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Abstract. To increase the robustness and functionality of piezoceramic ultrasonic sensors, e.g. for flow, ma-

terial concentration or non-destructive testing, their development is often supported by computer simulations.

The results of such finite-element-based simulations are dependent on correct simulation parameters, especially

the material data set of the modelled piezoceramic. In recent years several well-known methods for estimation

of such parameters have been developed that require knowledge of the sensitivity of a measured behaviour of

the material with respect to the parameter set. One such measurable quantity is the electrical impedance of the

ceramic. Previous studies for radially symmetric sensors with holohedral electrode setups have shown that the

impedance shows little or no sensitivity to certain parameters and simulations reflect this behaviour making pa-

rameter estimation difficult. In this paper we have used simulations with special ring-shaped electrode geometry

and non-uniform electrical excitation in order to find electrode geometries, with which the computed impedance

displays a higher sensitivity to the changes in the parameter set. We find that many such electrode geometries

exist in simulations and formulate an optimisation problem to find the local maxima of the sensitivities. Such

configurations can be used to conduct experiments and solve the parameter estimation problem more efficiently.

1 Motivation

Piezoelectric effect is the physical phenomenon discovered

by Pierre and Jacques Curie in 1880 that is exhibited by sev-

eral crystalline and synthetic ceramic materials. When volt-

age is applied across certain surfaces of the solid, it exhibits

mechanical strain; conversely, when mechanical stresses are

applied, voltage is produced between its surfaces.

Acoustic transducers are required to construct an ultra-

sonic measurement device of any kind. Transducers based on

circular piezoelectric ceramic disks have been manufactured

and used in a wide variety of applications.

Ceramics are composed of a large number of randomly

oriented crystals. The cumulative properties of each of these

crystals together determine the properties of the whole solid.

This means that each batch of the ceramic produced will have

somewhat different material properties. Additionally, the ma-

terial coefficients are dependent on geometry. If a such a ce-

ramic disk with a specific thickness and diameter is sintered

and polarised, the resulting material coefficients are differ-

ent than a disk of the same material and of different thick-

ness and diameter. Hence, post processing and treatment of

the material also influences the material coefficients. Pérez

et al. (2010) found the elastic coefficients to vary up to 5 %

and the piezoelectric and dielectric coefficients to vary up

to 20 %. These variations include measurement uncertainties

concerning the determination of the coefficients and also the

batch-to-batch and geometry dependencies.

Depending on the application at hand, the full knowledge

of the material data set can be crucial to the whole process:

for a circular disk with full width electrodes on the top and

bottom (see Fig. 1) there is no shear movement; hence, e15 is

of no importance. Unlike such a disk, in the case of a shear

wave transducer the knowledge of e15 is however crucial.
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Figure 1. Two-electrode configuration on a circular disk (Lahmer,

2008).

Analytical and numerical modelling of piezoelectricity

and the resulting computer simulations (Kocbach, 2000; Un-

verzagt et al., 2013) have enabled more efficient design and

construction of transducers in recent years.

Such numerical modelling requires the precise knowledge

of the parameters of the material under analysis. To this end,

new methods that utilise the mathematical concept of inverse

problems to estimate the material parameters have been de-

signed (Kaltenbacher et al., 2006, 2008).

Previous studies (Rautenberg et al., 2011) have shown that

configurations inducing resonance in radial or thickness di-

rections (Lahmer, 2008) are insufficient for parameter es-

timation, when only the electrical impedance is measured,

because the impedance characteristic in the frequency space

shows little or no sensitivity to certain material parameters.

Especially critical are c44, ε11 and e15 since in the experi-

ments of Rautenberg et al. (2011) they show no sensitivity to

material parameters at all. Low or no sensitivity means that

these parameters cannot be estimated using inverse problems

from the measurement of impedance characteristics only.

Other, more involved measurements have been proposed in

Rupitsch et al. (2009); however, they are also much more

cost-intensive.

In order to improve the sensitivity of the measured

impedance characteristic to the material parameters, we de-

signed a three-electrode configuration with electrodes of var-

ious radii as shown in Fig. 2a and b and use simulations in

which a non-uniform electrical excitation is applied to the ce-

ramic in order to compute the impedance characteristic and

its sensitivity to the material parameters.

Possible applications with non-uniform electrical excita-

tion in piezoelectric ceramics are interdigital transducers

(Kirschner, 2010) and annular arrays (Ketterling et al., 2005;

Ramli and Nordin, 2011).

In the following sections we first give a short overview of

the equations governing our simulation and the excitation of

the ceramic. We then define and analyse the sensitivity of the

computed impedance to parameters. Finally, we formulate an

optimisation problem to find a locally optimal electrode ge-

ometry that maximises the sensitivity and show that many

such local optima occur.
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Figure 2. (a) Arrangement of electrodes in thin rings; (b) arrange-

ment of electrodes in wide rings; (c) schematic diagram of the whole

circuit with the piezoceramic shown as a T-Network.

2 Modelling piezoelectricity

In this paper we restrict ourselves to linear piezoelectric ef-

fect IEEE Std 176-1987. The equations of linear piezoelec-

tricity in tensor form are given below and form the basis for

a finite-element formulation.

σ = cS− e>E, (1)

D = eS+ εE, (2)

where

– D is the electrical flux density vector

– E is the electrical field vector

– σ is the mechanical stress tensor

– S is the mechanical strain tensor

– c is elastic modulus tensor

– e is the piezoelectric coupling tensor

– ε is the electrical permittivity tensor.

We shall also restrict ourselves to thin circular disks.

Therefore, the use of a cylindrical coordinate system is ap-

propriate. We shall also assume that the configuration is ro-

tationally symmetric. Using the notation of Helnwein (2001)
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and Lahmer (2008) (Voigt notation) in the rotationally sym-

metric case we can rewrite the tensor notation into matrix

formulation:

c=


c11 c13 0 c12

c13 c33 0 c13

0 0 c44 0

c12 c13 0 c11

 ,
e=

(
0 0 e15 0

e13 e33 0 e13

)
,

ε =

(
ε11 0

0 ε33

)
.

This results in the following system of material equations

from Eqs. (1) and (2):


σrr
σzz
σrz
σθθ
Dr
Dz

=

c11 c13 0 c12 0 −e13

c13 c33 0 c13 0 −e33

0 0 c44 0 −e15 0
c12 c13 0 c11 0 −e13

0 0 e15 0 ε11 0
e13 e33 0 e13 0 ε33




Srr
Szz
Srz
Sθθ
Er
Ez

 . (3)

The above material equation can be extended to a full set

of partial differential equations in time and space using New-

ton’s, Gauss’ and Faraday’s Laws (Meschede and Gerthsen,

2010, Chap. 4 and Chap. 7).

Newton’s law of motion (Slaughter, 2002, Cauchy-Navier

equation) for the mechanical behaviour is

B>σ = %
∂2u

∂t2
, (4)

where B is the differential operator relating mechanical strain

to mechanical displacement.

B =


∂r 0

0 ∂z
∂z ∂r
1
r

0


As ceramic materials are insulators, there is no free charge

and Gauss’ (flux) law states

∇ ·D = 0. (5)

Neglecting the insignificant changes in magnetic field in

this case, Faraday’s law states that the electric field is the

negative gradient of the electric potential.

E =−∇φ (6)

Additionally, we consider a Rayleigh damping model with

positive constant α and β for the energy dissipation and ar-

rive at a system of four partial differential equations in time

and space from Eqs. (3), (4), (5) and (6):

%ü+α%u̇−B>(cBu+βcu̇+ e>∇φ)

= 0 in �,t ∈ [0,T ], (7)

∇ · (eBu− ε∇φ)= 0 in �. (8)

These equations are sufficient for transient analysis. The

electrodes and their excitation occur as boundary conditions,

in terms of free charge

qL =

∫
0L

n̂ · (eBu− ε∇φ)d0 (9)

at the part of the boundary containing the electrode 0L with

n̂ being the normal vector n̂= (nr , nz)
> at the boundary, or

the applied potential φL(t) at the electrode L. We call the

remaining boundary 0r = 0r0L.

The above equations may also be transformed for har-

monic analysis into the frequency domain. Application of a

Fourier transform changes the unknowns u and φ in Eqs. (7)

and (8) to time harmonic complex variables û and φ̂, and the

Rayleigh coefficients are scaled according to frequency.

α(ω)= α0ω, β(ω)=
β0

ω

The resulting time harmonic partial differential equations

are given as follows:

− %ω2û−
1

1− ıα0

B>
(

(1+ ıβ0)cBû+ e>∇φ̂
)

= 0 in �, (10)

∇ ·

(
eBû− ε∇φ̂

)
= 0 in �, (11)

with ı being the imaginary unit.

This transformation however contains a systematic error

as α0 and β0 are not constants in practice but change with the

central frequency of the Fourier transform.

Weak formulations and finite-element methods for the so-

lution of the above system have been studied in Kocbach

(2000) and Lahmer (2008).

3 Electrical excitation

In order to simulate the behaviour of a piezoelectric trans-

ducer with finite elements, it is excited by a delta function of

the charge or a pulse of potential. This gives the boundary

conditions to solve Eqs. (7) and (8).

Electrical current flow at the electrode is the time deriva-

tive of the free charge and the impedance between any two

electrodes is then defined as the quotient of the potential dif-

ference and the current. In the simple case of two electrodes,

with a delta function pulse of charge into one electrode with

amplitude qL0 ,

qL(t)= qL0 δ(t)
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(see Fig. 1), this leads to the straightforward calculation

ZL(ωk)=
φ̂L(ωk)

qL0

,

where ωk is some frequency of interest, q̂L0 denotes the fre-

quency domain charge peak and φ̂L(ωk) is the calculated re-

sponse of the potential difference using Eqs. (7) and (8).

In our setup two different electric potentials are applied

on two electrodes and the third is grounded. An external

circuit (Fig. 2c) is required to achieve this potential differ-

ence at the electrodes. The values of the resistors R0 and R2

and capacitor C2 are chosen to maintain V1 ≥ 2V2. This is

done by solving the equations of Kirchhoff’s laws for the

circuit (Meschede and Gerthsen, 2010, Chap. 7). As the cir-

cuit representation of the ceramic includes three unknown

impedances, the solution of the Kirchhoff laws equations re-

quires three finite-element solutions for Eqs. (7) and (8) using

an initial guess for the material parameters and a given elec-

trode geometry (Unverzagt et al., 2015). The chosen values

for the external circuit are then kept constant for that partic-

ular electrode geometry, while we compute the sensitivity of

the total impedance to material parameters and optimise it as

discussed in Sect. 5.

4 Sensitivity

For each frequency of interest in the domain, the solution of

Eqs. (7) and (8) along with the external circuit results in a

total impedance, which can be measured in experiments and

compared with the numerical computations in order to es-

timate the material parameters (Rupitsch and Lerch, 2009;

Kaltenbacher et al., 2008). The first step to solve this inverse

problem requires the determination of a sensitivity of the nu-

merical solution to variations in the material parameters. This

is in fact the derivative of the impedance with respect to the

material parameters.

For the numerical solution we use the commercial soft-

ware package CAPA, which computes the impedance for a

given configuration. CAPA is a simulation tool for the nu-

merical solution of electromechanical, coupled field prob-

lems and is therefore suitable for the analysis of most mecha-

tronic sensors and actuators such as electromagnetic loud-

speakers or piezoelectric transducers.

Besides transient analysis, which is used in this contribu-

tion, the harmonic behaviour of the piezoceramic disc can

also be calculated. One disadvantage of the transient simula-

tion method is the sole use of the Rayleigh damping model

for the energy dissipation processes as mentioned in Sect. 2.

This is a rather simple approximation of the damping be-

haviour in practice. Another disadvantage of precompiled

solver packages in general is inflexibility; it is impossible to

modify the computation in any way in order to be able to

compute more information, like sensitivities.

In contrast to previous studies we look at the real and

imaginary parts of the complex impedance separately in-

stead of looking at the magnitude. The formulation in terms

of magnitude and phase, although computationally efficient,

hides some geometrical structure, which is apparent when

looking at the real and imaginary components separately.

This is analogous to a polar coordinate system versus a

cartesian coordinate system. Figure 3a shows the complex

impedance as a function of the frequency in the com-

plex plane, whereas Fig. 3b shows the magnitude of the

impedance. The 3-D plot shows more structure and we use

the same representation for the sensitivities.

We used finite-difference approximations for the config-

uration in Fig. 8 for the sensitivity of the impedance w.r.t.

the material parameters. Figure 4 shows the sensitivity of the

impedance in the frequency domain w.r.t. c44, e15 and ε11

(occurring in Eq. 3) that are known to show low sensitivity

in simpler configurations (Rautenberg et al., 2011).

Using a slightly different geometry (see resulting geom-

etry in Table 1) for the electrodes but the same excitation,

the sensitivity curves change both qualitatively and quanti-

tatively (see Fig. 6 and compare with Fig. 4). However, the

change is not uniform across the parameters. Hence, there is

a need to find the optimal electrode configuration to ensure

maximal sensitivity of the impedance to the material param-

eters.

5 Optimisation

We start by formulating a constrained minimisation problem

with the electrode radii as the variables which will then be

solved.

The electrode configuration is parametrised using four ring

radii r = (r1, . . ., rNr = r4) and considering the outer radius

as constant (see Fig. 5). Let x = (x1, . . .,xNx ) denote the var-

ious material parameters occurring in Eq. (3) and let F ⊆R
denote the frequency domain. The impedance Z(f ;x,r) can

be considered as a function Z : F ×RNx ×RNr →C. For

fixed radii parametrisation r and material parameters x the

impedance is a function Z(f ;x,r) : F→C which maps the

argument f 7−→ Z(f ;x,r). This complex-valued function

Z is then transformed into a two-dimensional real function

z(·;x,r) : F→R2 via the usual Euclidean mapping. We ap-

proximate the partial derivative of z towards a change of ma-

terial parameter xi using a finite-differences scheme

∇xi z(·;x,r)≈
z(·;xi +h,r)− z(·;x,r)

h
∈ {F→R2

}

with xi +h := (x1, . . .,xi−1,xi +h,xi+1, . . .,xNx ) and for

small h > 0. Hence, the sensitivity of z towards one specific

parameter xi while remaining in a constant electrode config-

uration r can be considered as
∥∥∇xi z(·;x,r)

∥∥
L2(F )

. We con-

sider the norm of the corresponding function space L2(F) to

measure the sensitivity
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Figure 3. (a) Complex impedance vs. frequency; (b) magnitude of impedance vs. frequency.
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Figure 4. Sensitivity of the impedance for the geometry of the ring electrodes shown in Fig. 8 to various material parameters against

frequency w.r.t. (a) c44, (b) e15, and (c) ε11.

r2

r1

R = const.

r3

r4

Figure 5. Parametrisation of the ring radii compared with Fig. 4.

However, the change is not uniform across the parameters. Hence

there is a need to find the optimal electrode configuration to ensure

maximal sensitivity of the impedance to the material parameters.

∥∥∇xi z(·;x,r)
∥∥
L2(F )

=

∫
F

‖∇xi z(f ;x,r)‖22df


1
2

.

Discretising the frequency domainF equidistantly into inter-

vals [fi,fi+1] ⊆ F ,1≤ i ≤Nf −1 and |fi+1−fi | = ĥ,1≤

i ≤Nf −1 and using the trapezoidal rule leads to the approx-

imation
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Figure 6. Sensitivity of the impedance for the resulting geometry of the ring electrodes shown in Table 1 to various material parameters

against frequency w.r.t. (a) c44, (b) e15, and (c) ε11.

∥∥∇xi z(·;x,r)
∥∥
L2(F )

≈

 ĥ
2

∑
1≤i≤Nf−1

|∇xi z(fi+1)|2+ |∇xi z(fi)|
2


1
2

.

Now, we wish to maximise the sensitivities

∇z(r)=
[∥∥∇xj z(·;x,r)

∥∥
L2(F )

]
j=1,...,Nx

with respect to all material parameters xi .

We have noticed that some parameters are very reactive

towards change in geometry and others are not. Due to un-

evenly distributed sensitivity of the material parameters x to-

wards optimisation, their different orders of magnitudes and

the circumstance that the optimisation method used may only

minimise an objective function, we introduce a weight ma-

trix W := diag(w1, . . .,wNx ) ∈RNx×Nx+ and a scaling matrix

S := diag(s1, . . ., sNx ) ∈RNx×Nx depending on the orders of

magnitude of the initial sensitivity evaluation and reformu-

late the sensitivity approximation as the minimisation prob-

lem:

minrJ (r)=minr
1

‖WS∇z(r)‖2

=minr=(r1,...,rNr )

1∥∥∥∥WS[∥∥∇xj z(·;x,r)
∥∥
L2(F )

]
j=1,...,Nx

∥∥∥∥2

2

.

The scaling is only used inside the optimiser so that all

components of the gradient have a similar scale and has no

meaning outside the optimisation routine. For comparison of

the results one needs to compare the unscaled objective func-

tion with S = I , the identity matrix.

5.1 Constraints

In the production process of these piezoceramics, a laser

cuts out the electrode rings from a metal plate lying on top

of the ceramic. The laser has a width of 0.3 mm; hence,

some restrictions to the geometry of the electrodes apply.

The minimal distance of two adjacent electrode rings is at

least 0.3 mm; also, all radii must be positive and smaller than

the constant outer ring radius. These constraints are all linear

in the radii and can be reformulated into a vector inequality

Ar ≤ b with
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Table 1. Uniform weights: improvement of sensitivity of

impedance w.r.t material parameters usingW = diag(1, . . .,1). The

sensitivity has increased for all the parameters with exception of

e15. These are the best component-wise results we have computed

so far. Objective function values are shown unscaled. Figure shows

resulting geometry utilising uniform weight matrix in millimetres;

r1 = 4.01;r2 = 4.33;r3 = 2.20;r4 = 3.82.

Param. W Start Optimal Gain ratio

c11 1 2.0770× 103 6.3875× 103 3.0753

c33 1 803.3076 2.0959× 103 2.6091

c44 1 1.9901× 104 2.0009× 104 1.0054

c12 1 0.6624 0.8330 1.2575

c13 1 4.4700× 103 1.2292× 104 2.7500

ε33 1 1.4591 2.1917 1.5021

e31 1 83.2714 254.6764 3.0584

e33 1 62.9616 149.2692 2.3708

ε11 1 3.6831 4.6061 1.2506

e15 1 262.1774 246.1737 0.9390

Obj. 2.3748× 10−9 1.6756× 10−9 0.7056

‖∇Z‖2 4.2109× 108 5.9681× 108 1.4173

param. W Start Optimal gain ratio

c11 1 2.0770 · 103 6.3875 · 103 3.0753

c33 1 803.3076 2.0959 · 103 2.6091

c44 1 1.9901 · 104 2.0009 · 104 1.0054

c12 1 0.6624 0.8330 1.2575

c13 1 4.4700 · 103 1.2292 · 104 2.7500

ε33 1 1.4591 2.1917 1.5021

e31 1 83.2714 254.6764 3.0584

e33 1 62.9616 149.2692 2.3708

ε11 1 3.6831 4.6061 1.2506

e15 1 262.1774 246.1737 0.9390

obj. 2.3748 · 10−9 1.6756 · 10−9 0.7056

‖∇Z‖2 4.2109 · 108 5.9681 · 108 1.4173

−5 0 5
−2

0

2

mm

m
m

r1r2

r3r4

1

Table 1. Uniform weights: Improvement of sensitivity of impedance w.r.t material parameters using W =

diag(1, . . . ,1): The sensitivity has increased for all the parameters with exception of e15. These are the best

component-wise results we have computed so far. Objective function values are shown unscaled. Figure shows

resulting geometry utilising uniform weight matrix in mm r1 = 4.01;r2 = 4.33;r3 = 2.20;r4 = 3.82;

6 Conclusions and future work

In contrast to Rautenberg et al. (2011) with the two electrode approach we have shown that the285

sensitivity of the impedance to various critical material parameters is non-zero in all our ring elec-

trode configurations with non uniform excitation. Therefore parameter estimation techniques as in

Kaltenbacher et al. (2008) can be used with only the measurements of the impedance required. This

reduces the cost of such investigations as the equipment required is comparatively cheap.

In order to systematically search for the maximal sensitivity in such a configuration we need to290

solve an optimisation problem with the configuration radii as variables. Due to the inflexibility of the

precompiled solver we were forced to use a derivative free optimisation algorithm. More efficient

algorithms may be used if a more flexible finite element code with the possibility of influencing

14

A :=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 −1 0 0

0 0 1 −1


,

b :=



4.985

4.685

4.985

4.985

−0.15

0

−0.15

0

−0.3

−0.3


.

Table 2. Binary weights: improvement of sensitivity of impedance

w.r.t. material parameters using W = diag(0,0,0,0,0,0,0,0,0,1).

The sensitivity w.r.t e15 has increased. However, the sensitivity to-

ward other parameters has mainly decreased. Objective function

values are shown unscaled. Figure shows resulting geometry util-

ising binary weight matrix in millimetres; r1 = 3.4;r2 = 3.7;r3 =

1.23;r4 = 3.54.

Param. W Start Optimal Gain ratio

c11 0 2.0770× 103 1.7465× 103 0.8409

c33 0 803.3076 670.3565 0.8345

c44 0 1.9901× 104 1.9167× 104 0.9631

c12 0 0.6624 0.6789 1.0248

c13 0 4.4700× 103 3.8569× 103 0.8628

ε33 0 1.4591 1.2413 0.8507

e31 0 83.2714 67.8750 0.8151

e33 0 62.9616 47.5998 0.7560

ε11 0 3.6831 4.3195 1.1728

e15 1 262.1774 344.2983 1.3132

Obj. 1.4548× 10−5 8.4359× 10−6 0.5799

‖W∇Z‖2 6.8737× 104 1.1854× 105 1.7246

param. W Start Optimal gain ratio

c11 0 2.0770 · 103 1.7465 · 103 0.8409

c33 0 803.3076 670.3565 0.8345

c44 0 1.9901 · 104 1.9167 · 104 0.9631

c12 0 0.6624 0.6789 1.0248

c13 0 4.4700 · 103 3.8569 · 103 0.8628

ε33 0 1.4591 1.2413 0.8507

e31 0 83.2714 67.8750 0.8151

e33 0 62.9616 47.5998 0.7560

ε11 0 3.6831 4.3195 1.1728

e15 1 262.1774 344.2983 1.3132

obj. 1.4548 · 10−5 8.4359 · 10−6 0.5799

‖W∇Z‖2 6.8737 · 104 1.1854 · 105 1.7246
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mm
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r1r2

r3r4

1

Table 2. Binary weights: Improvement of sensitivity of impedance w.r.t. material parameters using W =

diag(0,0,0,0,0,0,0,0,0,1): The sensitivity w.r.t e15 has increased. However, the sensitivity toward other

parameters has mainly decreased. Objective function values are shown unscaled. Figure shows resulting geom-

etry utilising binary weight matrix in mm r1 = 3.4;r2 = 3.7;r3 = 1.23;r4 = 3.54;

the internal computations were available, so that one could compute derivatives simultaneously.

However the results show clearly that there are many locally optimal configurations.295

We are investigating the possibility of better sensitivity analysis by utilising the simulation soft-

ware CFS++ (Kaltenbacher, 2010), being developed at the TU Vienna. Modifications in the software

for this purpose are ongoing and future work. Besides sensitivities these changes can be used to

compute adjoints and thus solve optimisation problems, including parameter estimation problems.

Simulations with CFS++ will also shed light on the dampening influence of the external circuit if300

we increase the number of electrodes, thereby increasing the complexity of the external circuit, in

particular the number of external impedances.

Apart from discrete sensitivities and adjoints it is also possible to formulate the sensitivity and ad-

joint equations for the model in function spaces and discretise these along with the primal equations

and solving them. Another avenue for future development is to formulate the sensitivity maximi-305

15

Hence, the resulting minimisation problem is stated as

min
r

1

‖WS∇z(r)‖2
w.r.t.Ar ≤ b.

5.2 Optimisation method

Since the sensitivity itself is a finite-difference approxima-

tion, it makes little sense to use an optimisation method that

requires further derivatives. For the optimisation we used

Powell’s latest derivative-free trust region optimiser LIN-

COA (LINearly Constrained Optimization Algorithm) (Pow-

ell, 2014a, b) for linearly constrained problems.

The LINCOA method is a derivative-free optimisation al-

gorithm for linearly constrained problems written in Fortran

by M.J.D. Powell. It is based on Powell‘s other derivative-

free optimisation algorithms with the distinction of incorpo-

rating general linear constraints. However, a detailed descrip-

tion of the LINCOA software has not been published yet.

According to Powell (2014a), the LINCOA method uses a

quadratic model

Q(x)= c+ gT x+
1

2
xTHx,x ∈Rn
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Table 3. Mixed weights: improvement of sensitivity of impedance

w.r.t. material parameters using W = 1√
2
· diag(1, . . .,1,

√
2). With

exception of c44 and e15 all partial sensitivities are increased. Ob-

jective function values are shown unscaled. Figure shows result-

ing geometry utilising mixed weight matrix in millimetres; r1 =

4.01;r2 = 4.34;r3 = 2.17;r4 = 3.93.

Param. W Start Optimal Gain ratio

c11
1√
2

2.0770× 103 6.3742× 103 3.0689

c33
1√
2

803.3076 2.0949× 103 2.6079

c44
1√
2

1.9901× 104 1.9381× 104 0.9739

c12
1√
2

0.6624 0.8317 1.2555

c13
1√
2

4.4700× 103 1.2346× 104 2.7619

ε33
1√
2

1.4591 2.1869 1.4987

e31
1√
2

83.2714 254.7393 3.0591

e33
1√
2

62.9616 148.4855 2.3583

ε11
1√
2

3.6831 4.6862 1.2724

e15 1 262.1774 248.5213 0.9479

Obj. 4.7489× 10−9 3.4887× 10−9 0.7346

‖W∇Z‖2 2.1058× 108 2.8664× 108 1.3612

param. W Start Optimal gain ratio

c11
1√
2

2.0770 · 103 6.3742 · 103 3.0689

c33
1√
2

803.3076 2.0949 · 103 2.6079

c44
1√
2

1.9901 · 104 1.9381 · 104 0.9739

c12
1√
2

0.6624 0.8317 1.2555

c13
1√
2

4.4700 · 103 1.2346 · 104 2.7619

ε33
1√
2

1.4591 2.1869 1.4987

e31
1√
2

83.2714 254.7393 3.0591

e33
1√
2

62.9616 148.4855 2.3583

ε11
1√
2

3.6831 4.6862 1.2724

e15 1 262.1774 248.5213 0.9479

obj. 4.7489 · 10−9 3.4887 · 10−9 0.7346

‖W∇Z‖2 2.1058 · 108 2.8664 · 108 1.3612

−5 0 5
−2

0

2 r1r2

r3r4

1

Table 3. Mixed weights: Improvement of sensitivity of impedance w.r.t. material parameters using W =

1√
2
· diag(1, . . . ,1,

√
2): With exception of c44 and e15 all partial sensitivities are increased. Objective

function values are shown unscaled. Figure shows resulting geometry utilising mixed weight matrix in mm

r1 = 4.01;r2 = 4.34;r3 = 2.17;r4 = 3.93;

sation problem using shape and topology calculus instead of parametrised rings. This would help

generalise the configuration of electrodes to ceramic geometries that are not radially symmetric.
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as an approximation to the objective function J (x) ∈Rn.

However, as no derivatives are available, the quadratic model

Q has to be iteratively constructed from function evaluations

of J . At the beginning of the optimisation, the user chooses

the amount of points m which are further used to interpolate

the model Q with m ∈ {n+ 2, . . ., 1
2

(n+ 1)(n+ 2)}, a typical

choice for m being 2n+ 1. This leaves 1
2

(n+ 1)(n+ 2)−m

degrees of freedom for the choice ofQwhich are fixed by ap-

plying a symmetric Broyden updating method to the model

Q. A trust region and an active-set approach incorporating

the linear constraints then determine the new points for up-

dating the model function Q, which is iteratively minimised

by the process. The trust region size in the process is de-

creased when certain conditions are fulfilled until ultimately

the algorithm halts as the trust region size has reached a user-

prescribed lower boundary.

5.3 Results

In the following section we will present results of the sen-

sitivity optimisation. The section is divided into two parts.

In the first part we will concentrate on the influence of the

weight matrix W on the optimisation. We have tested differ-

ent weight assignments (uniform, binary and mixed) for W

Table 4. Different starting configurations with uniform weight

W = diag(1, . . .,1). Initial electrode configurations for case in (a):

r = [0.30.64.44.7]; for case in (b): r = [2.02.30.34.7]; for case in

(c): r = [0.34.682.052.35]. Successful optimisation of overall and

partial sensitivities, however, sensitivity ratio to optimised reference

(∗SROR) initial point shows that the results are not that good. Ob-

jective function values are shown unscaled.

Param. Gain ratio SROR∗

(a) Obj. func. : 4.0978× 10−7.

‖∇Z‖2 = 2.4403× 106

c11 1.2434 0.0849

c33 1.4205 0.1292

c44 5.3202 0.3028

c12 1.0125 0.2835

c13 1.0978 0.0855

ε33 1.3629 0.3185

e31 1.1556 0.0947

e33 1.8522 0.1520

ε11 2.8385 0.2002

e15 3.2481 0.3084

(b) Obj. func. : 1.5881× 10−9.

‖∇Z‖2 = 6.2967× 108

c11 0.9293 0.2234

c33 0.8531 0.3203

c44 1.1749 1.2426

c12 0.5684 1.1232

c13 0.8933 0.2433

ε33 0.6659 0.7925

e31 1.0677 0.1759

e33 0.9212 0.2585

ε11 1.2864 0.5104

e15 1.4586 0.9625

(c) Obj. func. : 5.7492× 10−8.

‖∇Z‖2 = 1.7394× 107

c11 1.1830 0.0068

c33 2.3508 0.0271

c44 4.3539 0.2084

c12 2.6384 0.0748

c13 1.3414 0.0073

ε33 2.5290 0.0877

e31 1.2714 0.0109

e33 2.4383 0.0705

ε11 2.0128 0.1069

e15 1.8070 0.0977

and we will show the effect it has on the optimisation. In the

second part we will demonstrate the influence of the initial

starting point, i.e. the initial electrode configurations, on the

optimisation procedure.
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Figure 7. Evaluation history for uniform weights, binary weights, and mixed weights. Initial values are 3.7283, 145.45821 and 7.2703;

optimised values are 0.6219, 84.3588 and 1.2397, respectively.
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Figure 8. Reference initial geometry in millimetres; r1 = 3.5;r2 =

3.8;r3 = 2.05;r4 = 3.55.

Influence of the weighting matrix

As an initial point for a first optimisation we used the elec-

trode configuration of a piezoceramic (see Fig. 8) we phys-

ically possess for measurement purposes. This ceramic con-

figuration has been developed in Unverzagt et al. (2015) us-

ing statistical methods. We have made the experience that

this configuration has exceptionally good properties with re-

gard to optimisation as opposed to other geometries tested.

We shall call this configuration the reference initial point.

For the optimisation process we used the uniform weights

W = diag(1, . . .,1). A summary of the results can be found in

Table 1 along with the final geometry. This shows an overall

increase in sensitivity ‖∇Z‖2 by more than 41 % and some

partial sensitivities were increased by up to 307 %. However,

not all partial sensitivities are very reactive towards changes

in the electrode configuration, i.e. the sensitivity gain regard-

ing e15 is −6.1 %.

As a reaction to this slight partial decrease in sensitivity

regarding e15 we chose to neglect the partial sensitivities of

those parameters which have a positive gain and focus on

e15 by setting the corresponding weights to 0 and 1, respec-

tively. Through this binary weight-matrix setting, the sensi-

tivity with regard to e15 was increased by 31 %. (see Table 2)

However, following our expectations, the sensitivities regard-

ing the other parameters have mainly decreased. The evalua-

tion histories can be seen in Fig. 7.

These two resulting geometries combined demonstrate the

feasibility of optimising the sensitivity with regard to all pa-

rameters, i.e. the two geometries show a combined increase

in sensitivity for all parameters.

We have experimented with different mixed weights (see

Table 3) with the aim to find a single globally optimal elec-

trode configuration, however, it has not been possible to find

such an electrode configuration. Although it is not globally

optimal in the sense discussed above, it is still possible to

use the configuration from Table 3 for the purpose of solving

an inverse problem in the material parameters since each pa-

rameter shows some (non-zero) sensitivity. Due to long com-

putational time for each optimisation process we did not try

to fine-tune the selection of the weight matrix.
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Multiple starting points

To examine the influence of different initial electrode config-

urations to the optimisation process we have chosen a wide

range of barely feasible configurations (see Tables 4a–c). All

these are optimised using uniform weights and the resulting

optimal is compared to the resulting optimal when starting

from the reference initial point above with uniform weights.

The resulting geometries are all further away from infeasibil-

ity than their initial configuration and locally optimal. These

three cases demonstrate that the problem of identifying a sin-

gle globally optimal geometry is hard, since there are many

locally optimal configurations.

6 Conclusions and future work

In contrast to Rautenberg et al. (2011) with the two elec-

trode approach we have shown that the sensitivity of the

impedance to various critical material parameters is non-zero

in all our ring electrode configurations with non-uniform ex-

citation. Therefore, parameter estimation techniques as in

Kaltenbacher et al. (2008) can be used with only the mea-

surements of the impedance required. This reduces the cost

of such investigations as the equipment required is compara-

tively cheap.

In order to systematically search for the maximal sensitiv-

ity in such a configuration we need to solve an optimisation

problem with the configuration radii as variables. Due to the

inflexibility of the precompiled solver we were forced to use

a derivative-free optimisation algorithm. More efficient al-

gorithms may be used if a more flexible finite-element code

with the possibility of influencing the internal computations

were available, so that one could compute derivatives simul-

taneously. However the results show clearly that there are

many locally optimal configurations.

We are investigating the possibility of better sensitiv-

ity analysis by utilising the simulation software CFS++

(Kaltenbacher, 2010) being developed at the TU Vienna.

Modifications in the software for this purpose are ongoing.

Besides sensitivities, these changes can be used to compute

adjoints and thus solve optimisation problems, including pa-

rameter estimation problems. Simulations with CFS++ will

also shed light on the dampening influence of the external

circuit if we increase the number of electrodes, thereby in-

creasing the complexity of the external circuit, in particular

the number of external impedances.

Apart from discrete sensitivities and adjoints, it is also pos-

sible to formulate the sensitivity and adjoint equations for

the model in function spaces and discretise these along with

the primal equations and solving them. Another avenue for

future development is to formulate the sensitivity maximi-

sation problem using shape and topology calculus instead of

parametrised rings. This would help generalise the configura-

tion of electrodes to ceramic geometries that are not radially

symmetric.
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