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Abstract. In this paper we study the effect of hexamethyldisiloxane (HMDSO) vapor on an SnO2-based gas

sensor (GGS 1330, UST Umweltsensortechnik GmbH, Geschwenda, Germany) in a temperature cycled oper-

ation (TCO). We show that HMDSO poisoning can be quantified at early stages (85 to 340 ppm×min) with

a resolution of ±85 ppm×min using TCO. This novel approach for sensor self-monitoring provides a simple

method for early detection of HMDSO poisoning. It is thereby possible to detect poisoning before the sensor

function is strongly impaired. In this paper we show that by using an appropriate normalization of the sensor

data, the stability of gas discrimination by linear discriminant analysis (LDA) can be improved, which in turn

facilitates a more accurate determination of the poisoning state by a hierarchical LDA discrimination.

For a specific temperature cycle and feature extraction approach, we show that identification of ethanol and

carbon monoxide is still possible after poisoning with 900 ppm×min HMDSO, i.e. a HMDSO poisoning dose

more than twice as high as required by DIN EN 50194-1.

1 Introduction

Metal oxide semiconductor (MOS) gas sensors are available

at relatively low cost and can detect a broad range of reduc-

ing and oxidizing gases with high sensitivity. They take ad-

vantage of a resistance change, usually in a granular metal

oxide. The resistance of the metal oxide semiconductor is

increased by the adsorption of oxygen at the interface be-

tween grains. The underlying mechanism is described in a

well-known model, which states that the oxygen creates a

depletion layer that acts as an energy barrier determining the

resistance of the material (Morrison, 1982; Kohl, 1989). Typ-

ically, in order to enhance the sensitivity of the sensors cata-

lysts, e.g., platinum or palladium, are added. For commercial

sensors only the base material is usually communicated; the

composition of the catalyst or other additives is normally not

published for obvious reasons.

Chemical sensors like MOS are prone to poisoning by

irreversible adsorption as the sensor principle involves a

direct chemical interaction between sensor and environ-

ment. Especially volatile siloxanes, e.g. hexamethyldisilox-

ane (HMDSO), are of concern as they can generate non-

volatile (siliceous) aggregates on reactive surfaces and its

catalysts (Ehrhardt et al., 1997). This has been shown to

change the sensor properties, such as sensitivity and selec-

tivity, which can be attributed to the changing density of ac-

tive oxygen adsorption sites at the sensor surface (Williams,

1999).

Organic silicones that emit volatile siloxane have many ap-

plications and can be found in almost any environment. Dura-

bility against poisoning is an important property of a sensor

system. Therefore, several standards, e.g. DIN EN 50194-1,

describe test methods for detectors of combustible gases in

domestic premises. DIN EN 50194-1 requires such detectors

to still operate properly after being exposed to 10± 3 ppm

HMDSO over a time period of 40 min, corresponding to a

dose of 400± 120 ppm×min.

The sensing properties derived from the interaction of

adsorbed oxygen with reducing or oxidizing gases depend

strongly on the temperature (Morrison, 1987). This depen-

dency can be exploited to enhance selectivity, leading to the

concept of temperature cycled operation (TCO) (Eicker et
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Figure 1. LDA plot showing the discrimination of different gases

and data from different poisoning states. The DFs were calculated

with data acquired before poisoning (solid symbols), and applied to

data from all poisoning states. The 24 features used for this LDA

are based on non-normalized conductance values.

al. 1981; Lalauze and Pijolat, 1984; Lee and Ready, 1999;

Gramm and Schütze, 2003), which is based on the evalua-

tion of conductance over time during a temperature profile.

In TCO, the sensor temperature is varied in a defined man-

ner, allowing for the study of the sensor’s dynamic resistance

properties during fast temperature changes as well as at de-

fined temperature levels. It has been shown that TCO can

increase selectivity decisively (Gramm and Schütze, 2003;

Meier et al., 2007; Leidinger et al., 2014). Furthermore, it

can also increase the sensitivity of MOS gas sensors dramat-

ically (Baur et al., 2015) as well as improve the stability of

MOX-based sensor systems (Schütze et al., 2004).

In a previous study, we examined the possibility

of detecting sensor impairments, such as poisoning by

HMDSO, by combining TCO with electrical impedance

spectroscopy (EIS) (Schüler et al., 2014). For this combina-

tion, a high-speed impedance spectroscope is required. We

developed an inexpensive system, which was successfully

tested for the detection of HMDSO poisoning (Schüler et al.,

2014). However, the hardware required for combined TCO–

EIS measurements is still quite costly, especially compared

to the one required for DC-resistance measurements in TCO

mode only.

2 Detecting HMDSO poisoning using TCO

We have previously presented a strategy to detect sensor poi-

soning, and examined how TCO and an appropriate data pro-

cessing approach can be used to enhance the stability of gas

discrimination and facilitate an accurate determination of the

poisoning state (Schüler et al., 2015). For the discrimina-

tion of different gases and the detection of poisoning, mul-

tivariate analysis of the conductance profile was employed.

Gas tests were performed with carbon monoxide (CO) and

ethanol at concentrations of a few ppm. Carbon monoxide

in the lower ppm range is a typical target gas for MOS gas

sensors in safety applications like fire detection (Kohl et al.,

2001), while ethanol is a commonly occurring interference

gas in many environments. Further experimental details are

given in Schüler et al., 2015.

We found that HMDSO poisoning has a strong influence

on the absolute conductance, while the shape of the conduc-

tance profile remains nearly unchanged and should therefore

provide a more stable signal than the absolute conductance

value. Thus, the influence of a normalization of the conduc-

tance profile to the discrimination of different gases was ex-

amined. For normalization, we perform a linear projection

of the conductance values of each temperature cycle, assign-

ing the cycle’s lowest conductance value to 0 and the highest

value to 1. To enable multivariate analysis of the sensor data,

it is then represented in a reduced data set consisting of the

parameters of linear fits that were calculated for twelve sepa-

rate sections of the temperature cycle. These parameters, i.e.,

mean value and slope for each section, represent the conduc-

tance profile, forming a data set (feature vector) of 24 nu-

merical values which is used for further analysis (Schüler et

al., 2015). The sections were selected manually to allow for

a good representation of the temperature cycle with a small

number of features, choosing longer sections for those parts

of the cycle where conductance changes rather slowly and

shorter sections where rapid changes occur (e.g. while the

sensor is heating up from 250 to 400 ◦C; see Fig. S1 in the

Supplement). An automated selection of these feature ranges

based on objective criteria would be desirable and is the sub-

ject of our current work. We use linear discriminant analysis

(LDA), a supervised algorithm for dimensionality reduction,

to discriminate between different gases or poisoning states,

respectively. LDA calculates a linear transformation (a set of

N -1 so-called discriminant functions) projecting the feature

vector into an N -1 dimensional space, with N being the num-

ber of classes to be discriminated (Backhaus et al., 2000).

It could be shown that ageing-induced drift has no signifi-

cant influence on the discrimination of the different gases,

for the test duration of 106 h (Schüler et al., 2015). However,

HMDSO exposure does induce a strong drift in the LDA pro-

jection results. The LDA plot shown in Fig. 1 discriminates

the different gas types using non-normalized data. The dis-

criminant functions (DFs) are calculated using only data ac-

quired before poisoning. These DFs are applied to data from

all poisoning states. There is a large drift in the LDA projec-

tion after subsequent HMDSO exposures, which would ob-

viously prevent reliable gas identification.

Figure 2 shows the result of an LDA of five classes rep-

resenting the different poisoning states, based on the same

data as in Fig. 1, i.e. containing all carbon monoxide and

ethanol exposures at both humidity values. The poisoning is

denoted by its cumulative HMDSO exposure. While a rough

estimation of the poisoning state seems possible, there is a
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Figure 2. LDA plot showing the discrimination of different poi-

soning states using data from gas exposures to carbon monoxide

(1/5 ppm), ethanol (1/5 ppm) and pure air, each at 40 and 60 % RH.

The 24 features used for this LDA are based on non-normalized

conductance values.

Figure 3. LDA plot showing the discrimination of different gases

using data from different poisoning states. The DFs were calculated

with data acquired before poisoning (solid symbols), and applied to

data from all poisoning states. The 24 features used for this LDA are

based on normalized conductance values, i.e. a linear projection of

all conductance values of a temperature cycle to the interval [0, 1].

significant overlap between classes. A leave-one-out cross-

validation using the k-nearest neighbors (k-NN) classifier

with k = 3 and the Euclidian distance yields a correct classi-

fication rate of 81.2 %; all misclassified points are attributed

to a neighboring class, i.e. the poisoning state is sometimes

over- or underestimated slightly (Schüler et al., 2015). The

HMDSO exposures can thus be estimated with a maximum

error of ±85 ppm×min.

Figure 4. LDA plot showing the discrimination of different poison-

ing states in pure air, both at 40 % RH as well as 60 % RH. The 24

features used for this LDA are based on non-normalized conduc-

tance values.

The LDA plot shown in Fig. 3 is based on normalized TCO

data; otherwise the same data as shown in Fig. 1 are used.

Again, the DFs are calculated using only data acquired be-

fore poisoning and are then applied to data from all poisoning

states. Although drift in the LDA projection after subsequent

HMDSO exposures is still evident and would prevent correct

classification of the gases, the data points acquired in air are

clearly separated from those in presence of reducing gases,

and the overall drift is distinctly smaller compared to Fig. 1.

Although the poisoning-induced sensor drift is strongly re-

duced by normalization, there still is an important effect of

HMDSO in the shown TCO mode. It is therefore desirable

to determine the degradation of the sensor accurately at early

stages in order to allow for replacement of the sensor before

its performance is no longer sufficient for the particular ap-

plication. To this end, we examine whether the detection of

poisoning in pure air is more accurate than for an arbitrary

gas exposure. Thus, Fig. 4 shows an LDA plot for data ac-

quired only in air (at both 40 and 60 % RH) for classifying

the five poisoning states. The classes still overlap slightly,

but 97.5 % are classified correctly compared to only 81.2 %

without prior identification of the ambient gas.

This result enables the two-step approach illustrated in

Fig. 5: in a first step, we can determine if the sensor is op-

erated in clean air or if a reducing gas is present. It has been

shown that this is possible regardless of the poisoning state

using normalized data (Fig. 3). In the second step, the poi-

soning state can be determined with high accuracy when the

sensor is operated in air. This enables a precise timing of

sensor replacement, and thus an optimal exploitation of the

sensor lifetime.
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Figure 5. Hierarchical evaluation strategy for the discrimination

of different poisoning states using LDA and data from pure air. A

discrimination of pure air is possible using the normalized data re-

gardless of the poisoning state (cf. Fig. 3). After determining that

the sensor is operated in pure air, an accurate determination of the

poisoning state is possible using non-normalized data (cf. Fig. 4).

According to DIN EN 50194-1, the sensor must withstand a poison-

ing dose of 400± 120 ppm×min, which implies that a detection at

such early stages of poisoning is sufficient to enable a replacement

before the minimum lifespan of the sensor is over.

3 Stable sensor operation independent of HMDSO

poisoning

Based on the results achieved for the poisoning detection,

we are aiming at a compensation of poisoning using TCO,

i.e. a stable identification of the target gases even for strong

poisoning of the sensor. To this end, another set of measure-

ments was carried out with two new sensors of the same

type (GGS 1330, UST Umweltsensortechnik GmbH). These

sensors were operated using a temperature cycle developed

for achieving high sensitivity (Baur et al., 2015). During

the experiment, they were exposed to up to 900 ppm×min

HMDSO in steps of 180 ppm×min. After each HMDSO ex-

posure, the reaction towards different test gases was exam-

ined, and gas discrimination was performed using LDA.

3.1 Experimental setup

For the following measurements, we used an automatic gas

mixing system similar to the one described in Schüler et

al. (2015). A schematic of the gas mixing system can be

found in the supplementary material. Both test gases (car-

bon monoxide and ethanol) are provided from test gas cylin-

ders. Gas flows are regulated with standard mass flow con-

trollers. Air humidification is realized in a glass bubbler at

ambient temperature (25 ◦C). HMDSO is provided from a

second glass bubbler, which is temperature-regulated by a

thermostat (LAUDA RE 307). An air flow of 0.5 mL min−1

is saturated with HMDSO vapor in the temperature-regulated

bubbler bottle, which was kept at a constant temperature of

15 ◦C. It is led to a second air stream (2000 mL min−1) for

dilution, resulting in an overall HMDSO concentration of

approx. 10 ppm. During the gas measurements, gravimetric

measurements of the HMDSO bottle were performed after

Figure 6. Temperature cycle for robust gas measurement and cor-

responding conductance profiles for 5 ppm ethanol, 5 ppm carbon

monoxide and pure air, respectively, all at 40 % RH and for differ-

ent poisoning states. The six areas shaded in gray with durations

of 1 s for the three sections at 450 ◦C and 5 s for the three sections

at lower temperatures indicate the sections of the cycle from which

features (mean value and slope) were extracted for the subsequent

LDA.

intervals between 24 and 25.5 h. The resulting concentrations

were consistently between 8.3 and 9.7 ppm, well within the

range defined by the DIN EN 501941 standard (10± 3 ppm).

Both sensors are exposed to the test gases as well as

HMDSO. During the gas profile, which is shown in detail

in the supplementary material, the sensors are exposed to

1 and 5 ppm of carbon monoxide and ethanol at 40 and

60 % RH, resulting in a total of eight gas exposures. Each

gas exposure lasts for 60 min, followed by 60 min in pure hu-

mid air. After the test gas profile the sensors are exposed to

HMDSO at approx. 9 ppm for 20 minutes in a total air flow

of 2.2 L min−1 with 3.6 % RH corresponding to an HMDSO

dose of 180 ppm×min. The gas profile is repeated 6 times

after an initial 12 h run-in period at 40 % RH resulting in six

poisoning levels.

3.2 Sensor operation

The sensors are operated with the temperature set point cy-

cle shown at the bottom of Fig. 6. The sensor temperature

is controlled using the resistance of the integrated platinum

heater. Sensor temperature control and data acquisition are

performed with the 3S-Toolbox (3S GmbH, Saarbrücken)

sensor operation hardware for UST GGS sensors and the log-

arithmic amplifier described by Baur et al., 2015. The current

through the sensing layer is measured every 20 ms at a con-

stant voltage of 250 mV using this logarithmic amplifier.
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Figure 7. Temperature cycle for robust gas measurement and corre-

sponding normalized conductance profiles for 5 ppm ethanol, 5 ppm

carbon monoxide and pure air, respectively, all at 40 % RH and for

different poisoning states. The six areas shaded in gray with dura-

tions of 1 s for the three sections at 450 ◦C and 5 s for the three sec-

tions at lower temperatures indicate the sections of the cycle from

which features (mean value and slope) were extracted for the sub-

sequent gas discrimination LDA.

3.3 Data analysis and results

The conductance values over the temperature cycle are

shown in Fig. 6 after different cumulative HMDSO expo-

sures in the presence of 5 ppm ethanol, 5 ppm carbon monox-

ide and pure air at 40 % RH. Again, the influence of the

HMDSO exposure on the absolute conductance is obvious

from the graphs, while the shape of the conductance profile

remains nearly unchanged. This observation indicates that

the relaxation processes observed after temperature changes

as described by Baur et al., 2015, are nearly unaffected by

HMDSO poisoning, as opposed to the steady state conduc-

tance. Note that the conductance values span a range of 3 or-

ders of magnitude from 10−7 to 10−4 S even for the small gas

concentrations tested in this study. This explains the require-

ment for the logarithmic amplifier used for data acquisition.

Figure 7 shows the influence of the normalization (lin-

ear projection of the conductance values of each tempera-

ture cycle to the interval [0, 1]) on the conductance profile.

The gray areas are used for feature extraction – the features

used in the LDAs are mean values and slopes from these

time intervals, representing the conductance during these in-

tervals in a feature vector of 12 numerical values per cycle.

The intervals used have a duration of 1 s during the high-

temperature plateaus at 450 ◦C and 5 s during the lower tem-

perature plateaus at 250, 275, 300 ◦C, respectively. After the

temperature change, a delay of 1.2 s at 450 ◦C and 7 s at the

lower set point temperatures was chosen to account for the

thermal time constant of the sensors. These intervals were

selected based on the expectation that the relaxation slopes

after temperature step changes represent gas specific features

Figure 8. LDA plot showing the discrimination of different gases

based on normalized data from different poisoning states of sen-

sor 1. The DFs were calculated with data acquired before poisoning

(solid symbols), and applied to data from all poisoning states. The

12 features used for this LDA are based on normalized conductance

values, i.e. a linear projection of all conductance values of a tem-

perature cycle to the interval [0, 1] (cf. Fig. 7).

as previously reported (Baumbach et al., 2004). Furthermore,

the approach presented by Baur et al., 2015, can be useful to

establish shorter temperature cycles containing the same in-

formation.

For the analysis of the measurement results we again use

LDA. The LDA is calculated to discriminate between the

three groups pure air, carbon monoxide and ethanol. Again,

concentrations of 1 and 5 ppm are represented in one group,

as well as humidities of 40 and 60 % RH, i.e. the target is

gas identification independent of RH and concentration. The

data acquired before poisoning of the sensors are used to cal-

culate the LDA DFs. These are applied to data from all poi-

soning steps resulting in the LDA plot shown in Fig. 8 for

sensor 1. While the projected data groups of the unpoisoned

sensor show more scatter than when using the larger feature

set (compare inset of Fig. 1), the sensor drift due to poisoning

is almost completely eliminated allowing 100 % correct clas-

sification of all gases even after an HMDSO poisoning dose

of up to 900 ppm×min, twice as much as demanded by DIN

EN 50194-1. If at all, there is only a slight drift remaining in

the LDA projection after subsequent HMDSO exposures.

For sensor 2, the corresponding result looks quite similar –

again, the different groups are clearly separated, and even af-

ter strong poisoning, no significant drift can be observed. The

features used for these LDAs are rather specific to the gas re-

action and are influenced only slightly by the poisoning. This

has been verified by attempting a discrimination of different

sensor poisoning states with these features: using the data

from Fig. 8, i.e. normalized data from the short sections at

the beginning of each temperature step, and taking into ac-
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Figure 9. LDA plot showing the discrimination of different poi-

soning states based on data acquired during air exposure. The 12

features used for this LDA are based on linear fits of the non-

normalized conductance values during the same intervals which

were also used for gas discrimination (cf. Fig. 6).

count data from all gas exposures, the resulting sensor state

classification (discriminating six linearly pitched states from

0 ppm×min HMDSO to 900 ppm×min HMDSO) was cor-

rect for less than half (48.8 %) of the measurements. Using

non-normalized data from the same sections, 56.6 % were

classified correctly. A reliable estimation of the sensor poi-

soning state is thus not possible, but these results confirm the

improved insensitivity towards poisoning achieved through

normalization. One might expect that normalization reduces

the possibility to quantify the gas concentrations. However,

LDAs carried out with feature sets from normalized and non-

normalized data (shown in the Supplement) disprove this as-

sumption – the concentrations are separated even better when

normalized data are used. The authors suggest that this fact

is based on the influence of the gas concentration on the re-

laxation processes and the resulting differences in the shape

of the conductance profile.

The LDA in Fig. 9 also uses non-normalized features, but

only from exposure to pure air, i.e., following a two-step ap-

proach as outlined in Fig. 5. With this approach the poisoning

state can be estimated, achieving an overall rate of 80.3 %

correctly classified sensor states. In comparison, when nor-

malized data are used for air exposures only, the correct clas-

sification rate is 70.4 %. It may seem surprising that there is

a relatively large gap along DF 1 between the poisoning state

at 180 ppm×min HMDSO and the one at 360 ppm×min

HMDSO. However, this is consistent with the result shown

in Fig. 4, which also shows a clear separation between the

poisoning state at 340 ppm×min HMDSO and the previ-

ous state. The evaluation of the non-normalized data used

in both cases also takes the baseline conductance into ac-

count for determination of the poisoning state. Previous ex-

periments on SnO2 sensors exposed to HMDSO have shown

a strongly nonlinear influence of HMDSO dose on the base-

line conductance. Williams and Pratt, 1998, have demon-

strated that the baseline conductance increases slowly at first,

and then faster with increasing HMDSO dose until it reaches

a maximum before finally decreasing again. They observed

a relatively sharp increase in conductance between approx.

167 and 500 ppm×min HMDSO (400/1200 s exposure at

25 ppm), similar to our results shown in Figs. 4 and 9 where

a strong shift is observed along DF1 between 255/340 and

180/360 ppm×min, respectively.

Because of the still relatively poor classification rate and

the fact that the poisoning states in this classification are fur-

ther apart compared to the discrimination in Fig. 4, it may

be useful to switch between the temperature cycle which en-

ables stable gas classification and one optimized for precise

detection of the poisoning state, e.g. the cycle used previ-

ously. The rough estimation of the sensor state which can be

provided by the temperature cycle for stable gas discrimina-

tion could then be used to determine at which time the al-

ternative temperature cycle enabling precise detection of the

sensor state should be applied.

4 Conclusion and outlook

Poisoning affects the conductance value of a GGS 1330 sen-

sor significantly at two different TCO modes, i.e., using two

different temperature cycles. However, the shape of the con-

ductance during both temperature cycles is less affected by

poisoning. As a consequence, normalization of the conduc-

tance profile provides signals that are significantly more sta-

ble with regard to poisoning. TCO enables monitoring of the

sensor’s poisoning state, allowing for quantification of the

HMDSO exposure dose with an accuracy of ±85 ppm×min

(Schüler et al., 2015). Furthermore, it was shown that dis-

crimination of pure air, carbon monoxide and ethanol inde-

pendent of the gas concentration and the RH value is possible

even after strong HMDSO exposure (900 ppm×min), using

TCO and a calibration method based only on data acquired

before poisoning. This shows that in addition to its benefits

for selectivity and sensitivity, TCO combined with suitable

data processing can compensate poisoning with an HMDSO

dose that is more than twice as high as required by the appli-

cable industry standard (DIN EN 501941).

In particular, the longer (600 s) temperature cycle used

here is certainly unsuitable for many practical applications

due to its duration. However, similar results can be achieved

using much shorter temperature cycles, which can be devel-

oped following the approach described by Baur et al. (2015).

In our ongoing work, we will therefore optimize the TCO

with regard to cycle duration while preserving the improve-

ment in selectivity and stability.
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The Supplement related to this article is available online

at doi:10.5194/jsss-4-305-2015-supplement.
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