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Abstract. Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a
generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles
this description includes a multi-port circuit or network representation with lumped elements for a beam part
of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural
frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are
developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear
network theory is applied in order to determine network parameters and to simplify the circuit representation.
The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit
simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this
multi-domain system through basic principles of general system theory.

1 Introduction spectrum of technically possible realizations is limited to the
problem of the plate strip.

Two-layer flexure beams have been present in engineer- The paper is organized as follows. In Sezthe defini-
ing for more than 200 years. In the year 1766, a thermaltion of themodeling of a unified one-dimensional two-layer
bimetal strip was used for the first time in a practical applica-beam element narrowed down. The model is based on the
tion when it compensated environmental temperature influmaterial behavior state equatioriSect.3) and ideal bound-
ences in chronometer&éSpar 1960. Since then, a variety ary conditions. Sectiod describes aifferential beam ele-
of two-layer problems that show the same effect have beiment without shear forces and external presstmm the
come known, but their operation is based on various physicabeam element thgeneral differential equation system of the
causes (Fig. 1). In contrast with volume transducers, two-actuating two-layer beam element for large angéesl the
layer beams achieve significantly larger displacements, typdifferential equation system of the two-layer beam elemer
ically at the expense of a reduction in blocked force output.for small anglesare derived in Sect® and6, respectively.
The mechanical transduction between deflection and streshe latter is interpreted in Sedt.as alinear equivalent cir-

is an essential property for sensor and energy-harvestinguit of actuating two-layer beam elementghich is the main
applications of two-layer beams, too. All these beams arefocus of the publication. The circuit description is extended
described in the following in a unified representation asin Sect.8 to the compactow-frequency linear equivalent
partially discussed byerlach and LenK1985. The large  circuit of actuating two-layer beam#\ number of coupled
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Figure 1. Two-layer flexure beams with excitation kfg) tem-
perature’> or humidity ¥, (b) pressurepg, (c) piezoelectric and
(d) piezomagnetic interactions.

finite beam elements model the dynamic behavior including

the first natural frequency of a beam in Sétas a demon-

stration of ahigh-frequency linear equivalent circuit of an
actuating two-layer beantfor piezoelectric and piezomag-
netic interactiongnulti-port models of reversible transduc-
ersare developed in Sect0. This includes both piezoelec-

tric and piezomagnetic unimorph transducers. Linear net- b)

work theory is applied in order to determine network param-
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eters and to simplify the circuit representation. Such a graph-
ical representation of the system supports the understanding
of the involved physical phenomena. Furthermore, it enables

the usage of powerful circuit simulators to calculate the dy-
namic behavior of the system efficiently.

2 Model of a unified one-dimensional
two-layer beam element

In the following, a one-dimensional two-layer beam ele-
ment is part of a plate strip or beam. It consists of two ho-

mogeneous layers with different elastomechanical properties

(Fig. 2). The influence quantity, e.g., temperature, humid-

ity etc., which is constant with respect to the space coordi-

nates, induces a strain in the beam element.

At the beam sections oriented in directien a given dis-
tributed stresg1(x3) and a transverse fordg; act. The task
is to determine the deflectio§g(x1) and&s(x1), depending

Figure 2. (a) Dynamic and(b) kinematic conditions at the two-
layer beam element, where is the influence quantitysq, xo, x3
are coordinate<, &3 are deflections}q, o are the thicknesses of
the layers 1 and 2, respectively.is the location of the neutral axis;
P, P0o, Pa = PO+ p, pp = po are pressurediz is a force; andry is
the normal stress.

— The bond layer has infinite stiffness and hence the com-
posite beam behaves like a single-material beam ele-
ment with integrated properties.

Ideal elastic material behavior, i.e., validity of Hooke’s
law.

on the load pressures and forces incorporating the boundary

conditions.
In order to solve the problem the following assumptions
are made:

— The bond layer between the laminae is infinitesimally

small and there is no flaw or gap in the bond layer. There

is no shear deformation in the bond layer, i.e., the lami-
nae cannot slip relative to each other.

. Sens. Sens. Syst., 3, 187-211, 2014

According to Bernoulli's hypothesis, the structure is
rigidly stiff. Rotational inertia is neglected and cross
sections, originally perpendicular to the neutral plane or
zero line, remain planar during deformation. In conjunc-
tion with Saint-Venant's principle, it is assumed that,
after a short distance&x1, a distributed stress at the

boundaryTi(x3) changes into a stress which is deter-
mined by a displacement function. Mean and moment
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of this displacement function are determined by the re-
lated quantities of the boundary distribution. ;=0 T,=0 Zé S, =0
p.d
— The stress i3 direction is negligiblg 73 = 0). Yy
I~ 4 N / N
— Contributions of shear deformations to the displacement \>7 S

&3(x1) can be neglected, i.e., the shear strains yigle
S5 =S =0.

— The coordinate origing = O is placed at the distance @ 2 =0/>w

¢ from the bond layer. In this position the translational
system points are located at the beam ends.

g
\&w/
A%
mg
S
S

— Deflections of these system pointsigt= 0 are labeled By
either with&; andés or £1(x1) andés(x1); deflections l ¢

of arbitrary positions within the beam are labeled with KACN
(§1(x1: x3), £3(x1; X3)). 4% / T/T/T
D
24 ot
l

A 2 1
3
All following considerations assume that isotropic material ¢) py =0;w>1 d =T=-p

behavior can be described by the following state equations: -
Figure 3. Ideal boundary conditions at the beam.

: : . . -
3 Isotropic material behavior state equations T,=0

1 Vo )
S1= E—Tl —E—TZ—E—TB-HXOA, (1a)
0 0 0 S> = arA via influence coefficientr (Fig. 3c). With pg =0
% 1 % Eqg. (L8 here yields
So=——T1+—T>— —T3+apA, (1b) 2
Eo Eg Ep 1—v§
S1= T1+[(1+ vo) cp — voarr] A . (4)
1
S3= —?Tl — ?Tz + E—T3 + apA. (1c) In the special case afr = «ap, i.e., that the ends consist of
0 0 0 one of the layers, Eq16) simplifies further to
Reversibility is not considered at this stage but only actua- 1-12
tion behavior. In order to be consistent with one-dimensionalS; = 971+ apA. (5)

bending theory,S> and S3 and 7> and T3 are defined by
boundary conditions or viewed as strain-induced disturbance In the case of a constant pressyg which also acts on

variables. the surfaces perpendicular to axtg 7> = T3 = — pg Yields
In the simplest case of a very small beam element withoutconditions such that Eq1é) simplifies further to

constant pressurgg (Fig. 3a), no stress components in 1 2v0
andxz direction occur(T> = T3 = 0) and Eq. {8 simplifies ~ S1= o + o 1o (6)
to

. All considered cases can be described by the unified lineg
Sy = = Ty +aoA . ) relation

0 1

) ] o S1=—=—T1+aA. (7

In the case of a very wide beam, which is fixed at both E

ends(w > [) as depicted in Fig3b, the boundary condi- The meaning of AE and« in each case is summarized in
tion S =0 is acting internally. When, in addition, no con- Table 1. Even in the case of anisotropic material properties
stant pressurgg acts, for the stresgz = 0 follows, and for  generalized Eq.7) applies.
Eq. (19 it yields
1_ 2 4 Differential beam element without shear forces

— Y T1+ (14 vo) aoA . (3) and external pressure

S1=

. . . 4.1 Stresses and strains
In some micro-mechanical constructions the beam ends

are not blocked as depicted in Figb, but the influence The object to be studied next is an arbitrary differential

quantity A loads the very wide beam element with a strain two-layer beam element of the plate strip. The layers are
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Table 1. Uniaxial stress conditions for real isotropic bimorph
layers.

Boundary condition

in direction S1= %Tl +aA see
X3 X2 E o Fig.
T,=0 Ep aQ 3a
So=0 (14 vg) o 3b
=0 Sp=aRA 153(2) (1+vo) g — voag
So =apA %) 3c
T3=-po T2=-po Eg 2vp/Eg 3d

characterized by their material properti€s, o1 and E2, a2
as well as their thicknesség andh,. From Bernoulli's hy-
pothesis follows that the deflectigmn(x1; x3) at a defined po-
sition is a linear function of coordinate;:

&1(x1;x3) = Cq (x1) - x3+ Cp (x1) - (8)
The same conclusion applies to the strain:
d dc, d
51 dC Chp ©)

S1(xpx3) = —=—- —_—.
1(x1; X3) vy~ dig x3+ dry
The differential beam element in Fig, which is bent about

the angleg(x1), illustrates the meaning of@ /dx; and
dCp/dx1:

d
S1(x1;x3) = Eﬁﬂ -x3+ S0, (10)
1
whereSy is the strain akz = 0O:
0 ; A d
So— ( &1 (X1,X3)> _ Ao dEio (11)
dax1 xa=0 Ax1 dxq

Considering the material state equations which are valid in

each region, the stress in the beam element yields

d
Eq (gx—qixg + jTl’lO — OllA)

forc—h1<x3<c—-0

T1(x1;x3) = . " - (12)
E; (W(ﬁx?’ + dx—l’lo - azA)

forc+0<x3<c+ho
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Figure 4. Strains and stresses in a two-layer beda):bimorph
element in non-deformed and deformed stég;strain and stress
distributions at the cross section.

4.2 Introduction of internal force F; and moment M as

coordinates

From Eq. (2) the balancing normal forcg&; and balancing
momentM for the section follow with Fig5:

ct+ho
Fi(x1)=—w | Ti(x3) dx3 (13)
c—hy
— _wl|-2 (Elhi - Ezhg) + (E1h1+ Eghy) c do
2 dxq
d&1.0
+ (E1h1+ E2hy) o (@1E1hy +a2E2h) A ¢,
1
c+ho
M (x1) = —w / T1(x3) - x3 dx3 (14)
c—h1
__ 1 3 3 2
=—w 3 E1h] + Eohy ) + (E1h1+ Ezho)c
do
_ 2 _ 2 -
(Elhl Ezhz) C:| ey

1 d
_ [E (Elhf - E2h§> — (Exhy + E2hy) c} j:’o

1
—A [_E (alElhf - azEzhg) +c(a1Erhy + azEghz):| }
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Whenc is chosen at
_1EhE—Eah3  xt2-1 hy

c=cs= = =, 15
ST 2Et+ Eshy  1+yx¢ 2 (15)
. E1 hy
with xy =— and ¢=-—,
X E> ¢ ho

then F; does not depend onpddx1 nor M on c&1/dx;. This
distance from the material interface is the well-known loca-
tion of the neutral layer in the case of an external moment

This case is in the following referred to as sensing case. With

¢s, hormal force and moment yield

d&10

Fﬂxﬁ:ﬂ(&A—E), (16)
— do
M(x1) = —EI — + My , (17)
dxy
with the equivalent linear expansion coefficient
E1h Eoh
azal 1h1+oa2k2 2’ (18)
E1h1+ Eoho

191
Ap/2 Ap/2
w7 | g
Ty with T =0 (fl} |
\ R
I B v | [
C—A —————— ?’—/————L—j -~ . !
R\ 4 | R =H |8
F =0, A& =0 M=0; Ap=0
)
~
Ap/2 Agp/2
\ 7 c—h, 4+
M\ [ |m .
(R T N
c+h, Tl(x3)‘x1
A‘Sl v
Ax, x5

the length-related translational compliance or extensiona‘:igure 5 Eorces and moments at the differential beam elemen

stiffness of a homogeneous beam

EA=w(Eth,+ E2h2), (29)

without shear forces and difference pressure.

the length-related rotational compliance or bending stiffnesswhich is substituted in Eq14) to get the curvature

of a homogeneous beam

w EFhi+ EvEghihz (Ahf +6haha +4h3) + h3ES

I =
12 E1h1+ Eoh»
1+ x2¢*+ 453+ 6502+ 4
_w +x§+x§+x§+x§'h§E2’ (20)
12 x¢+1

and the moment source

M = % [Elal (—h% + ZCShl) + Eoao (h% + 2C5h2>] A
_ w E1Eph1hp (ha+h2)
2 Eq1h1+ Eoho

driven by A. _
When a mean streg%; = F1/A is related to forcey then

this stress determines the_stré’m: dé&1,0/dx1. In addition,
the differencely (x1; x3) — T'1 (x1) = T (x1; x3) represents

(01 —a2) A (21)

dp 6E1h1Eha(h1 + ho) (a2 — o) A
dvi  h3EZ+2E2E1hohy (2h2 + 3hiho + 2h3) + E2h}

_ 6 (1+¢)?
(h1+h2) L +4(1+2)+ x53+6¢

(a2 —a1)A (23)

as shown, e.g., buerrero and Wetherhol@003 for mag-
netostrictive unimorphs. For a given total bimorph thicknesg
h = h1 + ho, the well-known maximum curvature results for
x =1/¢2. Geometry and transduction coefficients have 3
larger effect on the deflection than a variation of Young's
modulus Gerlach and D6tzeR008.

Back substitution of Eq.Z3) in Eq. 22) gives the location

the mean-free part of the stress distribution, whose momen@f the neutral layer in the actuation case:

determines the angle change/dlx1 (Fig. 5).

4.3 Curvature and neutral layer

When there is no external force, i.&3 = 0, it follows from
Eqg. (13) that the strain & o/dx1 is given by

d 1 E1h? — Ezh? d
f10 _ (1E1hi—Eohy | dp 22)
dxy 2 E1h1+ E2hs dxq
a1E1h1+a2E2h2A
Eq1h1 ’

WWW.j-sens-sens-syst.net/3/187/2014/

hy (424 &) A+3c (A+D +¢3 +4
6 C+D(A-1) ’

caA= (24)

with A = (‘;‘—i The same location follows for the minimum of
the potential energy of the deflected beam with regard to

for d&p/dx1 = 0:

Ax
d |1 M2

e by _ :0.
dec EI

1 (25)

2
0
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matches that found b$toney(1909 for thin films.
With the result in Eq. Z4), the two-layer beam actually a,-A
unveils pure bending £ f(So) for two locations of the ori- .
gin. Both locationsg 4 andcg, give the same curvature for an
induced stress. Figudepictsc normalized to the substrate Figure 6. Solution of Eq. (4) with d&;o/dx; =0 andap =0
thickness as a function of a given excitatiof, normalized  to the neutral-layer positioa normalized tohy exemplarily for
to the curvature. Therefore, the curvature or the deflectiorfis =1mm, £y =23GPa,hp =5mm, £z =71 GPa,w = 5mm,
angle, respectively, can be calculated withcountenancing [ = 0-1mandaz =0.
So. Then the source moment can be treated as an external
moment acting on the unimorph with the compliangeas a
prerequisite for a reversible transducer model in SHZt.

In the case of only layer 1 being active, = 0), Eq. 24) Solution
simplifies to 0.7 :
! -
| 1h3Ep + 3E1hih + 4E1h3 26) 0.65 R e
C 0= —"= -7
Alee=0= "¢ h2E1 (hy+h2) 06 40
_ 2%+t ey
c L
When the active layer is thiti; ~ 0), the neutral layeris = 0.5 -
located at-h5 - 2/3 and not at-h/2, where it is located in A, 0.45 |
the sensing case, i.e., for an external moment. This location ' :
1
|
1

1.25 1.3 1.35 14 1.45 1.5 1.55

— The force Fy (x1), which acts at the cross section of
the element, consists of two components in.theand

. : ) x3 directions:
5 General differential equation system of the

actuating two-layer beam element for large angles Fj (x1) = F1c0Sp 4 F3sing. (30)

In addition to the previous considerations, the influence of ) .
a shear forces and of a difference pressugeon the two- — A pressurep acting on one side of the beam element
layer beam element is now taken into account. In order to ~ C&USes two acting force components in-th@nd.xs di-
obtain a general differential equation system model of the  Tections, too (Fig7).

two-layer beam element, the deformed element is considere
in the transformed coordinate systénf, x2, x3) according

to Fig. 7, where(x1, x2, x3) serves as reference system for
the deflectionsg, andé&s. This leads to the following rela-

Eor the deformed beam element in coordinate system
(x7,x2,x3), the following holds, which is consistent with
Egs. L6) and (L7) from Sect4.2

tionships: df
Fi(x1) =EA|@A — —= 31
— As illustrated by Fig7b, the length of the deformed — 1 (1) <a dx1 ) (31)
originally Axi-long — bimorph element becomes
Ax1-(14+8S5(x1) =Ax1+AES(x1) _d
(L85 (x0) L M (x1) = —Eza"’ + My, (32)
=—(A A 1
COS(p( x14+ Aé10(x1)) -
The coefficientsy, EA, EI and M, are identical with the
coefficients in Egs.16) and (7).
Axp- (1455 (x1) = . Axt-(1+So(r). (27) From Fig.7 the following relations can also be derived:

. — horizontal balance of forces:
For the strainSo (x1) = d&1,0/dx1,

So(x1) = cosp - (1+ 8§ (x1)) — 1 (28) Fria+ Axy) = Fi () (33)
_ . ) +p-w-Axy- (14 S53) - sing =0;
and for the relationship between the deflections(x1)
in the x1 direction anct in thex direction

1 &0 1 — vertical balance of forces:
dé1o

dep

(0'34
cosp - <1~|— d:f) —1. (29) F3(x1+ Ax1) — F3(x1) (34)
—p~w-Ax1(1+SS)'COS§0=O;

J. Sens. Sens. Syst., 3, 187-211, 2014 WWW.j-Sens-sens-syst.net/3/187/2014/



U. Marschner et al.: Equivalent circuit models of two-layer beams 193

Figure 7. Definitions at the two-layer beam element with respect to large angles.

— balance of moment:

dF1 . _
M (x1+4 Ax1) — M (x1) (35) Ty Prwesing: [1+ an (37a)
—Fl(xl—i—Axl)-Axl-(l—i- Sé)-singo 1 v s
— co Sin
+ F3(x1 4 Ax1) - Axp- (14 S7) - cosp Ta (10080 + I3 ‘p)}
Axy- (14 S d&10 _
1 -
——(F1C08p + F3Sing) | — 1
— kinematics (Fig7b): g EA .
F:
ﬁ:p-w-cosw-[lJr&A (37¢)
£3(x1+ Ax1) —&3(x1) = Ax1 (14 So) -tang . (36) 1
1 ]
—— (F1C0Sp + F35sin
EA( 1C0sp + F3 <p)_

Equations 83)—(36) together with Eqs.47) and 32) consti-

tute the differential equation set of a general plate strip ele- a‘o’ =tang - [1+&A (37d)
ment in set of equations (SOEJY). Its validity is restricted L 1
by —— (F1cosp + F: sin i|

A (F1cosp + F3sing)

— the assumption of small deflectio dx?: dam ,
P &g o (F1Sing — F3C0Sp) - [1+&A (37¢)
1
— the limited validity of Bernoulli’s hypothesis; 1 .
_ﬁ (F]_ COosp + F3$|n§0)

_ . _ - - - . d 1
nonlinear stress—strain relations that occurinrealityand G¢ _ 1 (M + My) 379
dxy EI
— the idealized formulation of the boundary conditions for For Fy (¢1(x1) =0) > 0, i.e., if the beam is axially com-
S2 and7>. pressed, courses of the functioRs, &3, M, ¢ = f (x1) can

result which do not fulfill the demand for biuniqueness.

WWW.j-sens-sens-syst.net/3/187/2014/ J. Sens. Sens. Syst., 3, 187-211, 2014
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This problem must be solved with stability theory methods () AF = p-w-Ax,
(Pfluger 1975. M(x
(%) A(x) F(x +Ax) M(x +Ax)
6 Differential equation system of the two-layer beam & () (l . ] F(x +4x) >
element for small angles Eio(x)
,E}(x[ "F;(x, )
Contrary to the previous considerations, Figdepicts the %) | &(x) p(x +ax) | Platan)
definitions of the involved quantities and directions when Elo(xﬁ.Axl) &(x +An)
small angles and deflections are assumed. With these defi- Euo() A&y ()
nitions the following relations can be derived: o w"o !
. c—h, X
— balances of forces: ~
c
F1(x1+ Axp) — F1 (x1) =0, (38) e AN bio(m +4x) =
c+hy Eio(n)+ A& (x)
v ) v
F3(x1+ Ax1) = F3(x1) — pwAxy =0; (39) & %
q+Eo(n)  xA(x)+E (% +A(x))
— balance of moment: , ‘ , ' > x,
X x + Ax,

Figure 8. Definitions at the two-layer beam element for small an-
M (x1+ Ax1) — M (x1) (40)  gles:(a) non-deformed an¢b) deformed bimorph.

+ Fr(x1+ Axy) - Axy- ¢ (x1)

Axy
+ F3(x1+ Ax1) - Ax1 = pwAxy - - ~ 0, 7 Linear equivalent circuits of actuating two-layer
beam elements

~ kinematics: The differential equation system2) is nonlinear due to the
g3(x1+ Axp) —&3(x1) = ¢ (x1) - Axy. (41)  couplingFi-¢. The nonlinearity can be avoided in two ways:
) _ 1. For small forcesF; the condition|Fy - ¢| < F3 is as-
From Egs. 16) to (41) SOE @2) can be derived. With sumed. This will change Eg4®e) to
this set of differential equations almost all problems can be
solved where|p (x1)| < 1 and F; <0 hold. For the case 7 P (43)
F1(£1(x1)) > 0, the same remarks as in Sezapply. dg
dF; 2. The force F; is treated as a time- and motion-
e 0 (42a) independent source quantity.
51,0 — So=TA— —F, (42b) In order to obta!n a circuit representation of thg linearized set
dx1 EA of Eq. @42) the time-dependent complex coordinates angular
dF: velocit
S (42¢) y
dxg
dé3 Q= %_ jw (44)
T=¢ (42d) =77 I
1
dm i
o= Fip— F3 (42e) and velocity
dv Bl A R A =13

are introduced. Herey is the angular frequency and j the
imaginary unit. Integration of Eq4@) overx; then gives the
following solution:

Fy=Fy(x1), (46a)

J. Sens. Sens. Syst., 3, 187-211, 2014 WWW.j-Sens-sens-syst.net/3/187/2014/
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v; = joTAxs—jo %El (¥1) +v3 (x1), (46b)
Fz=p-w-x1+ F3(x1), (46¢)
F1Ax1 x%
M= Q1+Ax)—p- W (46d)
—F3(x1)x1+ M (x1),
H 3 2
jo X7 X3
Q=== cw—+F ——-M 4
82=> (g we + F3(x1) 5 M (x1)x1 (46e)
—MAX1> +(x1),
: x4 23 2
Jo X _ X1
U3= (P w24+F3(X1) M (x1) > (46f)

2

— Mp 7) + 8 (x1) x1+vz(x1) .

Application of the boundary conditions at the left side of the

differential bending elemenft; 3 (x1), vy 3(x1), M (x1) and
£ (x1) and atthe right sid€’; 3 (x1 + Ax1), v; 3(x1+ Ax1),

M (x1+ Ax1) andQ (x1 + Ax1) acting at a beam element of

length Ax; and using the approximation of EqiQ) yields

the following:

®1: Fy(x1+ Axy) =Fq(x1),

(47a)

O1: v3 (x1+ Ax1) = Avy —jw An-Fy (x1)+v;y (x1), (470)

®2: Fa(x1+Ax1)) =AF + Fa(x1), (47¢)
Q A
®3: M (v1+ Axy) = M (1) — ot t AXD) (47d)
Jo An;r:1
—(AF + F3 (xl)) Fi(x 1)
O2:Q (x1+ Axp) = Q(x1) — AR, (47e)
. Axy
—joAng- | M (x1) — F3(x1) +AFT ,
—_———
~0
Axl
O3:v3(x1+ Ax1) R vz (x1) + Q(x1) —— (47f)
Ax 2
—I—Q(xl—i-Axl)— —Ja)AnRH F3(x1),

~0
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a)
El(xl) @1 El(x1+Ax1)
——lll >0 .
n:A— —— l_)l(x1+Ax])
“ (XI) Ed 1 Ay, Translational
© o domain (x1)
b)
AQ,
M(x) & Am = ®, M(x+4x)
o—» o ) —
Q(xl) @ )q+Axl
Ax,
F; (3‘1)71 4 (F3(x1)+AF) Ly Rg;ilg;al
° O
Fi(x) L!—z/ax1 ®, L-_z/ Ax, Fy(x+ Ax‘
Uy (x +4x)

Translational
domain (x3)

Ideal rod Ideal rod
Ax Source

Bending compliance

Figure 9. Circuit representation of a two-layer beam element when
| F1-¢| < Fzindirectionxq (a) and directionc3 as well as of the dy-
namic rotational behavidb), and system model with ideal rods as
rotational—translational transducers (introducedSayroth 1968

(c). The axial velocity source\uv, is related to the locatiomg
(Av, = 0 at the neutral axisy).

with

Av, =jooaAAxy, (48)
A

An=22 (49)
EA

Anp, = L (50)

T T RA
AF=p-w-Ax, (51)
Axq
An = =, 52
R=— (52)
AQ, =jwAng-M,. (53)

Following Kirchhoff’s laws, sums of flow quantities consti-
tute nodes — marked with and sums of across quantities
constitute meshes — marked with Figures9 and10 depict
the resulting circuit representation of the two-layer beam el
ement for the two linearization cases of the first paragrap
in Sect.7. The angular velocity sourc& 2, can also be in-
terpreted as moment sourd¢, acting onAng. ForA =0
andhq or hy = 0, these networks include the case of a homo-

geneous monomorph-plate strip which is subject to bending.
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AQ,
M x, ® —a ® @, M(x +Ax
L) N 3 Mlxax)
(x) o
Q(x, .Q(x +Ax)
A A =21% 1

s ool el |
e, O
E(x) - ©, ()

— — ——

A AF Ax,

lvg(xl) Q(xl)% ~ Q(XI‘FAXI)T lv3(xl+Axl)
o 0

Ax, Ax,
An, ==\ =— M =(F AF) 24
“CE T TR T (Bx{x)+4F)

Figure 10. Circuit representation of a two-layer beam element
whenF1 # Fq(¢) (source quantity).

The approximations in Eqs4{e) and 47f) do not apply for
alargeAx. This case is treated in Seét.

All following equivalent circuits assume thpf; - ¢| <« F3
and that no pressure load occurs.

8 Low-frequency linear equivalent circuit of
actuating two-layer beams

In the previous section a beam element of finite lertyth
was derived. In order to describe a long beam of leidtin
quasi-static processes without pressure lgag 0) and with
the assumptioh¥;-¢| < F3, the beam elements in Figcan

be connected in a chain-like manner. This chain circuit can be

simplified to a much smaller four-port circuit as long as the

links between the coordinates at the beam ends (1) and (I1)

are of interest. These coordinates becdme= F5(0), v, =
v3(0), M, = M (0) and®2; = 2 (0) at the left side and’;, =
Fi(), vy =v3(), My = M (I) and = £ (/) at the right
side, as depicted in Fig.l. With ng = 3/ E1, integration of
SOE @2) over beam lengthand application of the boundary
conditions at (I) and (Il) gives

£, =F, (54a)
M,=F—-IM,, (54b)
@ =—jo T (M+M,) +joZ F+2, (540)

M, —IF, +MA>
———
My,

n
o5 (M) + M)+,

Qr
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£2,=0 Fy=0
v, =0
M / M
— )
C 3 \:{én
~9
O] @
n, =
E-1 M,
0
M, n0/212 nO/ZZZ M,
o .o
£2,=0 QT:% Uy 1 M;=I-F, 2,
A
Lo )
Fi=F, 2= F =0
B —
-
-n,/6
v, =0 Ur =0~ Y ) nO/ l
Lo )

Figure 11. Low-frequency linear equivalent circuit of an actuating
fixed—free two-layer beam without direction 1.

n,/2

M,/

O

Figure 12. Translational linear equivalent circuit of an actuating
fixed—free two-layer beam.

v = —jw% (M, +M,) +jwn—é)ﬁ| +1Q) + v, (54d)

=1 (R =) +o G i+,

vr

The equivalent circuit is shown in Fid.1 for the exam-
ple of a fixed—free beam. The prevented movement and ro-
tation at the left side are short-circuited across quantities.
The translational domain includes the negative compliance
—np/6 which can be handled by circuit simulators. However,
the total compliance of the bending beam is positive.

When only the translational behavior in direction 3 is of
interest, then the network can be simplified. Figlieshows
the result of the transformation of the rotational elements
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U. Marschner et al.: Equivalent circuit models of two-layer beams 197

} M, M,
M, -
1y o + M=0 2,
24 A _)
M(’ﬁ) @3 — |@3 M(x1+Ax1) M, My
_-_l_ ‘e o> )
Ang
2(x) J Ax 2, Qy
v [ E3(x‘)'7 v v v
o o——— Bending ——o
F (xl) Ax/2 L! ES(x1+AxI) F, wave- Fy
o»—{ guide | o
AF, .,y 02 A2 .
Q3(x1) v; Un
v AHT v v  /
o * oO——— ———o

Figure 13. High-frequency linear equivalent circuit of direction 3 and dynamic rotational behavior of an actuating two-layer beam.

into the translational domain withi; = M/l andn = nr-12.

The force source linked to the transformed moment gener-

ates the velocity y,,, which appears ag,;, when no forceF,

is present:
. . noM
VUp=—y, = —Ja)§“ = _]a)7 lA .
With
. jong
Q) =jog, = iz Ma

it follows that

§1 =59

2%

9 High-frequency linear equivalent circuit of
an actuating two-layer beam

If no pressure difference is considered but the average masguide with the moment source as an additional boundary cor
is assumed for each beam element, then Eqs)( @7c) and

(47d) change in the case oF1 - ¢| < F3t0

®1: Fy(x1+Ax1) =F;(x1) +AF, 1,
O1: vy (x1+Ax1) = Avy —joAn- Fi+vy(x1),
®2: F3(x1+ Ax1) = AF,, 3+ F3(x1),

®3: M (x1+ Ax1) = M (x1)
Axy Ax1
—(F,, + F3(x) — —Fs()—-,
with

AF, 1 =joAmy; (x1+ Axy)

WWW.j-sens-sens-syst.net/3/187/2014/

(55)

(56)

(57)

(58a)

(58b)

(58¢c)

(58d)

(59)

and
AEm,azijmys(xl-i-Axl/Z) . (60)

The beam element describing direction 3 includes its mass
instead of the pressure-related force source in gigzig-
ure 13 shows the resulting mechanical network with dis-
tributed parameters without direction 1 when the beam is dis
cretized overs into N finite beam elements. A finite beam
element in direction 1 is represented by a circuit similar to
Fig. 9a with the difference of the included maas:, which
is connected to the mechanical reference (ground).

A thought experiment leads to the conclusion that thg
source moment is coupled at the beam ends and that it is npt
branched into the inner beam, i.e.,

AMy(Ax) =M, (). (61)

Therefore, the unimorph can be grouped into a bending wav

D

dition, as shown in Figl3.
The structures constitute a longitudinal wave guide in di-
rection 1 and the bending wave guide in Fig. The behav-
ior of this network can be investigated with standard circuit
simulators, like SPICE (Simulation Program with Integrated
Circuit Emphasis). An example is presented in S&6t2.3
When the elements are connected in a chain-like manne
then two connected rotational-translational transducers with
a length ofA x1/2 can be combined to one single transducer
with a length ofA x; as demonstrated in Fi§2.

=

10 Multi-port models of reversible transducers

Equation {) describes the relation between the mechanical
field pair (S, T) and a transduction relation between the two
physical domains. Reversibility is entailed by a second set of

J. Sens. Sens. Syst., 3, 187-211, 2014
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Interacting ! Rotational ' " Translational Table 2. Electrical and magnetic quantities and parameters
domain X : domain : domain
] ; ; Quantity/parameter Electric Magnetic
jo Z - M - F, )
o > - — Across coordinat® u=[ E Vn=[, H
Rotational- . .
- i Time-integrated flovZ = D &= B
YV ¥ rotational Fe) translational v, ¢ L 0=JxD ®=J/48
- ransducer | == transducer Flow coordinate @ /dr i Im
o ——-o0— l—o0
! !
jo Z, ! F, 10.1 Piezoelectric bimorph
Using Einstein notation, piezoelectric state equations are
- X-translational Y, written as
l -, Transducer B
: D,=¢0,E, +d,;T; n=1.3m=1.3  (63)
Jj= .
Figure 14. Across and flow coordinates in the circuit description
involving the interacting domaix.
S; =dmiE,, +s/T; i=1...6,m=1...3, (64)
J= :

material state equations, which relates field pair components

(A, K;) of the interacting domaiiX to each other in addition yiip displacement currenD, electrical field strengthE,
to the transduction mechanism. From this second set only thﬁiezoelectric charge constahtand permittivitye. o

relation between the influence quantity stressl’; or strain Two typical electrode arrangements are considered next.
S, obtained with Eq.7), and quantity is considered:

(62) 10.1.1 Transverse piezoelectric coupling

=X

K=ol +p A=aES; + (B -o?E) A
_— An important technical configuration is transverse coupling
B of two piezoelectric layers as shown in Fih. For a piezo-

) N ) o ~electric longitudinally acting bimorph with small beam width
wheref is an additional constant material coefficient. With (E,,E;=0andT, ... Ts = 0), Egs. 63) and 64) simplify

this second set a multi-domain port description including the;q
physical domainX can be derived. This domain controls the
moment source, velocity or rotational velocity source in theQ3 =dTq+ 83T3ES J (65)
previously developed models. Figuté shows the extended

port description. Each translational direction involves a sep-

arate transducer which includes these sources. In the inte§; = si7- T +di3- E3, (66a)
acting domainX, the flow rate pZ and across quantity’

serve as network coordinates, which are integrals of the field £

guantities. The produdt - jwZ is a power. Sp =521 T +daz-

Reversible transducer models for piezoelectric and piezo-_, . . N . -
magnetic two-layer bimorphs are derived next. Tablists The indices match the directional conventions in RigThe

the coordinates used in the electrical and magnetic domainQeformatlon of the small beam in direction 2 is not further

P considered. In the case of a large beam width this deforma-
Due to Eqg. 61), no distinction is made between a beam of tion is suppresseds,, — 0), thus causing’, # 0, such that
length/ and a beam element of lengttw;. 2 2

In accordance with terms used in material science, the in-
dices used in material equations relate direction 3 to the acx E E
. L . ; e Si=s817-T1+5i5-Tr+diz - Eq, 67a
tive direction. The convention will be clarified in the context =1~ "11 177127227 #13°=3 (67a)

of the analyzed examples.

Ej. (66b)

§2=551'11+S§2'Zz+d23'ﬁg=0, (67b)

Dy=d31-Tq+dsp-To+els Eg (67c)

or, includingsf, = s, anddaz = da,
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N2
s do3s
Sy= ( 11— ( 1,5) )zl+ (d E12>E3, (68a)
$22 S22
dzosE, d?
Ds= (dgl— 2T+ | efs— -2 ) Ey (68b)
$22 22
ds1 £33

can be written. Equation$6a) and 68a) differ only in the
coefficientsT 4, S; and E5 are functions ofz while the dis-
placement currenD, does not depend on coordinatgbe-

cause of diD = 0. When these equations are rearranged to

(T,E = f(S,D)) (Lenk et al, 2011, pp. 352)

1 1 k2

S S YN

sE(1—k%) da1 \ 1—k§;

1 ( K 1
Eq=——0 -S4+ ————-Dy, 69b
=3 d31 ( 1- kgl = 53Ts (1 - k%l) = (690)
with
dZ

k3= 21, (70)

8§3Sfl

momentM (x1) and forceF; (x1) follow from Egs. (L3) and
(14) with

iy=jwAD3z; and i,=jwAD3;, (71)
whereA = w - [ is the through-flow area
1 EI Eq 2 .
M= Q—jw—ZZ(n(—hl—i-Zchl)z_l (72)
—_
Y/nro ~1/Xp1s

—jf—;az (h% + 26‘/12) io,

—-1/XRr12
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c=c¢ 1
(T~ )
M, Q
= Q:QI _Qll M
G
: |b’|1 R L M,
ARl T L
} ER)ll X
=3 VG =Xey My, |
Cb’z MAZ M
= 1 —> ———o
Uy = Q
o} U =RL2 Ng, Ql
L=Xgn 'M/L:
u o
v ] .
Ly -1,y
B El,l
| 1 ) >
U,= v
y,)ll ' Xril
| L=X,-F,
El,z F,
1 — ——o0
U, =—"U
Z:,zl r X’u no Url
Zz :)_(uz 'EI‘Z
o
QT =Y

Figure 16. Transversely coupled piezoelectric transducer mode
given by Egs. 75), (72) and (73).

1 EA E1h1 Eoho

Fy= T 1 & + jw—lalil + Tl 2 i (73)
~— —_———
1/no 1/X, 11 -1/X,,,

and with the material parameters= —d31/8373 and
1

E=——"——— (74)

- lel(l_ kgl) .

Equations 72) and (73) describe a moment node and a
force node including the complex translational and rotational
transduction coefficient¥, | andXy,, from which the me-
chanical domain in Figl6 can be deduced. The setup-related
directions ofi;, M , ; andv, were reversed to match the di-
rections of the arrows in Fid.4.

IntegratingE over x3 in each layer — designated by sub-
script 1 and 2 or ;1 and ;2 — and considering Eqs44),
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(45), (69b) and @0) gives the voltage G, . o
c c+ho _"_’l_l | ?A,l
u=- / Ezydxz= / E3,dx3 (75) l Uy, "X 2
i ‘ Ly i =Xp 'M/u
ds, de
= — / <E1ala+Elalx3dx +ﬂl D3 1) dxs Cbz M, | M
c—hy 1 — —
c+h Up, = Q
B . . A AT ‘“l o e Qol
N / 20zt 2“2x3dx +F2 D3 ) drs =Xy M,
E1h E iy —i
= v+ —=o (—h§+2chl)g LL_ZLL
jol jo 2l
— Transformation
/X1, —1/XRi1
1 hlﬂl ; Cll - _MA,I
ja) wl L _ll > - 1 O —
1/Cpa ) )‘(QO l() - Xew
Ly .
Eohy E> 5 2y 4Arn =X, M
== oo vy, e (1 + 20h2) 2 A
&— - Cb’_)
—1/X, 17 —1/XRr12 _Ii A?/[A'Z i_/[ o
1 A ,BS 1 - 1 )
4+ = m2P2 i Q, Upa =722
jo wl =2 )(_ () —RL2 Ny, £
]76.;; =R =Xy M, M
with i —i, Y
S _ T (1_ 12
=1 <€33 (1 k3l>) ' (76) Figure 17. Transformation of a rotational velocity source.

The resulting voltage meshes in Fig include the electrical

capacitance€’;, 1 andCp, » of the two layers.

The capacitanc€), = Cp 1 + Cp.2 can be measured in the

case of the blocked beam = 2 = 0).

Compliances, and rotational compliancer o are labeled

Cser =

and total capacitance

Cp1-Cp2

- (78)
Cp1+Cp2

with the subscript “0” for “open” since they could be mea-
sured in the case of no currgiif = i, = 0). If the two layers  are transformed into the translational mechanical domain.
are nonsymmetric, then this boundary condition cannot be reThe complex transduction coefficient causes a transition to
alized. The open electrical circuit conne€g1 andCj 2 in a compliant behavior or inductance symbol. Then the two
series, which allows a current flow. This connection providestransducers are solely connected to each other. They can be
a link between rotation and translation. The transfer functioncombined into a lever with the ratio or mechanical advantage
v1/80li=o for this case can be determined analytically for
the circuit in Fig.16, which is simplified for this purpose.
The first step is to explore the effect of an assumed rotational =
velocity source, in the electrical domain. The effect can be
found by a source transformation as demonstrated inlig. ¢ depicted in Figl8b. The sought transfer function:
The electrorotational transducers can be ignored afterwards
since they do not influence the ideal sources and cufgent oF X, .. (; _ ;)

L1l \ Xgl1 ~ Xgl2
=1+ i

=il (79)

ar12

which flows through the electrotranslational transducers. The¥L
result of this reduction step is depicted in Figa. The cir- [
cuit can be simplified further, when the combined source

(80)

i=0

with

1 1 X2
ug = ( - ) L @7 ne=-5=L,
XRLl XRLZ w*Cser
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ser o O
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Figure 18. Length variation of a transversally coupled piezoelectric
bimorph caused by a rotational velocity.

b)

is found by applying Kirchhoff’s laws:

O —vi+jonc- —vg+1-vi=0, (82)
Arl1
Ul

®:1 f{—f{—jwio= (83)
with
.k Ll

= 84
X X, ., (84)

No dependency occurs whéfg | 1 = X, o

10.1.2 Symmetric laminate

A special case of transverse coupling is the laminate of two 1

equal piezoelectric layers as shown in Fid wherei; =

—i, =i/2 holds. Such a symmetric laminate is charactenzedYRl

by Xp 1 =Xg,andX, =X, ,, i.e.,,t =1. Simplified
network parameters — as derivedlsnk and Irrgand1977)
—result from Eqs.45), (72) and (73):

1 1
M=—: Q4+ -1, (85a)
jonr,o XRr1
1
Fi=——"v, (85b)
jon
1 P S
u—=— U -2 - .=
- X1 Xein joCp1 2 (850)
1 1o, L i
== — . U . . . _’
X2 = Xgip  joGCr2 2
with
EI
I’lR’o = T, (86)
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z i MT M
u=Yy -M;
u 0
C i :L.Q Ny l—

Figure 19. Model of a transversely coupled symmetric piezoelec-
tric two-layer beam.

w(2h1)3
= 87
o (87)
1 §nR,og (88)
EA
l
and
A =2whi. (90)

The neutral layer is located at the material interface, i.e.
¢4 = c¢s. Therefore, no translational electromechanical effec
occurs(F; # f(i)). In the sensing case, opposite voltages
are caused by, which cancel each other oat # f(v4)).

Following Lenk and Irrgang1977), a circuit description
with real transduction coefficients

C, d
_JoCh _dn (91)
XRL 87y
is obtained by rearranging SOBH) to
1 1
M= Rt ——-u (92)
jonrs YR
- Yri

whereng sis the short-circuit compliance (subscript “s”)

I 1
NRs= — —————, (93)
ST EI 3,2
(1— Zk31)
and
lw
Cp=Cp1+Cpo=2¢el, (1 - kgl) ™ (94)

is the total blocked capacitance. SGE)can be interpreted
as the circuit in Figl9 (Lenk et al, 2011).
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P K, i Iy M, M
- N, =2 7= / T J_ u=r,-M,
12 A A l = o1 n lQ
i,=—- 0 Rs
uy TCbl G oy T
° b
3 P AA T
14’ 2 L Fr  F,
1 L > u=YF,
Figure 20. Longitudinally coupled piezoelectric two-layer beam. i =i-v n, ll—%
-t Y; =3

10.1.3 Longitudinal piezoelectric coupling
Figure 21. Model of a longitudinally coupled piezoelectric beam.

Longitudinal piezoelectric coupling is achieved witkie+1)
interdigital electrodes on the piezoelectric layers crealing
separate electric field regions as sketched inZdgThe lay- The time-integrated flow coordinate chargeis gained
ers are polarized longitudinally and match the comb structurdrom the density quantity); by
but with opposite direction in layers 1 and 2. In the follow- ctho
ing, thin layers are assumed which accommodate an approx- / ( dg
=n-w
dyg

do
imately uniform electric field in direction 1. The material di- £ = +°‘Ex1_ + (/3 o’ ) ) dxy

dxs
rections 1 and 3 are now exchanged compared to the coordi- c—hy
nate system in FicR. 1 ) 5 de
Longitudinal piezoelectric coupling is described by = w{ [5 (azEzhz - 011E1h1> + (1 Erh1 + a2 E2h?) C] a‘g
L 435 + (e1E1hy + Eh)d§1
Lo=pSa= it s (952)  * (eafuly+azkizh) g
33 33
+ I:(,Bl_a%E1> hi+ (ﬂz—Ot%Ez) hz]A} (98)
Dy=dj3-Ty+e33 - Es, (95b)  in the case of a uniform electrical field in direction 2. When

) curvature, strain alongs and theA field coordinate are all
matchmg the abbreviations/E = sff = s{;— (s§5)"/s5,,  constant, then the flow coordinate — currefit=jw Q

pr = 533 = 833 /sy,  and o= -—ap=diz=
EE —
daz — s5do3/s%,, as well asA = E. i= —% 1E2hihz (ha + ha) (all o2) Q (99)
Calculation of momend and longitudinal forceF 5 with (Exha + E2ha) /Ne

Egs. (L3) and (14) andu = E5-1/Ne give the rotational elec- 1/Yg
tromechanical transduction coefficierit for the actuation Eil Eah,
Eq(21) +(Ol1 1h1+a2E2 )l/N

E1Eohiho(h1+h — 1/Y,
M)\:—E 1E2h1ho (h1+ h2) (a1 062)% (96) /Y

2  (Eih1+ Ezh)) l/Ne
1/Yr wha

e (ﬂlT El) l/Ne (ﬂz 2E2> I/Ne | *
and the translational electromechanical transduction coeffi-
cient in the combination of Eq4@b) and Egs.18) and (19): Cb.1 Cb.2

includes a bending-inducedxg-translationally induced and

i — £ — EA-« (97) a voltage-induced component with the transduction coeffi-
i u =0 [/Ne cientsYg andY; and the layer capacitanci€®, ; andCh ».
Together with Egs.42f) and 66), a circuit interpreta-
l/Ne (1E1ha+e2E2h?) . tion of Egs. @9) and @6) leads to the reversible transducer

model in Fig.21. Short-circuiting the electrical port decou-
As in Sect.10.1.2this coefficient is 0 when the two piezo- ples translational and rotational domain. Then the compli-
electric layers are equal ard = cg, too. ancens and rotational compliancer s can be measured.
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M, M Magnetic flux Magnetic flux rate

L L L, | l o % door VA
u Ngs . _1 re Q - ="
LRRTE e | Bl 2 o

|——
Py

\ Al

Y

MMF = |H-ds v = (H-ds
Figure 22. Model of a longitudinally coupled piezoelectric beam "
with transformed translational compliance. Magnetomotive Force Magnetic Voltage
7
W:En '@n Zm :._'!m
When only one mechanical domain is of interest, the com- o

pliances of the other mechanical domain can be transformeg_ 53 M . i |
into the electrical domain. As depicted in FRR, the trans- lgure 23. Magnetic coordinates on a reluctance.
lational compliance, for example, is recognized as an addi-

tional capacitance foF ; = 0.

or
2

10.2 Piezomagnetic bimorph sk daistl

g | p o _ §3:<53{13—(3,%1) >Z3+(d33— H31 Hy (103)
In the case of a piezomagnetic bimorph — analog to piezo- S11 S11
electric materials — the linear magnetomechanical coupling Hx di
matrix for the field quantities stress, strain S, magnetic $31 33
flux densityB (= K;) and magnetic field strengthi (= A) is d31sf3 T d§1
given by l B3y=\dszs— —~ | I3+ | naz— -5 | Ha.

S11 S11
— T . — —
B, = uy,H,, +dy;T 11.—1...3, m=1...3, (100) i uls
] =

S, = dpiH, +S,7Z,- i=1.6.m=1..3 In the magnetic domain, magnetic voltaigg, and the time

derivative of the magnetic fluxdl/dz, or magnetic flux rate
j=1..6 1., are chosen as coordinates as listed in Tablan ideal
solenoid coil then acts as electromechanical transducer with
coefficientNV, which is coupled with the piezomagnetic beam
(Marschner et a]2010. With magnetic voltage and flux rate,
€a magnetic reluctanc®y, is described by the capacitor sym-
bol due to the analogy with the capacitance 1/(jwC) - i
as explained in Fig3.
10.2.1 Longitudinal coupling with an ideal solenoid With the abbreviation& = 1/S3E3' o =dszandp’ = MeT.s-

Longitudinal coupling is achieved when a solenoid coil with th€ transduction coefficients are obtained by E§§) and
N turns around a considered unimorph — with one piezo-(,9,7) when_Ne is se_t to 1, and in addition to the materlal_coef—
magnetic layer — serves as an electromagnetic transducer (,gglenti,g IS SUbSt_'tufﬁEd b%hm andA bY%s- Also re.placmg
shown in Fig.1d. An ideal solenoid coil concentrates a uni- be¥ t” e magnhetlc wo, t ﬁ maghnetlcl ux raté, |?skt1ea|d
form H field in the unimorph and covers the unimorph with- ©f  follows with Eq. ©9), where the reluctances of the lay-

out an air gap. Demagnetization effects are not considered. &S ®mb1 andRmp,2 can be measured when the bimorph
For longitudinal coupling, the magnetomechanical cou-1S mechanically blocked. Figu@4 shows the resulting elec-

pling matrix of SOE £00) simplifies for a small beam width tromechanical circuit representation. Complian@nd rota-
to tional compliance:r are separated in case of a suppressed

magnetic voltage variatioqV ,, = 0) which is achieved by
Sy=sih-Ty+ds3-Hyg (101)  anopen electrical circuit = 0).
T The model is valid for small variations of the magnetic
= = = and mechanical system quantities. In order to model nonlin-

whered (= «) is the piezomagnetic constant ang= 8) the
permeability.

Technically important electromagnetic transducers ar
solenoid coils and planar coils.

and in the case of a large beam width to ear sensing and actuating behaviors of piezomagnetic ma-
terials, finite-element-based models comprise magnetic and
Sy=sih-Ty+s¥ T, +ds3-Hyg (102)  elastic boundary value problems (BVPs) that are bidirec
Sy = 5{13 Ta+ SlHl Ty+ds1-Hy=0 tion_ally coupled through s_tress and field-d_epgndem cou_pling
T variables — magnetostriction and magnetizatigtudivarthi
B3=ds3-T3+ds1-T)+uzz-Hy et al, 2009.
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Figure 24. Circuit model for uniform longitudinal electromagnetic 7

coupling achieved by applying an ideal solenoid coil. Magnetic layer

(/=1 mm)
10.2.2 Transverse couplin \ Aluminum
-z pling w =23 mm 2, i (h, =5 mm)
The linearized constitutive equations for transverse coupling % 3, X,
of mechanical and magnetic field quantities for a small beam
can be formulated as Figure 26. Section of a planar coil on top of a thin piezomagnetic
layer.
Sy=diz-Hy+si1- Ty (104)
T
By=pu33-Hz+d31-T; (a) Coil inductance
or The placement of the ferromagnetic material beside the pla-
J 1 nar turns has much less influence on the coil inductance
T,= _LH3 Hay+ 75, (105)  or electromagnetic properties in general than a ferromag-
S11 S11 netic core inside a solenoid coil. While the inductance of a
’ d]2_3 d13 solenoid coil with isotropic core material depends linearly
Bz =|133— SH “Hz+ S - 87 on the permeability, the inductance of a planar doil, is
11 1 doubled at the maximum by an isotropic permeable layer of

Similar considerations for a large beam width hold as dis-INfinite thickness underneath the turns compared to the air

cussed for longitudinal coupling. coil inductanceLq. For an infinite layer thicknesfoshen
A technical solution to realizing transverse coupling are and Turcott1988 showed that

planar coils. In a part of the coil the mechanical and magnetic

quantities are directed perpendicular to each other as visuakoo =

ized by Fig.25. When a uniform magnetic field strength in

the piezomagnetic layer is assumed, then network parames should be noted, that already a relative permeability=

ters similar to longitudinal coupling are found except with 20 increases.o by about a factor of 1.9. The network model

the length/ and widthw of the beam being exchanged as of the coil arrangement, which is derived next, relates the

listed in Tabled. magnetic reluctances to the inductance. This will give an ex-

planation for the inductance peculiarity.

2y
ur+1

Lo. (106)

10.2.3 Example: transverse coupling with planar coil

. . . A . (b) Combined Simulation
Next, the technically interesting case of a thin piezomagnetic

layer on a nonmagnetic carrier in combination with a planarThe electromagnetic system is studied for the setup inZ&g.
set of inductors will be discussed. The planar set of inductorsusing finite-element (FE) simulations to determine the struc-
as shown in Fig26, serves as electromagnetic transducer. Ittures and parameters of the magnetic network. The method of
can be viewed as a section of a rectangular planar coil. In thigleriving network parameters from FE simulations is called
specific example a thin isolation layer of 0.2 mm thickness isCombined SimulationStarke 2009, (Starke et al.2011).
located between the conductor layer and the magnetic layerThe network elements of the circuit in Fi@9 can be
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Figure 27. Absolute value of the magnetic field strengdthin the "
right half and magnetic voltages across each path- 20. N N
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0,00038809 Max | g,
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0,00012938 ) = 3 Ny
8,6256e-5 | :
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Figure 29. Circuit model for uniform transversal electromagnetic
coupling applying an ideal planar conductor setup on a single piezg
magnetic layer as shown in Figé.

Table 3. Material parameters of the magnetic layer.

d33=10-109mA-1 dz1=-5-109mA-1

Figure 28. Concentration of the magnetic flux in the magnetic layer

H_3g.10-11m2N-1 H_a24.10011m2 N-1
near the turns. 533 =3.8-107""m*N 517 =4.4-100"m"N

sih=-11.101m?N"1 L =-165 10711 m?N"1

determined individually and separately by applying partic-  sij=24-10011m?N-1 s =11.10711m? N1
ular boundary conditions (e.g., short or open circuits, exci-
tation quantities). The same conditions are used as boundary

conditions for the FE simulations to determine the elementgnd the rotational and translational domain cannot be decon-
values from the Complex geometries and field distributions. posed this way but on|y when the magnetic reluctances are
A magnetostatic FE analysis, not considering any eddytaken into account\arschner et aj2014.
current losses, reveals the actuation situation when only the
low-frequency properties of the unimorph are of interest. The
generated magnetic field strength is depicted in Zig.The
magnetic flux is concentrated near the turns with a slight peakrhe reluctances can be determined on the basis of the total in-
near the middle of the turn area while the fluxxindirection ductance of the setup as describediarschner et a(2010.

(d) Reluctances

is nearly uniform (Fig28). The reluctances are separated by a disabled magnetomechan-
ical interaction, which is achieved either Ry= 0 andv =0
(c) Equivalent circuit or I,g=0andl,, ; =0. With a pure magnetic FE analy-

) ) sis these ideal bdundary conditions are matched. Once the
When each partial magnetic voltage along a path around thg,qyctancer of the arrangement is determined by FE sim-
conductors is related to a reluctance, then a magnetic voltyations, the total reluctance can be related to the individua
age divider is found where the magnetic voltages are proporye|yctances by applying the magnetic voltage divider rule a
tional to the reluctances. Due to the ideally equal magneticshown in Fig.30. The total reluctanc®m = Rm 1+ Rm.2

voltage in a thin piezomagnetic layer and in the nonmagnetiynq total inductancé are related to each other by
substrate and air below, as depicted in 4@, the related

reluctancesRmm andRma b are connected in parallel. The N2

oY

equivalent circuit of Fig24 can thus be extended by the mag- R =L. (107)
netic voltage divider including reluctané@n a a of the air
above and beside the conductors, as shown inZ9gCon- A total inductance of 1.1 yH of the electromagnetic sys-

trary to the ideal solenoid coupling, the magnetic voltige  tem is calculated with FE analysis from the static mag-
across the magnetic layer cannot be suppressed by settintgtic field energy. The magnetic voltages acr&ss1 and
i =0. Thereforepr andr cannot be measured separately, Rm 2 reach 0.871 A and 0.129 A, as noted in F23. Back
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Figure 30. Reluctance calculation based on the inductance. The B 11MA | 4 MA Vhe _m 9.3 1073N7
magnetomechanical system is switched off by blocking the uni- -320 — m
morph.
2:2:—1.9% F,
. . l L
transformation givesRm1=20MAWb™! and Rm2= - Vi =Y, Ly
Rm.AblRmm =3MAWb~1. Assuming a homogeneous 1 Ull
field in the magnetic layer, its dimension-based reluctance Lo =Y—'91
. tL
is n =
w,
Rnm= ——% — = 4MAWb™?, (108) 1N 250008
wolrhal Y kA

wherew, = N - (w, +d,,) is the width of the field concentra-
tion underneath th&/ turns with widthw, and distancel,,
from each other. It follows, that

Rm,m'Rm,Z

Figure 31. Network parameters of the piezomagnetic unimorph
with planar conductor setup from Fige6.

RmAb= T Rl 11.1MAWb™2L. (109) the bending compliance. By applying the current divider rule
m,m = ftm,2 the analytical transfer function follows directly:
(e) Completed equivalent circuit 4 M, nr L1 (110)
L=T=NR—/ =5 2"
The mechanical parameters and magnetomechanical trans- - L X LitLa+nr/X

duction coefficients were determined with Tadlend the  The value is displayed in Fi@1.
material parameters in Tab&as well ask, = 71 GPa and

d.33 =d31=0m A*1. for the aluminum carrier. Figur81 (g) Model validity

displays all determined network parameters. It can be de-
duced that the air path above the coil causes a distinct reducFhe low-frequency model is valid up to a frequency be-
tion of the magnetic field strength in the magnetic layer tolow the first natural frequency of the beam, which follows
12.9% of theMMF (magnetomotive force). For higher val- from the solutions of the Euler—Bernoulli differential equa-
ues ofu, or a larger thickness of the magnetic layer the ratio tion with

of the magnetic voltages is approx/d.. Solenoid condi-

tions, except the transverse coupling, can be achieved eithq%l)z —w» E-1 ’ (111)

by closing the magnetic path around the turns or eliminating (0-A)

Roma whereE is Young’s modulus/ the moment of inertiag the
density andA the cross sectional area. Considering a fixed—
free beam as an examplg/)? = 3.52 applies, giving a nat-
The included interaction or feedback of the magnetomechanural frequency of

ical transduction causes a further magnetic load. The trans-
fer function Z = ¢/i can easily be deduced from the elec- 352 E- 1

tr_ical _impgdance_. qu this reason, the cir(_:uit description is/1= or (h101 + hao2)wi*
simplified in a stepwise manner as shown in 38. The re-

luctancesRm 1 = Rm.a.a andRm 2 were transformed in the  This natural frequency is also found when the high-frequency
first step to the electrical side. Then the chained transducermodel of the beam from Fid.3is used to simulate the veloc-
can be combined to one transducer with transduction coefity U, of the free beam end. FiguB2 shows the circuit de-
ficient X. Finally, the bending compliance is transformed to scription using the program LTSPICE when the beam is dis-
the electrical side, too. If no external moment or deflectioncretized into seven pieces. For the ideal rods, ideal controlled
is applied, then the transducer can be eliminated. The inducsources were applied. If twx /2-transducers are connected
tance network represents the magnetic voltage divider anéh series then they can be combined into one transducer with

(f) Electromechanical transfer function

=372Hz (112)
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Figure 32. High-frequency LTSpice model of the two-layer beam.
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Figure 34. Amplitude and phase spectrum ofj of the left-side
fixed bimorph.

11 Summary

Q=jogp

Figure 33. Simplification steps for the setup in F2@to obtainthe  In this paper a generalized a generalized theory for the me
electromechanical transfer functiopgi and/i. chanical behavior of laminated plate strips or bimorph ele-
ments under the influence of strain-inducing physical quant
tities is presented. These conditions were formulated so that
Ax = 1.4 cm for the beam of FigR6. The free end is stimu- for the description of the bimorph only the uniaxial stress
lated by a moment source with an infinitely large mechanicalconditions need to be considered. On this basis, it was possi
source impedance. In an electric network, this corresponds tble to determine the set of differential equations of the two-
a high-impedance current source. The result of the frequenciayer beam element and to derive a circuit interpretation o
domain simulation is depicted in Fig4. Only six instead of  the linear case.
seven natural frequencies are described by this model since The neutral layers caused by an internally induced bend
the left-side short-circuiting of both, the rotational and the ing moment and by an externally applied moment are dif-
translational domain, is transformed to a short circuit, whichferent. The midpoints of the location of the neutral layer
is blocking mass C1. This eliminates C1. at the bimorph ends occurring for an external moment ar¢
Despite the small number of finite network elements in chosen as points for applying an external longitudinal force
the LTSpice model of Fig32 and the partial influence of the At this location the bimorph length changes when it is ac-
boundary conditions on the adjacent node, the mechanicaliated. For this reason the equivalent circuit includes thre
network turns out to be a good approximation for the descrip-mechanical domains: translational deflection direction, lon
tion of the dynamic behavior of the flexure beam including gitudinal direction and bending. The circuit representation of
the lower natural frequencies. To improve the results, morehe bimorph element assumes small bending angles as well
network elements (typically nine or more per wavelength)as small longitudinal forces and neglects quadratic solution
should be used. terms for the longitudinal direction. It is also assumed thaf

D

11
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Table 4. Piezoelectric (PE) and piezomagnetic (PM) two-layer beam network parameters.

PE Transversal (symmetric) PE Longitudinal PM Longitudinal " PM Transversal "
P E}’Q} 4
A7 N,=2 e
A= ey iy
h, ZZ I F
o T P l Es ;23 2 hl hl‘ L
8 ST sT |} ! ST
g ||t tED|D | 7 7T ST |h 51|51
w %’ ? w ll* ? v 1 v 3
3 1
2 2
h-w{ 7 d323 1 h-w( r d323 1 MLl 7 d|2 3
a Cl_l/N 337 % = ] 33T o P = M3 =
L-wl ¢ d321 e S33 ) Ym,1 $33 ), Ym,1 w S )
N : 2 7
c 1 St c hy w| 7 dig 1 hy w( p di 1 5 -1 A dp;
2 3T T g = 37 = 33~
: l/Ne S}% 2 7‘?111,2 l Sg ) 7Cm,2 SII{ )
X, Iy /N, l w
v u=x,-E, Vi =%, H;
joZ L Ln
24 ds, ds3 dss dy
w
Y, 0 —(Eh+a,E )
RN
1 E E hh,(h +h
e I/UhlalEl W Bt 2( 1 2)(0{1—0!2)
Y, 2x, Eh +Eh,
. T i il il
sii 85 553 st
joZ JjoZy M, M !
o—>—9 ’ >
T Y=Y, .M, ( Fu ACZj«E.,yl )
V4 —_ 1 0 —0o_
5| |oato B2 wa” mea an
¥ 2 Eh+E,h,
F, F ’
> I 12 Eh +E,h,
. V=Y F. g =—==— 2
joZ, | T . EI  w E}h) + E,Eh, (4] +61h, + 417 )+ B E;
1 n |4
JoL, =y v e L l
' EA w(Eh +E,h)

) The single wire with current i symbolizes the section of a coil

longitudinal compression forces cause only functions of co- If the active layer(s) of the flexure beam behave lin-
ordinates which fulfill the demand for biuniqueness. early and reversibly regarding thermodynamics, then an ideal
Full bimorph solutions are derived for both quasi-static source acts in the interacting domain, too. This additional
responses and dynamic responses without pressure loadource and the moment or rotational velocity source define
Quasi-static responses are dynamic responses at frequenciasreversible transducer, which relates the coordinate pairs
that are well below the first natural frequency of the bimorph, of interacting domain and mechanical domain to each other.
where compliance effects dominate dynamics responses arféor piezoelectric and piezomagnetic two-layer flexure beams
mass effects are negligible. with typical arrangements, reversible multi-port transducer
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models are developed. Piezomagnetic unimorph models argansducers can be combined and eliminated. This way trans-
coupled with electromagnetic coil transducers. Except for arfer coefficients can be determined easily.
asymmetric transversally coupled piezoelectric bimorph, a Network methods and finite-element methods can be con
unified circuit representation is summarized. bined on the one hand in order to determine network paf

The structural description by an equivalent circuit is the rameters. On the other hand completed network models con-
key to an efficient analysis, simulation and understanding ofcentrate properties of system parts. They can be integrated
the dynamic bimorph behavior. Sophisticated circuit simula-in FE models which describe the continua of other system
tors like SPICE offer fast time and frequency domain sim- parts. The equivalent circuit of the planar-coil-driven piezo-
ulations. When Sl units are used, simulation results can benagnetic unimorph, for example, can be integrated into the
directly read in the related mechanical, magnetic or otheracoustic FE model of a piezomagnetic loudspeaker to detef
domain with their respective units, e.g., Ampere New- mine electroacoustic function parameters. Such a combinegd
ton. Because of linearity and reversibility, network elementssimulation saves time and computational resources.
can be transformed into other physical domains. Subsequent

D
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Appendix A: Nomenclature

Symbol Unit Description
A Influence coefficients ratio
B Vsm 2 Magnetic flux density
cA m Distance between neutral layer and
material interface for
actuation
cs m Distance between the neutral layer
and material interface for sensing
Ca, Cp Deflection function constants
C1,C2 F Capacitances of layers 1 and 2
ds3 mv-1, Piezoelectric or piezomagnetic
mA-1 constant for longitudinal coupling
ds1 mv—1 Piezoelectric or piezomagnetic
mA-1 constant for transversal coupling
dz, mv-1, Piezoelectric or piezomagnetic
mA-1 constant for transversal coupling
and large beam width
Dy Asm 2 Displacement current in active
electrical field direction
E=1/s Pa Young’s modulus
EA Averaged extensional stiffness
EI Averaged bending stiffness
E vm-1 Electric field strength
F1, F3 N Forces in directions 1 and 3
R, Fy N Forces at left and right side of a
beam in direction 3
F* N Force at the beam cross section for
large angles
h1, ho m Thicknesses of layers 1 and 2
H Am~1 Magpnetic field strength
i A Electrical current
I \% Magnetic flux rate
T Generalized time integral of the
flow
k Coupling factor
K Generalized second field quantity in
the interacting domain
l m Beam length
L H Inductance
M Nm Moment
M, Nm Source moment
M, M, Nm Moment at left and right side of a
beam
n mN-1 Compliance
no mN-1 Reference compliance
nr rad Nnil  Rotational compliance related
nR rad Nnl  Rotational compliance
N Number of turns;
number of discrete elements
Ne Number of interdigital electrodes
minus one
p Pa Pressure
0 As Electric charge
Rm AWb~1  Magnetic reluctance
s mZN-1  Elasticity constant
st m?N-1  Elasticity constant fof =0

J. Sens. Sens. Syst., 3, 187-211, 2014

Symbol Unit Description
st m2N-1  Elasticity constant forE =0 and
' large beam width

sif m2N-1  Elasticity constant foff =0

N Strain

So Strain atcg andx3 =0

t S Time

T Nm=2 Stress

Tg Nm—2 Mean-free part of the stress
distribution

u \% Voltage

V1, U3 ms1 Velocity in directions 1 and 3

v, Yy mst Velocity at left and right side of a
beam in direction 3

Vi A Magnetomotive force NIMF) or
magnetic voltage

V Generalized influence field
strength

w m Beam width

X1, X2, X3 m Mechanical coordinate axes

X Interacting domain

X Translational electromechanical
transduction coefficient for
transverse coupling

XRr1 Rotational electromechanical
transduction coefficient for
transverse coupling

Y; VN1 Translational transduction

AN-1 coefficient
Yr V(Nm)~1, Rotational transduction coefficient
A(Nm)~1

A rad A1 Electromechanical transfer function

o1, 02 Generalized influence coefficient of
layers 1 and 2

B1. B2 Generalized material coefficient of
layers 1 and 2

€ Fm1 Permittivity

es Fm1 Permittivity for S = 0

el Fmt Permittivity for 7 =0

el Fm! Permittivity for 7 =0 and large
beam width

¢ Layer thickness ratio

s K Temperature

A Generalized influence quantity

hr Relative permeability

uk Vs (Am)~1 Permeability forl =0

wulx Vs (Am)~1 Permeability forT =0 and large
beam width

v Poisson'’s ratio

10 rad Angle

D Wb Magnetic flux

£1,&3 m Deflections in directions 1 and 3

£, €3 m Transformed deflection, &3

X Young’s modulus ratio

v % Humidity

Q rads? Rotational velocity

® rads? Circular frequency

2, rads? Rotational velocity at left and right

side of a beam
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