆Fm,1 = jω∆mυ1 (x1 +∆x1) (59)450

and

∆Fm,3 = jω∆mυ3 (x1 +∆x1/2) . (60)

The beam element describing direction 3 includes its mass
instead of the pressure-related force source in Fig. 9. Fig. 13
shows the resulting mechanical network with distributed pa-455

rameters without direction 1 when the beam is discretized
over x3 into N finite beam elements. A finite beam element
in direction 1 is represented by a circuit similar to Fig. 9a
with the difference of the included mass ∆m, which is con-
nected to the mechanical reference (ground).460

A though experiment leads to the conclusion that the
source moment is coupled at the beam ends and that it is not
branched into the inner beam, i.e.

∆MΛ (∆x1) =MΛ (l) . (61)

Therefore the unimorph can be grouped to a bending wave465

guide with the moment source as an additional boundary con-
dition, as shown in Fig. 13.

The structures constitute a longitudinal wave guide in di-
rection 1 and the bending wave guide in Fig. 13. The be-
havior of this network can be investigated with standard470

circuit simulators, like pSpice. An example is presented in
Sec. 10.2.3. When the elements are connected chain-like then
two connected translational-rotational transducers of length
∆x1/2 can be combined to one single transducer of length
∆x1 as demonstrated in Fig. 32.475
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Fig. 14. Difference and flow coordinates in the circuit description
involving the interacting domain X

10 Four-port models of reversible transducers

Eq. (7) describes the relation between the mechanical field
pair (S,T ) and a transduction relation between the two phys-
ical domains. Reversibility entails by a second set of material
state equations, which relates field pair components (Λi,Ki)480

of the interacting domain X to each other in addition to the
transduction mechanism. From this second set only the rela-
tion between the influence quantity Λ, stress T 1 or strain S1,
obtained with Eq. (7), and quantity K is considered:

K = αT 1 +βTΛ= αES1 +
(
βT −α2E

)︸ ︷︷ ︸
βS

Λ (62)485

Figure 14. Across and flow coordinates in the circuit description
involving the interacting domainX.

material state equations, which relates field pair components
(3i,Ki) of the interacting domainX to each other in addition
to the transduction mechanism. From this second set only the
relation between the influence quantity3, stressT 1 or strain
S1, obtained with Eq. (7), and quantityK is considered:

K = αT 1 + βT 3 = αES1 +

(
βT

− α2E
)

︸ ︷︷ ︸
βS

3, (62)

whereβ is an additional constant material coefficient. With
this second set a multi-domain port description including the
physical domainX can be derived. This domain controls the
moment source, velocity or rotational velocity source in the
previously developed models. Figure14 shows the extended
port description. Each translational direction involves a sep-
arate transducer which includes these sources. In the inter-
acting domainX, the flow rate jωI and across quantityV
serve as network coordinates, which are integrals of the field
quantities. The productV · jωI is a power.

Reversible transducer models for piezoelectric and piezo-
magnetic two-layer bimorphs are derived next. Table2 lists
the coordinates used in the electrical and magnetic domain.
Due to Eq. (61), no distinction is made between a beam of
lengthl and a beam element of length1x1.

In accordance with terms used in material science, the in-
dices used in material equations relate direction 3 to the ac-
tive direction. The convention will be clarified in the context
of the analyzed examples.

Table 2. Electrical and magnetic quantities and parameters

Quantity/parameter Electric Magnetic

Across coordinateV u =
∫
xE

E V m =
∫
xH

H

Time-integrated flowI Q =
∫∫

A D 8 =
∫∫

A B

Flow coordinate dI/dt i Im

10.1 Piezoelectric bimorph

Using Einstein notation, piezoelectric state equations are
written as

Dn = εT
nmEm + dnjT j n = 1. . .3, m = 1. . .3, (63)

j = 1. . .6,

Si = dmiEm + sE
ij T j i = 1. . .6, m = 1. . .3, (64)

j = 1. . .6,

with displacement currentD, electrical field strengthE,
piezoelectric charge constantd and permittivityε.

Two typical electrode arrangements are considered next.

10.1.1 Transverse piezoelectric coupling

An important technical configuration is transverse coupling
of two piezoelectric layers as shown in Fig.15. For a piezo-
electric longitudinally acting bimorph with small beam width
(E2,E1 = 0 andT 2 . . . T6 = 0), Eqs. (63) and (64) simplify
to

D3 = d31T 1 + εT
33E3 , (65)

S1 = sE
11 · T 1 + d13 · E3 , (66a)

S2 = sE
21 · T 1 + d23 · E3 . (66b)

The indices match the directional conventions in Fig.2. The
deformation of the small beam in direction 2 is not further
considered. In the case of a large beam width this deforma-
tion is suppressed(S2 = 0), thus causingT 2 6= 0, such that

S1 = sE
11 · T 1 + sE

12 · T 2 + d13 · E3 , (67a)

S2 = sE
21 · T 1 + sE

22 · T 2 + d23 · E3 = 0, (67b)

D3 = d31 · T 1 + d32 · T 2 + εT
33 · E3 (67c)

or, includingsE
12 = sE

21 andd23 = d32,
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Table 2. Electrical and magnetic quantities and parameters

Quantity/Parameter Electric Magnetic

Across coordinate V u=
∫
xE
E V m =

∫
xH

H

Time-integrated flow I Q=
∫∫

A
D Φ=

∫∫
A
B

Flow coordinate dI/dt i Im

where β is an additional constant material coefficient. With
this second set a multi-domain port description including the
physical domain X can be derived. This domain controls the
moment source, velocity or rotational velocity source in the
previously developed models. Fig. 14 shows the extended490

port description. Each translational direction involves a sep-
arate transducer which includes these sources. In the inter-
acting domain X the flow rate dI/dt and across quantity V
serve as network coordinates, which are integrals of the field
quantities. The product V · dI/dt is a power.495

Reversible transducer models for piezoelectric and piezo-
magnetic two-layer bimorphs are derived next. Table 2 lists
the coordinates used in the electrical and magnetic domain.
Due to Eq. (61), no distinction is made between a beam of
length l and a beam element of length ∆x1.500

In accordance with terms used in material science, the in-
dices used in material equations relate direction 3 to the ac-
tive direction. The convention will be clarified in the context
of the analyzed examples.

10.1 Piezoelectric unimorph505

Using Einstein notation, piezoelectric state equations are
written as:

Dn = εTnmEm + dnjT j n= 1 . . .3, m= 1 . . .3,

j = 1 . . .6
(63)

Si = dmiEm + sEijT j i= 1 . . .6, m= 1 . . .3,

j = 1 . . .6
(64)510

with displacement current D, electrical field strength E,
piezoelectric charge constant d and permittivity ε.

Two typical electrode arrangements are considered next.

10.1.1 Transverse piezoelectric coupling

An important technical configuration is transverse coupling515

of piezoelectric layers as shown in Fig. 15. For a piezo-
electric longitudinal acting unimorph with small beam width
(E2,E1 = 0 and T 2 . . . T6 = 0), Eqns. (63) and (64) simplify
to

D3 = d31T 1 + εT33E3 (65)520

S1 = sE11 ·T 1 + d13 ·E3 (66a)
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Fig. 15. Transversely coupled piezoelectric two-layer beam

S2 = sE21 ·T 1 + d23 ·E3 . (66b)

The indices match the directional conventions in Fig. 2. The525

deformation of the small beam in direction 2 is not further
considered. In case of a large beam width this deformation is
suppressed (S2 = 0), thus causing T 2 6= 0, such that

S1 = sE11 ·T 1 + sE12 ·T 2 + d13 ·E3 (67a)
530

S2 = sE21 ·T 1 + sE22 ·T 2 + d23 ·E3 = 0 (67b)

D3 = d31 ·T 1 + d32 ·T 2 + εT33 ·E3 (67c)

or, encounting sE12 = sE21 and d23 = d32,

S1 =

(
sE11−

(
sE12

)2
sE22

)
︸ ︷︷ ︸

sE∗11

T 1 +

(
d13−

d23s
E
12

sE22

)
︸ ︷︷ ︸

d∗13

E3 (68a)535

D3 =

(
d31−

d32s
E
21

sE22

)
︸ ︷︷ ︸

d∗31

T 1 +

(
εT33−

d2
32

sE22

)
︸ ︷︷ ︸

εT∗33

E3 (68b)

can be written. Eqs. (66a) and (68a) differ only in the coef-
ficients. T 1, S1 and E3 are functions of x3 while the dis-
placement current D3 does not depend on coordinate x3540

because of divD = 0. When these Eqs. are rearranged to
(T ,E = f(S,D)) (Lenk et al., 2011, pp. 352):

T 1 =
1

sE11 (1− k2
31)
·S1−

1

d31

(
k2

31

1− k2
31

)
·D3 (69a)

E3 =− 1

d31

(
k2

31

1− k2
31

)
·S1 +

1

εT33 (1− k2
31)
·D3 (69b)545

with

k2
31 =

d2
31

εT33s
E
11

, (70)

moment M(x1) and force F 1(x1) follow from Eq. (13) and
Eq. (14) with

i1 = jωAD3,1 and i2 = jωAD3,2 , (71)550

Figure 15. Transversely coupled piezoelectric two-layer beam.

S1 =

(
sE
11−

(
sE
12

)2
sE
22

)
︸ ︷︷ ︸

sE∗

11

T 1 +

(
d13−

d23s
E
12

sE
22

)
︸ ︷︷ ︸

d∗

13

E3 , (68a)

D3 =

(
d31−

d32s
E
21

sE
22

)
︸ ︷︷ ︸

d∗

31

T 1 +

(
εT

33−
d2

32

sE
22

)
︸ ︷︷ ︸

εT ∗

33

E3 (68b)

can be written. Equations (66a) and (68a) differ only in the
coefficients.T 1, S1 andE3 are functions ofx3 while the dis-
placement currentD3 does not depend on coordinatex3 be-
cause of divD = 0. When these equations are rearranged to
(T ,E = f (S,D)) (Lenk et al., 2011, pp. 352)

T 1 =
1

sE
11

(
1− k2

31

) · S1 −
1

d31

(
k2

31

1− k2
31

)
· D3 , (69a)

E3 = −
1

d31

(
k2

31

1− k2
31

)
· S1 +

1

εT
33

(
1− k2

31

) · D3 , (69b)

with

k2
31 =

d2
31

εT
33s

E
11

, (70)

momentM(x1) and forceF 1(x1) follow from Eqs. (13) and
(14) with

i1 = jωAD3,1 and i2 = jωAD3,2 , (71)

whereA = w · l is the through-flow area

M = −
1

jω

EI

l︸︷︷︸
1/nR,o

� −
E1

jω2l
α1

(
−h2

1 + 2ch1

)
︸ ︷︷ ︸

−1/XR⊥1

i1 (72)

−
E2

jω2l
α2

(
h2

2 + 2ch2

)
︸ ︷︷ ︸

−1/XR⊥2

i2,
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where A= w · l is the through-flow-area:

M =− 1

jω
EI

l︸︷︷︸
1/nR,o

Ω− E1

jω2l
α1

(
−h2

1 + 2ch1

)
︸ ︷︷ ︸

−1/XR⊥1

i1

− E2

jω2l
α2

(
h2

2 + 2ch2

)
︸ ︷︷ ︸

−1/XR⊥2

i2

(72)

F 1 =− 1

jω
EA

l︸︷︷︸
1/no

υ1 +
E1h1

jω l
α1︸ ︷︷ ︸

1/Xt⊥1

i1 +
E2h2

jω l
α2︸ ︷︷ ︸

−1/Xt⊥2

i2 (73)

and with the material parameters α=−d31/ε
T
33 and555

E =
1

sE11 (1− k2
31)

. (74)

Eqs. (72) and (73) describe a moment node and a force node
including the complex translational and rotational transduc-
tion coefficients Xt⊥ and XR⊥, from which the mechanical
domain in Fig. 16 can be deduced. The setup related direc-560

tions of i1, MΛ,1 and υ1 were reversed to match the direc-
tions of the arrows in Fig. 14.

Integrating E over x3 in each layer — named with sub-
script ,1 and ,2 or ⊥1 and ⊥2 — and considering Eqs. (44),
(45), (69b) and (10) gives the voltage565

u=−
c∫

c−h1

E3,1 dx3 =

c+h2∫
c

E3,2 dx3

=−
c∫

c−h1

(
E1α1

dξ
1

dx1
+E1α1x3

dϕ
dx1

+βS1 D3,1

)
dx3

=

c+h2∫
c

(
E2α2

dξ
1

dx1
+E2α2x3

dϕ
dx1

+βS2 D3,2

)
dx3

=
E1h1

jω l
α1︸ ︷︷ ︸

1/Xt⊥1

υ1 +
E1

jω2l
α1

(
−h2

1 + 2ch1

)
︸ ︷︷ ︸

−1/XR⊥1

Ω− 1

jω
h1β

S
1

wl︸ ︷︷ ︸
1/Cb,1

i1

=− E2h2

jω l
α2︸ ︷︷ ︸

−1/Xt⊥2

υ1−
E2

jω2l
α2

(
h2

2 + 2ch2

)
︸ ︷︷ ︸

−1/XR⊥2

Ω+
1

jω
h2β

S
2

wl︸ ︷︷ ︸
1/Cb,2

i2

(75)

with

βS = 1/
(
εT33

(
1− k2

31

))
. (76)

The resulting voltage meshes in Fig. 16 include the electri-
cal capacitances Cb,1 and Cb,2 of the two layers. The ca-570

pacitance Cb = Cb,1 +Cb.2 can be measured in case of the
blocked beam (υ =Ω = 0).
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Fig. 16. Transversely coupled piezoelectric transducer model given
by Eqs. (75), (72) and (73)

Compliance no and rotational compliance nR,o are labelled
with the subscript “o” for “open” since they could be mea-
sured in case of no current (i1 = i2 = 0). If the two layers are575

non-symmetric, then this boundary condition cannot be real-
ized. The open electrical circuit connects Cb,1 and Cb,2 in
series which allows a current flow. This connection provides
a link between rotation and translation. The transfer function
υ∗1/Ω0|i=0 for this case can be determined analytically for580

the circuit in Fig. 16 which is simplified for this pupose. The
first step is to explore the effect of an assumed rotational ve-
locity source Ω0 in the electrical domain. The effect can be
found by a source transformation as demonstrated in Fig. 17.
The electrorotational transducers can be ignored afterwards585

since they do not influence the ideal sorces and current i1
which flows through the electrotranslational transducers. The
result of this reduction step is depicted in Fig. 18a. The cir-

Figure 16. Transversely coupled piezoelectric transducer model
given by Eqs. (75), (72) and (73).

F 1 = −
1

jω

EA

l︸︷︷︸
1/no

υ1 +
E1h1

jωl
α1︸ ︷︷ ︸

1/Xt⊥1

i1 +
E2h2

jωl
α2︸ ︷︷ ︸

−1/Xt⊥2

i2 (73)

and with the material parametersα = −d31/ε
T
33 and

E =
1

sE
11

(
1− k2

31

) . (74)

Equations (72) and (73) describe a moment node and a
force node including the complex translational and rotational
transduction coefficientsXt⊥ andXR⊥, from which the me-
chanical domain in Fig.16can be deduced. The setup-related
directions ofi1, M3,1 andυ1 were reversed to match the di-
rections of the arrows in Fig.14.

IntegratingE over x3 in each layer – designated by sub-
script ,1 and ,2 or ⊥1 and ⊥2 – and considering Eqs. (44),
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(45), (69b) and (10) gives the voltage

u = −

c∫
c−h1

E3,1 dx3 =

c+h2∫
c

E3,2 dx3 (75)

= −

c∫
c−h1
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dξ
1

dx1
+ E1α1x3

dϕ

dx1
+ βS

1 D3,1

)
dx3

=

c+h2∫
c

(
E2α2

dξ
1

dx1
+ E2α2x3

dϕ

dx1
+ βS

2 D3,2

)
dx3

=
E1h1

jωl
α1︸ ︷︷ ︸

1/Xt⊥1

υ1 +
E1

jω2l
α1

(
−h2

1 + 2ch1

)
︸ ︷︷ ︸

−1/XR⊥1

�

−
1

jω

h1β
S
1

wl︸ ︷︷ ︸
1/Cb,1

i1

= −
E2h2

jωl
α2︸ ︷︷ ︸

−1/Xt⊥2

υ1−
E2

jω2l
α2

(
h2

2 + 2ch2

)
︸ ︷︷ ︸

−1/XR⊥2

�

+
1

jω

h2β
S
2

wl︸ ︷︷ ︸
1/Cb,2

i2,

with

βS
= 1/

(
εT

33

(
1− k2

31

))
. (76)

The resulting voltage meshes in Fig.16 include the electrical
capacitancesCb,1 andCb,2 of the two layers.

The capacitanceCb = Cb,1 + Cb,2 can be measured in the
case of the blocked beam(υ = � = 0).

Complianceno and rotational compliancenR,o are labeled
with the subscript “o” for “open” since they could be mea-
sured in the case of no current(i1 = i2 = 0). If the two layers
are nonsymmetric, then this boundary condition cannot be re-
alized. The open electrical circuit connectsCb,1 andCb,2 in
series, which allows a current flow. This connection provides
a link between rotation and translation. The transfer function
υ∗

1/�0|i=0 for this case can be determined analytically for
the circuit in Fig.16, which is simplified for this purpose.
The first step is to explore the effect of an assumed rotational
velocity source�0 in the electrical domain. The effect can be
found by a source transformation as demonstrated in Fig.17.
The electrorotational transducers can be ignored afterwards
since they do not influence the ideal sources and currenti1
which flows through the electrotranslational transducers. The
result of this reduction step is depicted in Fig.18a. The cir-
cuit can be simplified further, when the combined source

u� =

(
1

XR⊥1
−

1

XR⊥2

)
· �0 (77)
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cuit can be simplified further, when the combined sources

uΩ =

(
1

XR⊥1

− 1

XR⊥2

)
·Ω0 (77)590

and total capacitance

Cser =
Cb,1 ·Cb,2

Cb,1 +Cb,2
(78)

are transformed into the translational mechanical domain.
The complex transduction coefficient causes a transition to a
compliant behavior or inductance symbol, respectively. Then595

the two transducers are solely connected to each other. They
can be combined to a lever with the ratio or mechanical ad-
vantage

t=
Xt⊥1

Xt⊥2

(79)

as depicted in Fig. 18b. The sought transfer function600

υ∗1
Ω0

∣∣∣∣
i=0

=

Xt⊥1 ·

(
1

XR⊥1

−
1

XR⊥2

)

t− 1 +
nC

no · (t− 1)

(80)

with

nC =− X2
t⊥1

ω2Cser
. (81)

is found by applying of Kirchhoff’s laws:

	: −υ∗1 + jωnC ·
i1

Xt⊥1

− υΩ + t · υ∗1 = 0 (82)605

~ : t · i∗1− i∗1−
υ∗1

jωn0
= 0 (83)

with

i∗1 =
i1

Xt⊥1

. (84)

610

No dependency occurs when XR⊥1 =XR⊥2.

10.1.2 Symmetric laminate

A special case of transverse coupling is the laminate of
two equal piezoelectric layers as shown in Fig. 15 where
i1 =−i2 = i/2 holds. Such a symmetric laminate is char-615

acterized by XR⊥1 =XR⊥2 and Xt⊥1 =Xt⊥2, i.e. t= 1.
Simplified network parameters — as derived by Lenk and
Irrgang (1977) — result from Eqs. (75), (72) and (73):
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1
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Transformation 

 
Fig. 17. Transformation of a rotational velocity source
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Fig. 18. Length variation of a transversally coupled piezoelectric
unimorph caused by a rotational velocity
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F 1 =−
1

jωn
· υ (85b)

Figure 17. Transformation of a rotational velocity source.

and total capacitance

Cser=
Cb,1 · Cb,2

Cb,1 + Cb,2
(78)

are transformed into the translational mechanical domain.
The complex transduction coefficient causes a transition to
a compliant behavior or inductance symbol. Then the two
transducers are solely connected to each other. They can be
combined into a lever with the ratio or mechanical advantage

t =
Xt⊥1

Xt⊥2
(79)

as depicted in Fig.18b. The sought transfer function:
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1
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Xt⊥1 ·

(
1

XR⊥1 −
1
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)
t − 1+
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no·(t−1)

(80)

with

nC = −
X2

t⊥1

ω2Cser
, (81)
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cuit can be simplified further, when the combined sources
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− 1
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·Ω0 (77)590

and total capacitance

Cser =
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(78)

are transformed into the translational mechanical domain.
The complex transduction coefficient causes a transition to a
compliant behavior or inductance symbol, respectively. Then595

the two transducers are solely connected to each other. They
can be combined to a lever with the ratio or mechanical ad-
vantage

t=
Xt⊥1

Xt⊥2

(79)

as depicted in Fig. 18b. The sought transfer function600
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is found by applying of Kirchhoff’s laws:
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= 0 (83)

with
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. (84)
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10.1.2 Symmetric laminate

A special case of transverse coupling is the laminate of
two equal piezoelectric layers as shown in Fig. 15 where
i1 =−i2 = i/2 holds. Such a symmetric laminate is char-615

acterized by XR⊥1 =XR⊥2 and Xt⊥1 =Xt⊥2, i.e. t= 1.
Simplified network parameters — as derived by Lenk and
Irrgang (1977) — result from Eqs. (75), (72) and (73):
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Fig. 18. Length variation of a transversally coupled piezoelectric
unimorph caused by a rotational velocity
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1
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Figure 18. Length variation of a transversally coupled piezoelectric
bimorph caused by a rotational velocity.

is found by applying Kirchhoff’s laws:

	: −υ∗

1 + jωnC ·
i1

Xt⊥1
− υ� + t · υ∗

1 = 0, (82)

~ : t · i∗1 − i∗1 −
υ∗

1

jωn0
= 0, (83)

with

i∗1 =
i1

Xt⊥1
. (84)

No dependency occurs whenXR⊥1 = XR⊥2.

10.1.2 Symmetric laminate

A special case of transverse coupling is the laminate of two
equal piezoelectric layers as shown in Fig.15 where i1 =

−i2 = i/2 holds. Such a symmetric laminate is characterized
by XR⊥1 = XR⊥2 andXt⊥1 = Xt⊥2, i.e., t = 1. Simplified
network parameters – as derived byLenk and Irrgang(1977)
– result from Eqs. (75), (72) and (73):

M = −
1

jωnR,o
· � +

1

XR⊥

· i, (85a)

F 1 = −
1

jωn
· υ, (85b)

u = −
1

Xt⊥1
· υ +

1

XR⊥1
· � +

1

jωCb,1
·
i

2

= −
1

Xt⊥2
· υ +

1

XR⊥2
· � +

1

jωCb,2
·
i

2
,

(85c)

with

nR,o =
EI

l
, (86)
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Fig. 19. Model of a transversely coupled symmetric piezoelectric
two-layer beam

u=− 1

Xt⊥1

· υ+
1

XR⊥1

·Ω+
1

jωCb,1
· i

2

=− 1

Xt⊥2

· υ+
1

XR⊥2

·Ω+
1

jωCb,2
· i

2

(85c)

with

nR,o =
EI

l
(86)625

I =
w(2h1)3

12
(87)

1

XR⊥
=

3

4

nR,o

wh1

α

jω
(88)

630

n=
EA

l
(89)

and

A= 2wh1 . (90)

The neutral layer is located at the material interface, i.e.
cA = cS . Therefore, no translational electromechanical effect635

occurs (F 1 6= f(i)). In the sensing case, opposite voltages
are caused by υ which cancel each other out (u 6= f(υ)).

Following Lenk and Irrgang (1977) a circuit description
with real transduction coefficients

1

YR⊥
=

jωCb

XR⊥
=
d31

sE11

wh1 (91)640

is obtained by rearranging SOE (85) to:

M =−
1

jωnR,s
·Ω+

1

YR⊥
·u

i=
1

YR⊥
· Ω + jωCb · u

(92)

where nR,s is the short-circuit compliance (subscript “s”):

nR,s =
l

EI

1(
1− 3

4k
2
31

) (93)

and645

Cb = Cb,1 +Cb,2 = 2εT33

(
1− k2

31

) lw
h1

(94)

is the total blocked capacitance. SOE (92) can be interpreted
as the circuit in Fig. 19 (Lenk et al., 2011).
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Fig. 20. Longitudinally coupled piezoelectric two-layer beam

10.1.3 Longitudinal piezoelectric coupling

Longitudinal piezoelectric coupling is achieved with (Ne+1)650

interdigital electrodes on the piezoelectric layers creatingNe
separate electric field regions as sketched in Fig. 20. The lay-
ers are polarized logitudinally and match the comb structure
but with opposite direction in layers 1 and 2. In the follow-
ing thin layers are assumed which accommodate an approxi-655

mately uniform electric field in direction 1. The material di-
rections 1 and 3 are now exchanged compared to the coordi-
nate system in Fig. 2.

Longitudinal piezoelectric coupling is described by

T 3 =
1

sE∗33

·S3−
d∗33

sE∗33

·E3 (95a)660

D3 = d∗33 ·T 3 + εT∗33 ·E3 (95b)

matching the abbreviations 1/E = sE∗33 = sE33−
(
sE23

)2
/sE22,

βT = εT∗33 = εT33− d2
23/s

E
22 and α1 =−α2 = d∗33 = d33−

sE32d23/s
E
22, as well as Λ= E3.665

Calculation of moment M and logitudinal force F 3 with
Eqs. (13) and (14) and u= E3 · l/Ne give the rotational elec-
tromechanical tranduction coefficient YR for the actuation
equation (21):

Mλ =−w
2

E1E2h1h2 (h1 +h2)

(E1h1 +E2h2)

(α1−α2)

l/Ne︸ ︷︷ ︸
1/YR

u
(96)670

and the translational electromechanical transduction coeffi-
cient in the combination of Eq. (42b) and Eqs. (18) and (19):

1

Yt
=
F 1

u

∣∣∣∣ dξ3
dx3

=0

=
EA ·α
l/Ne

=
w

l/Ne
(α1E1h1 +α2E2h2) .

(97)

As in Sec. 10.1.2 this coefficient is zero when the two piezo-
electric layers are equal and cA = cS , too.675

Figure 19. Model of a transversely coupled symmetric piezoelec-
tric two-layer beam.

I =
w(2h1)

3

12
, (87)

1

XR⊥

=
3
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nR,o

wh1

α

jω
, (88)

n =
EA

l
(89)

and

A = 2wh1 . (90)

The neutral layer is located at the material interface, i.e.,
cA = cS . Therefore, no translational electromechanical effect
occurs(F 1 6= f (i)). In the sensing case, opposite voltages
are caused byυ1 which cancel each other out(u 6= f (υ1)).

Following Lenk and Irrgang(1977), a circuit description
with real transduction coefficients

1

YR⊥

=
jωCb

XR⊥

=
d31

sE
11

wh1 (91)

is obtained by rearranging SOE (85) to

M = −
1

jωnR,s
· � +

1

YR⊥

· u (92)

i =
1

YR⊥

· � + jωCb · u,

wherenR,s is the short-circuit compliance (subscript “s”)

nR,s=
l

EI

1(
1−

3
4k2

31

) , (93)

and

Cb = Cb,1 + Cb,2 = 2εT
33

(
1− k2

31

) lw

h1
(94)

is the total blocked capacitance. SOE (92) can be interpreted
as the circuit in Fig.19 (Lenk et al., 2011).
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Figure 20. Longitudinally coupled piezoelectric two-layer beam.

10.1.3 Longitudinal piezoelectric coupling

Longitudinal piezoelectric coupling is achieved with(Ne+1)

interdigital electrodes on the piezoelectric layers creatingNe
separate electric field regions as sketched in Fig.20. The lay-
ers are polarized longitudinally and match the comb structure
but with opposite direction in layers 1 and 2. In the follow-
ing, thin layers are assumed which accommodate an approx-
imately uniform electric field in direction 1. The material di-
rections 1 and 3 are now exchanged compared to the coordi-
nate system in Fig.2.

Longitudinal piezoelectric coupling is described by

T 3 =
1

sE∗

33

· S3 −
d∗

33

sE∗

33

· E3 , (95a)

D3 = d∗

33 · T 3 + εT ∗

33 · E3 , (95b)

matching the abbreviations 1/E = sE∗

33 = sE
33−

(
sE
23

)2
/sE

22,
βT

= εT ∗

33 = εT
33− d2

23/s
E
22 and α1 = −α2 = d∗

33 =

d33− sE
32d23/s

E
22, as well as3 = E3.

Calculation of momentM and longitudinal forceF 3 with
Eqs. (13) and (14) andu = E3 · l/Ne give the rotational elec-
tromechanical transduction coefficientYR for the actuation
Eq. (21)

Mλ = −
w

2

E1E2h1h2 (h1 + h2)

(E1h1 + E2h2)

(α1 − α2)

l/Ne︸ ︷︷ ︸
1/YR

u, (96)

and the translational electromechanical transduction coeffi-
cient in the combination of Eq. (42b) and Eqs. (18) and (19):

1

Yt

=
F 1

u

∣∣∣∣ dξ3
dx3

=0
=

EA · α

l/Ne
(97)

=
w

l/Ne
(α1E1h1 + α2E2h2) .

As in Sect.10.1.2this coefficient is 0 when the two piezo-
electric layers are equal andcA = cS , too.
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 Figure 21. Model of a longitudinally coupled piezoelectric beam.

The time-integrated flow coordinate chargeQ is gained
from the density quantityD3 by

Q = n · w

c+h2∫
c−h1

(
αE

dξ
3

dx3
+ αEx1

dϕ

dx3
+

(
β − α2E

)
3

)
dx1

= w

{[
1

2

(
α2E2h

2
2 − α1E1h

2
1

)
+ (α1E1h1 + α2E2h2)c

]
dϕ

dx3

+
(
α1E1h1 + α2E2h2

) dξ
1

dx3

+

[(
β1 − α2

1E1

)
h1 +

(
β2 − α2

2E2

)
h2

]
3

}
(98)

in the case of a uniform electrical field in direction 2. When
curvature, strain alongx3 and the3 field coordinate are all
constant, then the flow coordinate – current –i = jωQ

i = −
w

2

E1E2h1h2 (h1 + h2)

(E1h1 + E2h2)

(α1 − α2)

l/Ne︸ ︷︷ ︸
1/YR

� (99)

+
(
α1E1h1 + α2E2h2

) w

l/Ne︸ ︷︷ ︸
1/Yt

υ3

+ jω


(
βT

1 − α2
1E1

) wh1

l/Ne︸ ︷︷ ︸
Cb,1

+

(
βT

2 − α2
2E2

) wh2

l/Ne︸ ︷︷ ︸
Cb,2

u

includes a bending-induced, ax3-translationally induced and
a voltage-induced component with the transduction coeffi-
cientsYR andYt and the layer capacitanciesCb,1 andCb,2.

Together with Eqs. (42f) and (56), a circuit interpreta-
tion of Eqs. (99) and (96) leads to the reversible transducer
model in Fig.21. Short-circuiting the electrical port decou-
ples translational and rotational domain. Then the compli-
ancens and rotational compliancenR,s can be measured.
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The time-integrated flow coordinate charge Q is gained of
the density quantity D by

Q= n ·w
c+h2∫
c−h1
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αE

dξ
3

dx3
+αEx1

dϕ
dx3

+
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β−α2E

)
Λ

)
dx1
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2
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2
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dx3
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1

dx3

+
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1E1

)
h1 +

(
β2−α2

2E2

)
h2

]
Λ

}
(98)

in case of a uniform electrical field in direction 2. When cur-
vature, strain along x3 andΛ-field coordinate are all constant,680

then the flow coordinate current i= jωQ:

i=−w
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(99)

includes a bending-induced, a x3-translationally induced and
a voltage-induced component with the transduction coeffi-
cients YR and Yt and the layer capacitancies Cb,1 and Cb,2.685

A circuit interpretation of Eq. (99) and Eq. (96) leads to-
gether with Eqs. (42f) and (56) to the reversible transducer
model in Fig. 21. Short-circuiting the electrical port decou-
ples translational and rotational domain. Then the compli-
ance ns and rotational compliance nR,s can be measured.690

When only one mechanical domain is of interest, the com-
pliances of the other mechanical domain can be transformed
into the electrical domain. As depicted in Fig. 22, the trans-
lational compliance, for example, is recognized as an addi-
tional capacitance for F 1 = 0.695

10.2 Piezomagnetic unimorph

In the case of a piezomagnetic bimorph — analog to piezo-
electric materials — the linear magnetomechanical coupling
matrix for the field quantities stress T , strain S, magnetic
flux density B (=Ki) and magnetic field strength H (= Λ)700
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Fig. 22. Model of a longitudinally coupled piezoelectric beam with
transformed translational compliance

is given by:

Bn = µTnmHm + dnjT j n= 1 . . .3, m= 1 . . .3,

j = 1 . . .6

Si = dmiHm + sHijT j i= 1 . . .6, m= 1 . . .3,

j = 1 . . .6

(100)

where d(= α) is the piezomagnetic constant and µ(= β) the
permeability.

Technically important are solenoid coils and planar coils705

as electromagnetic transducers.

10.2.1 Longitudinal coupling with an ideal solenoid

Longitudinal coupling is achieved when a solenoid coil with
N turns around the unimorph serves as an electromagnetic
transducer as shown in Fig. 1d. An ideal solenoid coil con-710

centrates a uniform H-field in the unimorph and covers the
unimorph without an air gap. Demagnetization effects are not
considered.

For longitudinal coupling, the magnetomechanical cou-
pling matrix of SOE (100) simplifies for a small beam width715

to:

S3 = sH33 ·T 3 + d33 ·H3

B3 = d33 ·T 3 +µT33 ·H3

(101)

Figure 22. Model of a longitudinally coupled piezoelectric beam
with transformed translational compliance.

When only one mechanical domain is of interest, the com-
pliances of the other mechanical domain can be transformed
into the electrical domain. As depicted in Fig.22, the trans-
lational compliance, for example, is recognized as an addi-
tional capacitance forF 1 = 0.

10.2 Piezomagnetic bimorph

In the case of a piezomagnetic bimorph – analog to piezo-
electric materials – the linear magnetomechanical coupling
matrix for the field quantities stressT , strainS, magnetic
flux densityB(=Ki) and magnetic field strengthH(= 3) is
given by

Bn = µT
nmHm + dnjT j n = 1. . .3, m = 1. . .3, (100)

j = 1. . .6

Si = dmiHm + sH
ij T j i = 1. . .6, m = 1. . .3,

j = 1. . .6

whered (= α) is the piezomagnetic constant andµ(= β) the
permeability.

Technically important electromagnetic transducers are
solenoid coils and planar coils.

10.2.1 Longitudinal coupling with an ideal solenoid

Longitudinal coupling is achieved when a solenoid coil with
N turns around a considered unimorph – with one piezo-
magnetic layer – serves as an electromagnetic transducer as
shown in Fig.1d. An ideal solenoid coil concentrates a uni-
form H field in the unimorph and covers the unimorph with-
out an air gap. Demagnetization effects are not considered.

For longitudinal coupling, the magnetomechanical cou-
pling matrix of SOE (100) simplifies for a small beam width
to

S3 = sH
33 · T 3 + d33 · H 3 (101)

B3 = d33 · T 3 + µT
33 · H 3

and in the case of a large beam width to

S3 = sH
33 · T 3 + sH

31 · T 1 + d33 · H 3 (102)

S1 = sH
13 · T 3 + sH

11 · T 1 + d31 · H 3 = 0

B3 = d33 · T 3 + d31 · T 1 + µT
33 · H 3
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and in case of a large beam width to

S3 = sH33 ·T 3 + sH31 ·T 1 + d33 ·H3

S1 = sH13 ·T 3 + sH11 ·T 1 + d31 ·H3 = 0

B3 = d33 ·T 3 + d31 ·T 1 +µT33 ·H3

(102)
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In the magnetic domain magnetic voltage Vm and the time
derivative of the magnetic flux dΦ/dt, or magnetic flux rate
Im, are chosen as coordinates as listed in Table 2. An ideal725

solenoid coil then acts as electromechanical transducer with
coefficientN , which is coupled with the piezomagnetic beam
(Marschner et al., 2010). With magnetic voltage and flux rate,
a magnetic reluctanceRm is described by the capacitor sym-
bol due to the analogy to the capacitance u= 1/(jωC) · i as730

explained in Fig. 23.
With the abbreviations E = 1/sE33, α= d33 and βT = µT33

the transduction coefficients are obtained with Eqs. (96) and
(97) when Ne is set to 1, and in addition to the material coef-
ficients, u is substituted by V m and Λ by H3. Replacing also735

Q by the magnetic flux Φ, the magnetic flux rate Im instead
of i follows with Eq. (99) where the reluctances of the lay-
ers Rm,b,1 and Rm,b,2 can be measured when the bimorph
is mechanically blocked. Fig. 24 shows the resulting elec-
tromechanical circuit representation. Compliance n and ro-740

tational compliance nR are separated in case of a suppressed
magnetic voltage variation (V m = 0) which is achieved by
an open electrical circuit (i= 0).

The model is valid for small variations of the magnetic
and mechanical system quantities. In order to model nonlin-745

ear sensing and actuating behaviors of piezomagnetic mate-
rials, Finite-Element-based models comprise magnetic and
elastic boundary value problems (BVPs) that are bidirec-
tionally coupled through stress and field-dependent coupling
variables — magnetostriction and magnetization (Mudivarthi750

et al., 2008).

10.2.2 Transverse coupling

The linearized constitutive equations for transverse coupling
of mechanical and magnetic field quantities for a small beam
can be formulated as:755

S1 = d13 ·H3 + sH11 ·T 1

B3 = µT33 ·H3 + d31 ·T 1

(104)
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Fig. 23. Magnetic coordinates on a reluctance
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Fig. 24. Circuit model for uniform longitudinal electromagnetic
coupling achieved by applying an ideal solenoid coil
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(105)

Similar considerations for a large beam width hold as dis-
cussed for longitudinal coupling.760

A technical solution to realize transverse coupling are pla-
nar coils. In a part of the coil the mechanical and magnetic
quantities are directed perpendicular to each other as visual-
ized by Fig. 25. When a uniform magnetic field strength in
the piezomagnetic layer is assumed, then network parameters765

similar to longitudinal coupling are found except exchanged
length l and width w of the beam as listed in Table 4.

10.2.3 Example: Transverse coupling with planar coil

Next, the technically interesting case of a thin piezomagnetic
layer on a non-magnetic carrier in combination with a planar770

Figure 23. Magnetic coordinates on a reluctance.
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B3 =
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In the magnetic domain, magnetic voltageV m and the time
derivative of the magnetic flux d8/dt , or magnetic flux rate
Im, are chosen as coordinates as listed in Table2. An ideal
solenoid coil then acts as electromechanical transducer with
coefficientN , which is coupled with the piezomagnetic beam
(Marschner et al., 2010). With magnetic voltage and flux rate,
a magnetic reluctanceRm is described by the capacitor sym-
bol due to the analogy with the capacitanceu = 1/(jωC) · i

as explained in Fig.23.
With the abbreviationsE = 1/sE

33, α = d33 andβT
= µT

33,
the transduction coefficients are obtained by Eqs. (96) and
(97) whenNe is set to 1, and in addition to the material coef-
ficients,u is substituted byV m and3 by H 3. Also replacing
Q by the magnetic flux8, the magnetic flux rateIm instead
of i follows with Eq. (99), where the reluctances of the lay-
ersRm,b,1 andRm,b,2 can be measured when the bimorph
is mechanically blocked. Figure24 shows the resulting elec-
tromechanical circuit representation. Compliancen and rota-
tional compliancenR are separated in case of a suppressed
magnetic voltage variation(V m = 0) which is achieved by
an open electrical circuit(i = 0).

The model is valid for small variations of the magnetic
and mechanical system quantities. In order to model nonlin-
ear sensing and actuating behaviors of piezomagnetic ma-
terials, finite-element-based models comprise magnetic and
elastic boundary value problems (BVPs) that are bidirec-
tionally coupled through stress and field-dependent coupling
variables – magnetostriction and magnetization (Mudivarthi
et al., 2008).
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and in case of a large beam width to

S3 = sH33 ·T 3 + sH31 ·T 1 + d33 ·H3

S1 = sH13 ·T 3 + sH11 ·T 1 + d31 ·H3 = 0
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In the magnetic domain magnetic voltage Vm and the time
derivative of the magnetic flux dΦ/dt, or magnetic flux rate
Im, are chosen as coordinates as listed in Table 2. An ideal725

solenoid coil then acts as electromechanical transducer with
coefficientN , which is coupled with the piezomagnetic beam
(Marschner et al., 2010). With magnetic voltage and flux rate,
a magnetic reluctanceRm is described by the capacitor sym-
bol due to the analogy to the capacitance u= 1/(jωC) · i as730

explained in Fig. 23.
With the abbreviations E = 1/sE33, α= d33 and βT = µT33

the transduction coefficients are obtained with Eqs. (96) and
(97) when Ne is set to 1, and in addition to the material coef-
ficients, u is substituted by V m and Λ by H3. Replacing also735

Q by the magnetic flux Φ, the magnetic flux rate Im instead
of i follows with Eq. (99) where the reluctances of the lay-
ers Rm,b,1 and Rm,b,2 can be measured when the bimorph
is mechanically blocked. Fig. 24 shows the resulting elec-
tromechanical circuit representation. Compliance n and ro-740

tational compliance nR are separated in case of a suppressed
magnetic voltage variation (V m = 0) which is achieved by
an open electrical circuit (i= 0).

The model is valid for small variations of the magnetic
and mechanical system quantities. In order to model nonlin-745

ear sensing and actuating behaviors of piezomagnetic mate-
rials, Finite-Element-based models comprise magnetic and
elastic boundary value problems (BVPs) that are bidirec-
tionally coupled through stress and field-dependent coupling
variables — magnetostriction and magnetization (Mudivarthi750

et al., 2008).

10.2.2 Transverse coupling

The linearized constitutive equations for transverse coupling
of mechanical and magnetic field quantities for a small beam
can be formulated as:755

S1 = d13 ·H3 + sH11 ·T 1

B3 = µT33 ·H3 + d31 ·T 1
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Fig. 24. Circuit model for uniform longitudinal electromagnetic
coupling achieved by applying an ideal solenoid coil
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(105)

Similar considerations for a large beam width hold as dis-
cussed for longitudinal coupling.760

A technical solution to realize transverse coupling are pla-
nar coils. In a part of the coil the mechanical and magnetic
quantities are directed perpendicular to each other as visual-
ized by Fig. 25. When a uniform magnetic field strength in
the piezomagnetic layer is assumed, then network parameters765

similar to longitudinal coupling are found except exchanged
length l and width w of the beam as listed in Table 4.

10.2.3 Example: Transverse coupling with planar coil

Next, the technically interesting case of a thin piezomagnetic
layer on a non-magnetic carrier in combination with a planar770

Figure 24. Circuit model for uniform longitudinal electromagnetic
coupling achieved by applying an ideal solenoid coil.

10.2.2 Transverse coupling

The linearized constitutive equations for transverse coupling
of mechanical and magnetic field quantities for a small beam
can be formulated as

S1 = d13 · H 3 + sH
11 · T 1 (104)

B3 = µT
33 · H 3 + d31 · T 1

or

T 1 = −
d13

sH
11

· H 3 +
1
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11

· S1 (105)
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13

sH
11
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· H 3 +
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11

· S1.

Similar considerations for a large beam width hold as dis-
cussed for longitudinal coupling.

A technical solution to realizing transverse coupling are
planar coils. In a part of the coil the mechanical and magnetic
quantities are directed perpendicular to each other as visual-
ized by Fig.25. When a uniform magnetic field strength in
the piezomagnetic layer is assumed, then network parame-
ters similar to longitudinal coupling are found except with
the lengthl and widthw of the beam being exchanged as
listed in Table4.

10.2.3 Example: transverse coupling with planar coil

Next, the technically interesting case of a thin piezomagnetic
layer on a nonmagnetic carrier in combination with a planar
set of inductors will be discussed. The planar set of inductors,
as shown in Fig.26, serves as electromagnetic transducer. It
can be viewed as a section of a rectangular planar coil. In this
specific example a thin isolation layer of 0.2 mm thickness is
located between the conductor layer and the magnetic layer.
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Fig. 25. Rectangular planar coil coupling

set of inductors will be discussed. The planar set of inductors,
as shown in Fig. 26, serves as electromagnetic transducer. It
can be viewed as section of a rectangular planar coil. In this
specific example a thin isolation layer of 0.2 mm thickness
is located between conductor layer and magnetic layer.775

a) Coil inductance
The placement of the ferromagnetic material beside the

planar turns has much less influence on the coil inductance
or electromagnetic properties in general than a ferromag-
netic core inside a solenoid coil. While the inductance of a780

solenoid coil with isotropic core material depends linearly
on the permeability, the inductance of a planar coil L∞ is
doubled at the maximum by an isotropic permeable layer of
infinite thickness underneath the turns compared to the air
coil inductance L0. For an infinite layer thickness Roshen785

and Turcotte (1988) showed that:

L∞ =
2µr
µr + 1

L0 . (106)

It should be noticed, that already a relative permeability
µr = 20 increases L0 by about a factor of 1.9. The network
model of the coil arrangement, which is derived next, relates790

the magnetic reluctances to the inductance. This will give an
explanation for the inductance peculiarity.

b) Combined Simulation
The electromagnetic system is studied for the setup in

Fig. 26 using Finite-Element (FE) simulations to determine795

the structures and parameters of the magnetic network. The
method of deriving network parameters from FE-simulations
is called Combined Simulation (Starke, 2009), (Starke et al.,
2011). The network elements of the circuit in Fig. 29 can be
determined individually and separately by applying particu-800

lar boundary conditions (e.g. short- or open-circuits, excita-
tion quantities). The same conditions are used as boundary
conditions for the FE-simulations to determine the element
values from the complex geometries and field distributions.

A magnetostatic FE-analysis, not considering any eddy805

current losses, reveals the actuation situation when only the
low-frequency properties of the unimorph are of interest. The
generated magnetic field strength is depicted in Fig. 27. The
magnetic flux is concentrated near the turns with a slight peak
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w = 23 mm  3, x2 1, x1 2, x3 
Air (0.5 mm) 

Fig. 26. Section of a planar coil on top of a thin piezomagnetic layer
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Fig. 27. Absolute value of the magnetic field strengthH in the right
half and magnetic voltages across each path µr = 20
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Fig. 28. Concentration of the magnetic flux in the magnetic layer
near the turns

near the middle of the turn area while the flux in x3-direction810

is nearly uniform (Fig. 28).

c) Equivalent circuit
When each partial magnetic voltage along a path around

the conductors is related to a reluctance, then a magnetic volt-
age divider is found where the magnetic voltages are pro-815

portional to the reluctances. Due to the ideally equal mag-
netic voltage in a thin piezomagnetic layer and in the non-
magnetic substrate and air below, as depicted in Fig. 27, the

Figure 25. Rectangular planar coil coupling.
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set of inductors will be discussed. The planar set of inductors,
as shown in Fig. 26, serves as electromagnetic transducer. It
can be viewed as section of a rectangular planar coil. In this
specific example a thin isolation layer of 0.2 mm thickness
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tion quantities). The same conditions are used as boundary
conditions for the FE-simulations to determine the element
values from the complex geometries and field distributions.

A magnetostatic FE-analysis, not considering any eddy805

current losses, reveals the actuation situation when only the
low-frequency properties of the unimorph are of interest. The
generated magnetic field strength is depicted in Fig. 27. The
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c) Equivalent circuit
When each partial magnetic voltage along a path around

the conductors is related to a reluctance, then a magnetic volt-
age divider is found where the magnetic voltages are pro-815

portional to the reluctances. Due to the ideally equal mag-
netic voltage in a thin piezomagnetic layer and in the non-
magnetic substrate and air below, as depicted in Fig. 27, the

Figure 26. Section of a planar coil on top of a thin piezomagnetic
layer.

(a) Coil inductance

The placement of the ferromagnetic material beside the pla-
nar turns has much less influence on the coil inductance
or electromagnetic properties in general than a ferromag-
netic core inside a solenoid coil. While the inductance of a
solenoid coil with isotropic core material depends linearly
on the permeability, the inductance of a planar coilL∞ is
doubled at the maximum by an isotropic permeable layer of
infinite thickness underneath the turns compared to the air
coil inductanceL0. For an infinite layer thickness,Roshen
and Turcotte(1988) showed that

L∞ =
2µr

µr + 1
L0 . (106)

It should be noted, that already a relative permeabilityµr =

20 increasesL0 by about a factor of 1.9. The network model
of the coil arrangement, which is derived next, relates the
magnetic reluctances to the inductance. This will give an ex-
planation for the inductance peculiarity.

(b) Combined Simulation

The electromagnetic system is studied for the setup in Fig.26
using finite-element (FE) simulations to determine the struc-
tures and parameters of the magnetic network. The method of
deriving network parameters from FE simulations is called
Combined Simulation (Starke, 2009), (Starke et al., 2011).
The network elements of the circuit in Fig.29 can be

J. Sens. Sens. Syst., 3, 187–211, 2014 www.j-sens-sens-syst.net/3/187/2014/



U. Marschner et al.: Equivalent circuit models of two-layer beams 205

18 U. Marschner et al.: Equivalent circuit models of two-layer beamsCoil pin 
H3,B3 w l 

µ 31 µ 33 i T1,S1 Transverse coupling 
Longitudinal coupling H1 B1 1 3 

 

Fig. 25. Rectangular planar coil coupling

set of inductors will be discussed. The planar set of inductors,
as shown in Fig. 26, serves as electromagnetic transducer. It
can be viewed as section of a rectangular planar coil. In this
specific example a thin isolation layer of 0.2 mm thickness
is located between conductor layer and magnetic layer.775

a) Coil inductance
The placement of the ferromagnetic material beside the

planar turns has much less influence on the coil inductance
or electromagnetic properties in general than a ferromag-
netic core inside a solenoid coil. While the inductance of a780

solenoid coil with isotropic core material depends linearly
on the permeability, the inductance of a planar coil L∞ is
doubled at the maximum by an isotropic permeable layer of
infinite thickness underneath the turns compared to the air
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model of the coil arrangement, which is derived next, relates790
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b) Combined Simulation
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Fig. 26 using Finite-Element (FE) simulations to determine795
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current losses, reveals the actuation situation when only the
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generated magnetic field strength is depicted in Fig. 27. The
magnetic flux is concentrated near the turns with a slight peak
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Fig. 25. Rectangular planar coil coupling

set of inductors will be discussed. The planar set of inductors,
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portional to the reluctances. Due to the ideally equal mag-
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magnetic substrate and air below, as depicted in Fig. 27, the

Figure 28. Concentration of the magnetic flux in the magnetic layer
near the turns.

determined individually and separately by applying partic-
ular boundary conditions (e.g., short or open circuits, exci-
tation quantities). The same conditions are used as boundary
conditions for the FE simulations to determine the element
values from the complex geometries and field distributions.

A magnetostatic FE analysis, not considering any eddy
current losses, reveals the actuation situation when only the
low-frequency properties of the unimorph are of interest. The
generated magnetic field strength is depicted in Fig.27. The
magnetic flux is concentrated near the turns with a slight peak
near the middle of the turn area while the flux inx3 direction
is nearly uniform (Fig.28).

(c) Equivalent circuit

When each partial magnetic voltage along a path around the
conductors is related to a reluctance, then a magnetic volt-
age divider is found where the magnetic voltages are propor-
tional to the reluctances. Due to the ideally equal magnetic
voltage in a thin piezomagnetic layer and in the nonmagnetic
substrate and air below, as depicted in Fig.27, the related
reluctancesRm,m andRm,A,b are connected in parallel. The
equivalent circuit of Fig.24can thus be extended by the mag-
netic voltage divider including reluctanceRm,A,a of the air
above and beside the conductors, as shown in Fig.29. Con-
trary to the ideal solenoid coupling, the magnetic voltageV m
across the magnetic layer cannot be suppressed by setting
i = 0. Therefore,nR andn cannot be measured separately,
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Fig. 29. Circuit model for uniform transversal electromagnetic cou-
pling applying an ideal planar conductor setup on a single piezo-
magnetic layer as shown in Fig. 26
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Fig. 30. Reluctance calculation based on the inductance. The mag-
netomechanical system is switched off by blocking the unimormph.

related reluctances Rm,m and Rm,A,b are connected in paral-
lel. The equivalent circuit of Fig. 24 can thus be extended by820

the magnetic voltage divider including reluctance Rm,A,a of
the air above and beside the conductors, as shown in Fig. 29.
Contrary to the ideal solenoid coupling, the magnetic volt-
age change V m across the magnetic layer cannot be sup-
pressed by setting i= 0. Therefore, nR and n cannot be mea-825

sured seperately and rotational and translational domain can-
not be decomposed this way but only when the magnetic re-
luctances are taken into account (Marschner et al., 2014).

d) Reluctances
The reluctances can be determined on the basis of the to-830

tal inductance of the setup as described by Marschner et al.
(2010). The reluctances are separated by a disabled magne-
tomechanical interaction, which is achieved by Ω = 0 and
υ = 0 or Im,R = 0 and Im,1 = 0, respectively. With a pure
magnetic FE-analysis these ideal boundary conditions are835

matched. Once the inductance L of the arrangement is deter-
mined by FE-simulations, the total reluctance can be related
to the individual reluctances by applying the magnetic volt-

Table 3. Material parameters of the magnetic layer

d33 = 10 · 10−9 mA−1 d31 =−5 · 10−9 mA−1

sH33 = 3.8 · 10−11 m2N−1 sH11 = 4.4 · 10−11m2N−1

sH12 =−1.1 · 10−11 m2N−1 sH13 =−1.65 · 10−11 m2N−1

sH44 = 24 · 10−11m2N−1 sH66 = 11 · 10−11m2N−1
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Fig. 31. Network parameters of the piezomagnetic unimorph with
planar conductor setup from Fig. 26

age divider rule as shown in Fig. 30. The total reluctance
Rm =Rm,1 +Rm,2 and total inductance L are related to840

each other by

N2

Rm
= L. (107)

A total inductance of 1.1µH of the electromagnetic system
is calculated with FE-analysis from the static magnetic field
energy. The magnetic voltages across Rm,1 and Rm,2 reach845

0.871A and 0.129A, as noted in Fig. 27. Back transforma-
tion givesRm,1 = 20MA/Wb andRm,2 =Rm,A,b||Rm,m =
3MA/Wb. Assuming a homogeneous field in the magnetic
layer its dimension-based reluctance is

Rm,m =
wa

µ0µrh1l
= 4

MA

Wb
(108)850

where wa =N ·(wt+dw) is the width of the field concentra-
tion underneath the N turns with width wt and distance dw
from each other. It follows, that

Rm,A,b =
Rm,m ·Rm,2

Rm,m−Rm,2
= 11.1

MA

Wb
. (109)

Figure 29. Circuit model for uniform transversal electromagnetic
coupling applying an ideal planar conductor setup on a single piezo-
magnetic layer as shown in Fig.26.

Table 3. Material parameters of the magnetic layer.

d33 = 10· 10−9 m A−1 d31 = −5 · 10−9 m A−1

sH
33 = 3.8 · 10−11 m2 N−1 sH

11 = 4.4 · 10−11 m2 N−1

sH
12 = −1.1 · 10−11 m2N−1 sH

13 = −1.65· 10−11 m2 N−1

sH
44 = 24· 10−11 m2 N−1 sH

66 = 11· 10−11 m2 N−1

and the rotational and translational domain cannot be decom-
posed this way but only when the magnetic reluctances are
taken into account (Marschner et al., 2014).

(d) Reluctances

The reluctances can be determined on the basis of the total in-
ductance of the setup as described byMarschner et al.(2010).
The reluctances are separated by a disabled magnetomechan-
ical interaction, which is achieved either by� = 0 andυ = 0
or Im,R = 0 andIm,1 = 0. With a pure magnetic FE analy-
sis these ideal boundary conditions are matched. Once the
inductanceL of the arrangement is determined by FE sim-
ulations, the total reluctance can be related to the individual
reluctances by applying the magnetic voltage divider rule as
shown in Fig.30. The total reluctanceRm =Rm,1 +Rm,2
and total inductanceL are related to each other by

N2

Rm
= L. (107)

A total inductance of 1.1 µH of the electromagnetic sys-
tem is calculated with FE analysis from the static mag-
netic field energy. The magnetic voltages acrossRm,1 and
Rm,2 reach 0.871 A and 0.129 A, as noted in Fig.27. Back
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Fig. 29. Circuit model for uniform transversal electromagnetic cou-
pling applying an ideal planar conductor setup on a single piezo-
magnetic layer as shown in Fig. 26
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Fig. 30. Reluctance calculation based on the inductance. The mag-
netomechanical system is switched off by blocking the unimormph.

related reluctances Rm,m and Rm,A,b are connected in paral-
lel. The equivalent circuit of Fig. 24 can thus be extended by820

the magnetic voltage divider including reluctance Rm,A,a of
the air above and beside the conductors, as shown in Fig. 29.
Contrary to the ideal solenoid coupling, the magnetic volt-
age change V m across the magnetic layer cannot be sup-
pressed by setting i= 0. Therefore, nR and n cannot be mea-825

sured seperately and rotational and translational domain can-
not be decomposed this way but only when the magnetic re-
luctances are taken into account (Marschner et al., 2014).

d) Reluctances
The reluctances can be determined on the basis of the to-830

tal inductance of the setup as described by Marschner et al.
(2010). The reluctances are separated by a disabled magne-
tomechanical interaction, which is achieved by Ω = 0 and
υ = 0 or Im,R = 0 and Im,1 = 0, respectively. With a pure
magnetic FE-analysis these ideal boundary conditions are835

matched. Once the inductance L of the arrangement is deter-
mined by FE-simulations, the total reluctance can be related
to the individual reluctances by applying the magnetic volt-

Table 3. Material parameters of the magnetic layer

d33 = 10 · 10−9 mA−1 d31 =−5 · 10−9 mA−1

sH33 = 3.8 · 10−11 m2N−1 sH11 = 4.4 · 10−11m2N−1

sH12 =−1.1 · 10−11 m2N−1 sH13 =−1.65 · 10−11 m2N−1

sH44 = 24 · 10−11m2N−1 sH66 = 11 · 10−11m2N−1

Ω

i

u

m

m

1

= ⋅

= ⋅

u N I

i V

N

R

n =

1

v

T

m,m

m,1
1

1

v

⊥

⊥

= ⋅

= ⋅

t

t

V Y F

I

Y

T

F

M

Λ

m
R

m,R

R

1

⊥

⊥

= ⋅

= ⋅

V Y M

I

Y

Λ

Ω

5N =

n =

t

8

m

2.3 10

N

−

⋅

m,1

1 1 Wb

20MA

=

R

m,m

1

R

3

rad

9.3 10

Nm

−

⋅

1 Wb

4MA

R

1

⊥

=Y

1 N

114

kA

⊥

= − ⋅

t

Y

Nm

320

MA

−

rad

1.9

MA

= =−Z

i

ϕ

m,A,b

1

R

1 Wb

11MA

j=Ω ωϕ

 

Fig. 31. Network parameters of the piezomagnetic unimorph with
planar conductor setup from Fig. 26

age divider rule as shown in Fig. 30. The total reluctance
Rm =Rm,1 +Rm,2 and total inductance L are related to840

each other by

N2

Rm
= L. (107)

A total inductance of 1.1µH of the electromagnetic system
is calculated with FE-analysis from the static magnetic field
energy. The magnetic voltages across Rm,1 and Rm,2 reach845

0.871A and 0.129A, as noted in Fig. 27. Back transforma-
tion givesRm,1 = 20MA/Wb andRm,2 =Rm,A,b||Rm,m =
3MA/Wb. Assuming a homogeneous field in the magnetic
layer its dimension-based reluctance is

Rm,m =
wa

µ0µrh1l
= 4

MA

Wb
(108)850

where wa =N ·(wt+dw) is the width of the field concentra-
tion underneath the N turns with width wt and distance dw
from each other. It follows, that

Rm,A,b =
Rm,m ·Rm,2

Rm,m−Rm,2
= 11.1

MA

Wb
. (109)

Figure 30. Reluctance calculation based on the inductance. The
magnetomechanical system is switched off by blocking the uni-
morph.

transformation givesRm,1 = 20 MA Wb−1 and Rm,2 =

Rm,A,b||Rm,m = 3 MA Wb−1. Assuming a homogeneous
field in the magnetic layer, its dimension-based reluctance
is

Rm,m =
wa

µ0µrh1l
= 4 MA Wb−1 , (108)

wherewa = N ·(wt +dw) is the width of the field concentra-
tion underneath theN turns with widthwt and distancedw

from each other. It follows, that

Rm,A,b =
Rm,m ·Rm,2

Rm,m−Rm,2
= 11.1MA Wb−1. (109)

(e) Completed equivalent circuit

The mechanical parameters and magnetomechanical trans-
duction coefficients were determined with Table4 and the
material parameters in Table3 as well asE2 = 71 GPa and
d33 = d31 = 0 m A−1 for the aluminum carrier. Figure31
displays all determined network parameters. It can be de-
duced that the air path above the coil causes a distinct reduc-
tion of the magnetic field strength in the magnetic layer to
12.9 % of theMMF (magnetomotive force). For higher val-
ues ofµr or a larger thickness of the magnetic layer the ratio
of the magnetic voltages is approx. 1/µr . Solenoid condi-
tions, except the transverse coupling, can be achieved either
by closing the magnetic path around the turns or eliminating
Rm,1.

(f) Electromechanical transfer function

The included interaction or feedback of the magnetomechan-
ical transduction causes a further magnetic load. The trans-
fer functionZ = ϕ/i can easily be deduced from the elec-
trical impedance. For this reason, the circuit description is
simplified in a stepwise manner as shown in Fig.33. The re-
luctancesRm,1 =Rm,A,a andRm,2 were transformed in the
first step to the electrical side. Then the chained transducers
can be combined to one transducer with transduction coef-
ficient X. Finally, the bending compliance is transformed to
the electrical side, too. If no external moment or deflection
is applied, then the transducer can be eliminated. The induc-
tance network represents the magnetic voltage divider and
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Fig. 29. Circuit model for uniform transversal electromagnetic cou-
pling applying an ideal planar conductor setup on a single piezo-
magnetic layer as shown in Fig. 26
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Fig. 30. Reluctance calculation based on the inductance. The mag-
netomechanical system is switched off by blocking the unimormph.

related reluctances Rm,m and Rm,A,b are connected in paral-
lel. The equivalent circuit of Fig. 24 can thus be extended by820

the magnetic voltage divider including reluctance Rm,A,a of
the air above and beside the conductors, as shown in Fig. 29.
Contrary to the ideal solenoid coupling, the magnetic volt-
age change V m across the magnetic layer cannot be sup-
pressed by setting i= 0. Therefore, nR and n cannot be mea-825

sured seperately and rotational and translational domain can-
not be decomposed this way but only when the magnetic re-
luctances are taken into account (Marschner et al., 2014).

d) Reluctances
The reluctances can be determined on the basis of the to-830

tal inductance of the setup as described by Marschner et al.
(2010). The reluctances are separated by a disabled magne-
tomechanical interaction, which is achieved by Ω = 0 and
υ = 0 or Im,R = 0 and Im,1 = 0, respectively. With a pure
magnetic FE-analysis these ideal boundary conditions are835

matched. Once the inductance L of the arrangement is deter-
mined by FE-simulations, the total reluctance can be related
to the individual reluctances by applying the magnetic volt-

Table 3. Material parameters of the magnetic layer
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Fig. 31. Network parameters of the piezomagnetic unimorph with
planar conductor setup from Fig. 26

age divider rule as shown in Fig. 30. The total reluctance
Rm =Rm,1 +Rm,2 and total inductance L are related to840

each other by

N2

Rm
= L. (107)

A total inductance of 1.1µH of the electromagnetic system
is calculated with FE-analysis from the static magnetic field
energy. The magnetic voltages across Rm,1 and Rm,2 reach845

0.871A and 0.129A, as noted in Fig. 27. Back transforma-
tion givesRm,1 = 20MA/Wb andRm,2 =Rm,A,b||Rm,m =
3MA/Wb. Assuming a homogeneous field in the magnetic
layer its dimension-based reluctance is

Rm,m =
wa

µ0µrh1l
= 4

MA

Wb
(108)850

where wa =N ·(wt+dw) is the width of the field concentra-
tion underneath the N turns with width wt and distance dw
from each other. It follows, that

Rm,A,b =
Rm,m ·Rm,2

Rm,m−Rm,2
= 11.1

MA

Wb
. (109)

Figure 31. Network parameters of the piezomagnetic unimorph
with planar conductor setup from Fig.26.

the bending compliance. By applying the current divider rule
the analytical transfer function follows directly:

Z =
ϕ

i
= nR ·

M3

i
=

nR

X
·

L1

L1 + L2 + nR/X2
. (110)

The value is displayed in Fig.31.

(g) Model validity

The low-frequency model is valid up to a frequency be-
low the first natural frequency of the beam, which follows
from the solutions of the Euler–Bernoulli differential equa-
tion with

(βl)2
= ω

√
E · I

(% · A)
, (111)

whereE is Young’s modulus,I the moment of inertia,% the
density andA the cross sectional area. Considering a fixed–
free beam as an example,(β1l)

2
= 3.52 applies, giving a nat-

ural frequency of

f1 =
3.52

2π

√
E · I

(h1%1 + h2%2)wl4
= 372Hz. (112)

This natural frequency is also found when the high-frequency
model of the beam from Fig.13is used to simulate the veloc-
ity υ̂II of the free beam end. Figure32 shows the circuit de-
scription using the program LTSPICE when the beam is dis-
cretized into seven pieces. For the ideal rods, ideal controlled
sources were applied. If two1x/2-transducers are connected
in series then they can be combined into one transducer with
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e) Completed equivalent circuit
The mechanical parameters and magnetomechanical trans-

duction coefficients were determined with Table 4 and the
material parameters in Table 3 as well as E2 = 71 GPa and
d33 = d31 = 0 mA−1 for the Aluminum carrier. Fig. 31 dis-860

plays all determined network parameters. It can be deduced
that the air path above the coil causes a distinct reduction of
the magnetic field strength in the magnetic layer to 12.9% of
the MMK. For a higher values of µr or a larger thickness of
the magnetic layer the ratio of the magnetic voltages is ap-865

prox. 1/µr. Solenoid conditions, except the transverse cou-
pling, can be achieved by closing the magnetic path around
the turns or eliminatingRm,1, respectively.

f) Electromechanical transfer function
The included interaction or feedback of the magnetome-870

chanical transduction causes a further magnetic load. The
transfer function Z = ϕ/i can easily be deduced from the
electrical impedance. For this reason, the circuit description
is simplified step-wise as shown in Fig. 33. The reluctances
Rm,1 =Rm,A,a and Rm,2 were transformed in the first step875

to the electrical side. Then the chained transducers can be
combined to one transducer with transduction coefficient X .
Finally, the bending compliance is transformed to the electri-
cal side, too. If no external moment or deflection is applied,
then the transducer can be eliminated. The inductance net-880

work represents the magnetic voltage divider and the bending
compliance. By applying the current divider rule the analyti-
cal transfer function follows directely:

Z =
ϕ

i
= nR ·

M
Λ

i
=
nR

X
· L1

L1 +L2 +nR

/
X2

. (110)

The value is displayed in Fig. 31.885
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Fig. 33. Simplification steps for the setup in Fig. 29 to obtain the
electromechanical transfer functions ϕ/i and Ω/i, respectively

The low-frequency model is valid up to a frequency below
the first natural frequency of the beam, which follows from
the solutions of the Euler-Bernoulli differential equation with
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e) Completed equivalent circuit
The mechanical parameters and magnetomechanical trans-

duction coefficients were determined with Table 4 and the
material parameters in Table 3 as well as E2 = 71 GPa and
d33 = d31 = 0 mA−1 for the Aluminum carrier. Fig. 31 dis-860

plays all determined network parameters. It can be deduced
that the air path above the coil causes a distinct reduction of
the magnetic field strength in the magnetic layer to 12.9% of
the MMK. For a higher values of µr or a larger thickness of
the magnetic layer the ratio of the magnetic voltages is ap-865

prox. 1/µr. Solenoid conditions, except the transverse cou-
pling, can be achieved by closing the magnetic path around
the turns or eliminatingRm,1, respectively.

f) Electromechanical transfer function
The included interaction or feedback of the magnetome-870

chanical transduction causes a further magnetic load. The
transfer function Z = ϕ/i can easily be deduced from the
electrical impedance. For this reason, the circuit description
is simplified step-wise as shown in Fig. 33. The reluctances
Rm,1 =Rm,A,a and Rm,2 were transformed in the first step875

to the electrical side. Then the chained transducers can be
combined to one transducer with transduction coefficient X .
Finally, the bending compliance is transformed to the electri-
cal side, too. If no external moment or deflection is applied,
then the transducer can be eliminated. The inductance net-880
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Fig. 33. Simplification steps for the setup in Fig. 29 to obtain the
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Fig. 32. High frequency LTSpice model of the two-layer beam

Figure 33. Simplification steps for the setup in Fig.29to obtain the
electromechanical transfer functionsϕ/i and�/i.

1x = 1.4 cm for the beam of Fig.26. The free end is stimu-
lated by a moment source with an infinitely large mechanical
source impedance. In an electric network, this corresponds to
a high-impedance current source. The result of the frequency
domain simulation is depicted in Fig.34. Only six instead of
seven natural frequencies are described by this model since
the left-side short-circuiting of both, the rotational and the
translational domain, is transformed to a short circuit, which
is blocking mass C1. This eliminates C1.

Despite the small number of finite network elements in
the LTSpice model of Fig.32and the partial influence of the
boundary conditions on the adjacent node, the mechanical
network turns out to be a good approximation for the descrip-
tion of the dynamic behavior of the flexure beam including
the lower natural frequencies. To improve the results, more
network elements (typically nine or more per wavelength)
should be used.
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Fig. 34. Spectrum of υ̂II of the left-side fixed bimorph

This natural frequency is also found when the high frequency
model of the beam from Fig. 13 is used to simulate the ve-895

locity υ̂II of the free beam end. Fig. 32 shows the LTSpice
circuit description when the beam is discretized into seven
pieces. For the ideal rods, ideal controlled sources were ap-
plied. If two ∆x/2-transducers are connected in series then
they can be combined to one transducer with ∆x= 1.4cm900

for the beam of Fig. 26. The free end is stimulated by a
moment source with an infinitely large mechanical source
impedance. In an electric network, this corresponds to a high-
impedance current source. The result of the frequency do-
main simualation is depicted in Fig. 34. Only six instead of905

seven natural frequencies are described by this model since
the left-side short-circuiting of both, the rotational and the
translational domain, is transformed to a short circuit, which
is blocking mass C1. This eliminates C1.

Despite the small number of finite network elements in910

the LTSpice model of Fig. 32 and the partial influence of
the boundary conditions on the adjacent node, the mechan-
ical network turns out to be a good approximation for the
description of the dynamic behavior of the flexure beam in-
cluding the lower natural frequencies. To improve the results,915

more network elements (typically 9 or more per wavelength)
should be used.

11 Summary

The present work presents a generalized theory for the me-
chanical behavior of laminated plate strips or bimorph ele-920

ments under the influence of strain-inducing physical quan-
tities. These conditions were formulated so that for the de-
scription of the bimorph only the uniaxial stress conditions
need to be considered. On this basis, the set of differen-
tial equations of the two-layer beam element could be de-925

termined and a circuit interpretation of the linear case could
be derived.

The neutral layers caused by an internally induced bending
moment and by an externally applied moment are different.
The middle of the location of the neutral layer at the bimorph930

ends occuring for an external moment are chosen as points
for applying an external longitudinal force. At this location
the bimorph length changes when it is actuated. For this rea-
son the equivalent circuit includes three mechanical domains:
translational deflection direction, longitudinal direction and935

bending. The circuit representation of the bimorph element
assumes small bending angles as well as small longitudinal
forces and neglects solution terms for the longitudinal direc-
tion which are quadratic. It is also assumed that longitudi-
nal compression forces cause only functions of coordinates940

which fulfill the demand for biuniqueness.
Full bimorph solutions are derived for both, quasi-static

responses and dynamic responses without pressure load.
Quasi-static responses are dynamic responses at frequencies
that are well below the first natural frequency of the bimorph,945

where compliance effects dominate dynamics responses and
mass effects are negligible.

If the active layer(s) of the flexure beam behave lin-
early and reversible regarding thermodynamics, then an ideal
source acts in the interacting domain, too. This additional950

source and the moment or rotational velocity source de-
fine a reversible transducer, which relates the coordinate
pairs of interacting domain and mechanical domain to each
other. For piezoelectric and piezomagnetic two-layer flexure
beams with typical arrangements, reversible six-port trans-955

ducer models (each node related to its physical reference)
are developed. Piezomagnetic bimorph models are coupled
with electromagnetic coil transducers. Except for an unsym-
metric transversally coupled piezoelectric bimorph, a unified
circuit representation is summarized. The structural descrip-960

tion by an equivalent circuit is the key for an efficient analy-
sis, simulation and understanding of the dynamic bimorph
behavior. Sophisticated circuit simulators like SPICE offer
fast time and frequency domain simulations. When SI-units
are used, simulation results can be directly read in the related965

mechanical, magnetic or other domain with their respective
units, e.g. Amperé → Newton. Because of linearity and re-
versibility, network elements can be transformed into other
physical domains. Subsequent transducers can be combined
and eliminated. This way transfer coefficients can be deter-970

mined easily.
Network methods and Finite-Element methods can be

combined on the one hand in order to determine network pa-
rameters. On the other hand completed network models con-
centrate properties of system parts. They can be integrated975

in FE-models which describe the continua of other system
parts. The equivalent circuit of the planar coil driven piezo-
magnetic unimorph, for example, can be integrated in the
acoustic FE-model of a piezomagnetic loudspeaker to deter-
mine electroacoustic function parameters. Such a combined980

simulation saves time and computational ressources.

Nomenclature

Figure 34. Amplitude and phase spectrum ofυ̂II of the left-side
fixed bimorph.

11 Summary

In this paper a generalized a generalized theory for the me-
chanical behavior of laminated plate strips or bimorph ele-
ments under the influence of strain-inducing physical quan-
tities is presented. These conditions were formulated so that
for the description of the bimorph only the uniaxial stress
conditions need to be considered. On this basis, it was possi-
ble to determine the set of differential equations of the two-
layer beam element and to derive a circuit interpretation of
the linear case.

The neutral layers caused by an internally induced bend-
ing moment and by an externally applied moment are dif-
ferent. The midpoints of the location of the neutral layer
at the bimorph ends occurring for an external moment are
chosen as points for applying an external longitudinal force.
At this location the bimorph length changes when it is ac-
tuated. For this reason the equivalent circuit includes three
mechanical domains: translational deflection direction, lon-
gitudinal direction and bending. The circuit representation of
the bimorph element assumes small bending angles as well
as small longitudinal forces and neglects quadratic solution
terms for the longitudinal direction. It is also assumed that
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Table 4. Piezoelectric (PE) and piezomagnetic (PM) two-layer beam network parameters.
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1)   The single wire with current i symbolizes the section of a coil  

longitudinal compression forces cause only functions of co-
ordinates which fulfill the demand for biuniqueness.

Full bimorph solutions are derived for both quasi-static
responses and dynamic responses without pressure load.
Quasi-static responses are dynamic responses at frequencies
that are well below the first natural frequency of the bimorph,
where compliance effects dominate dynamics responses and
mass effects are negligible.

If the active layer(s) of the flexure beam behave lin-
early and reversibly regarding thermodynamics, then an ideal
source acts in the interacting domain, too. This additional
source and the moment or rotational velocity source define
a reversible transducer, which relates the coordinate pairs
of interacting domain and mechanical domain to each other.
For piezoelectric and piezomagnetic two-layer flexure beams
with typical arrangements, reversible multi-port transducer
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models are developed. Piezomagnetic unimorph models are
coupled with electromagnetic coil transducers. Except for an
asymmetric transversally coupled piezoelectric bimorph, a
unified circuit representation is summarized.

The structural description by an equivalent circuit is the
key to an efficient analysis, simulation and understanding of
the dynamic bimorph behavior. Sophisticated circuit simula-
tors like SPICE offer fast time and frequency domain sim-
ulations. When SI units are used, simulation results can be
directly read in the related mechanical, magnetic or other
domain with their respective units, e.g., Ampère→ New-
ton. Because of linearity and reversibility, network elements
can be transformed into other physical domains. Subsequent

transducers can be combined and eliminated. This way trans-
fer coefficients can be determined easily.

Network methods and finite-element methods can be com-
bined on the one hand in order to determine network pa-
rameters. On the other hand completed network models con-
centrate properties of system parts. They can be integrated
in FE models which describe the continua of other system
parts. The equivalent circuit of the planar-coil-driven piezo-
magnetic unimorph, for example, can be integrated into the
acoustic FE model of a piezomagnetic loudspeaker to deter-
mine electroacoustic function parameters. Such a combined
simulation saves time and computational resources.
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Appendix A: Nomenclature

Symbol Unit Description

A Influence coefficients ratio
B Vs m−2 Magnetic flux density
cA m Distance between neutral layer and

material interface for
actuation

cS m Distance between the neutral layer
and material interface for sensing

Ca,Cb Deflection function constants
C1,C2 F Capacitances of layers 1 and 2
d33 m V−1,

m A−1
Piezoelectric or piezomagnetic
constant for longitudinal coupling

d31 m V−1,
m A−1

Piezoelectric or piezomagnetic
constant for transversal coupling

d∗

31 m V−1,
m A−1

Piezoelectric or piezomagnetic
constant for transversal coupling
and large beam width

D3 As m−2 Displacement current in active
electrical field direction

E = 1/s Pa Young’s modulus
EA Averaged extensional stiffness
EI Averaged bending stiffness
E V m−1 Electric field strength
F1,F3 N Forces in directions 1 and 3
FI,FII N Forces at left and right side of a

beam in direction 3
F ∗ N Force at the beam cross section for

large angles
h1, h2 m Thicknesses of layers 1 and 2
H A m−1 Magnetic field strength
i A Electrical current
Im V Magnetic flux rate
I Generalized time integral of the

flow
k Coupling factor
K Generalized second field quantity in

the interacting domain
l m Beam length
L H Inductance
M Nm Moment
M3 Nm Source moment
M I,M II Nm Moment at left and right side of a

beam
n m N−1 Compliance
n0 m N−1 Reference compliance
nF1 rad Nm−1 Rotational compliance related toF1

nR rad Nm−1 Rotational compliance
N Number of turns;

number of discrete elements
Ne Number of interdigital electrodes

minus one
p Pa Pressure
Q As Electric charge
Rm A Wb−1 Magnetic reluctance
s m2 N−1 Elasticity constant
sE
ij m2 N−1 Elasticity constant forE = 0

Symbol Unit Description

sE∗

ij m2 N−1 Elasticity constant forE = 0 and
large beam width

sH
ij m2 N−1 Elasticity constant forH = 0

S Strain
S0 Strain atcS andx3 = 0
t s Time
T N m−2 Stress
T B N m−2 Mean-free part of the stress

distribution
u V Voltage
υ1,υ3 m s−1 Velocity in directions 1 and 3
υ I,υ II m s−1 Velocity at left and right side of a

beam in direction 3
V m A Magnetomotive force (MMF) or

magnetic voltage
V Generalized influence field

strength
w m Beam width
x1,x2,x3 m Mechanical coordinate axes
X Interacting domain
Xt⊥ Translational electromechanical

transduction coefficient for
transverse coupling

XR⊥ Rotational electromechanical
transduction coefficient for
transverse coupling

Yt V N−1,
A N−1

Translational transduction
coefficient

YR V (Nm)−1,
A (Nm)−1

Rotational transduction coefficient

Z rad A−1 Electromechanical transfer function
α1,α2 Generalized influence coefficient of

layers 1 and 2
β1,β2 Generalized material coefficient of

layers 1 and 2
ε F m−1 Permittivity
εS
mn F m−1 Permittivity forS = 0

εT
mn F m−1 Permittivity forT = 0

εT ∗
mn F m−1 Permittivity for T = 0 and large

beam width
ζ Layer thickness ratio
ϑ K Temperature
3 Generalized influence quantity
µr Relative permeability
µT

mn Vs (Am)−1 Permeability forT = 0
µT ∗

mn Vs (Am)−1 Permeability forT = 0 and large
beam width

ν Poisson’s ratio
ϕ rad Angle
8 Wb Magnetic flux
ξ1,ξ3 m Deflections in directions 1 and 3
ξ∗

1 ,ξ∗

3 m Transformed deflectionsξ1,ξ3
χ Young’s modulus ratio
9 % Humidity
� rad s−1 Rotational velocity
ω rad s−1 Circular frequency
�I,�II rad s−1 Rotational velocity at left and right

side of a beam
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