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Abstract. Understanding the behaviour of mechanical systems can be facilitated and improved by employing
electro-mechanical analogies. These analogies enable the use of network analysis tools as well as purely analyt-
ical treatment of the mechanical system translated into an electric circuit. Recently, we developed a novel kind
of sensor set-up based on two coupled cantilever beams with matched resonance frequencies (co-resonant cou-
pling) and possible applications in magnetic force microscopy and cantilever magnetometry. In order to analyse
the sensor’s behaviour in detail, we describe it as an electric circuit model. Starting from a simplified coupled har-
monic oscillator model with neglected damping, we gradually increase the complexity of the system by adding
damping and interaction elements. For each stage, various features of the coupled system are discussed and com-
pared to measured data obtained with a co-resonant sensor. Furthermore, we show that the circuit model can be
used to derive sensor parameters which are essential for the evaluation of measured data. Finally, the much more
complex circuit representation of a bending beam is discussed, revealing that the simplified circuit model of a
coupled harmonic oscillator is a very good representation of the sensor system.

1 Introduction

Electro-mechanical analogies are a suitable tool to describe,
understand and analyse the behaviour of mechanical systems
(Firestone, 1933). Developed at the end of the 19th century
(Hähnle, 1931), two conventions have been introduced in or-
der to model the mechanical system as an electrical circuit.
One analogy is based on the principle of cause and effect
(Klotter, 1950), while the other analogy makes use of the
equivalence of the system’s differential equations. We will
use the latter one to describe the behaviour of a sensor con-
sisting of two coupled oscillating systems made of cantilever
beams because it has been shown that it is a suitable analogy
for these kinds of systems (Hähnle, 1931).

In the following, we will start with a short description of
the mechanical system which is translated into an electric
circuit model. From there we analyse the system’s behaviour
for different cases, i.e. without and with damping, and then

show a possible way to derive useful information to charac-
terize the sensor.

2 The sensor concept

Cantilever-based measurement techniques are widely spread,
for example for the determination of magnetic sample prop-
erties as in magnetic force microscopy or cantilever magne-
tometry (Gysin et al., 2011). They can furthermore be em-
ployed as mass sensors (Sökmen et al., 2010). The measure-
ment signal is obtained by either measuring the static deflec-
tion or the shift of the oscillation parameters, e.g. the reso-
nance frequency, of the cantilever. In all these cases the sensi-
tivity of the technique is mainly influenced by the cantilever’s
spring constant, which is closely related to its spatial dimen-
sions. Hence, decreasing sample size requires a downsizing
of the cantilever as well (Reiche et al., 2015a).
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The cantilever’s motion is usually detected by laser inter-
ferometry or laser deflection (Buchter et al., 2013; Lavenant
et al., 2014), which becomes increasingly difficult if the can-
tilever dimensions are reduced. Therefore, we have two con-
tradicting requirements: on the one hand the sensitivity needs
to be increased in order to measure weaker signals and on
the other hand maintaining the ease of detection. We are ad-
dressing these two aims simultaneously with a so-called co-
resonant sensor concept. This concept is based on two can-
tilever beams, one being of micrometre size and the other one
having nanometre size (at least for two out of three dimen-
sions), which are coupled in succession to each other. The co-
resonance is introduced by matching the individual eigenfre-
quencies of the otherwise very different cantilevers. Please
note that the sensor concept itself is of a general nature;
however, here we are applying it to two cantilever beams
and match the eigenfrequencies of the first flexural vibration
modes.

For our experiments we used a commercially available
atomic force microscopy (AFM) microcantilever and a car-
bon nanotube (CNT) as nanocantilever. Frequency matching
between the two subsystems has been achieved by adding
some mass to the free end of the nanocantilever. The fre-
quency matching introduces a very strong interplay between
the two subsystems, resulting in two main effects. First,
a significant amplitude amplification between micro- and
nanocantilever is observed, leading to very high oscillation
amplitudes of the nanocantilever (Li et al., 2003; Vidal-
Álvarez et al., 2015). Second, the strong interplay allows
for a determination of changes in the oscillatory state of
the coupled system which are due to interactions between
nanocantilever and environment, in the amplitude response
curve of the microcantilever. This allows for an easy detec-
tion of the oscillatory state of a nanocantilever, which has
been described as one of the challenges when employing
nanocantilevers as sensors (Philippi et al., 2011). Please note
that there are detection methods available for direct mea-
surement of a nanocantilever’s oscillation as for example
shown by Gil-Santos et al. (2010). These methods usually
require very sophisticated experimental set-ups, whereas our
co-resonantly coupled sensors are compatible with standard
set-ups that are used for excitation and detection of micro-
cantilever oscillations, e.g. atomic force microscopes.

The behaviour of the co-resonant sensor concept has been
studied thoroughly in terms of analysing the mechanical
model and the system’s differential equations (Reiche et al.,
2015a). Furthermore, we have already employed the sensor
for cantilever magnetometry measurements, which proved a
significant increase in sensitivity compared to magnetometry
experiments with similar magnetic samples (Körner et al.,
2015, 2016). However, the purely mechanical description of
the system is only one possibility. Another way of study-
ing the complex behaviour of the coupled system is given
by translating it in an electrical circuit. This facilitates the

Figure 1. Example of a coupled sensor consisting of a micro- and
a nanocantilever. The sensor is driven with a piezoelectric actuator,
and the oscillation is detected with laser deflection.

sensor characterization as well as the evaluation of measure-
ments by allowing the use of network analysis tools.

In the following, we will derive an electric circuit model
for the sensor and discuss its behaviour for various simplifi-
cations. Analytical expressions will be given, which are eval-
uated with the software Mathematica if necessary. In terms of
circuit analysis, the software LTspice is used. Furthermore,
we will compare the obtained results with experimental data
for a co-resonantly coupled sensor, which is discussed in de-
tail in Körner et al. (2016). The sensor’s properties are there-
fore given in Table 2. In addition, a scanning electron mi-
croscope picture of the sensor with the principle measure-
ment set-up is shown in Fig. 1. Please note that this is only
one representation of the co-resonant sensor concept and that
other geometries are possible as well, for example with the
nanocantilever being positioned perpendicular to the micro-
cantilever (Reiche et al., 2015b).

3 Electric circuit model of the co-resonant sensor

The sensor employs two cantilevers which are coupled in
succession as depicted in Fig. 1. It is well known that a one-
side clamped beam exhibits an infinite number of eigenfre-
quencies (Rossing and Fletcher, 2004). However, for using it
as a sensor element, it will only be driven at or close to one
of its eigenfrequencies, allowing for the description as a har-
monic oscillator (Rast et al., 2000). This assumption holds
for both of the cantilevers of the coupled system. In order
to take interactions between the sensor and its environment
into account, an additional spring k3 and damping element d3
are included, so that the mechanical model depicted in Fig. 2
can be derived. Furthermore, the sensor is excited to oscillate
through a piezoelectric actuator. It is not necessary to model
this actuator by an electric circuit itself in order to under-
stand the coupled system, but instead we will consider it as
a periodic displacement on the clamping point of the micro-
cantilever. This can be translated into a periodic force acting
on the mass m1 as it is depicted in Fig. 2.

Given the mechanical representation of the sensor, we can
derive the electric circuit model by employing the analogies
in Table 1 (Lenk et al., 2001). Please note that these analogies
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Figure 2. Mechanical model for the sensor depicted in Fig. 1.

Figure 3. Electric circuit model for a co-resonant cantilever sensor
whose mechanical representation is shown in Fig. 2.

are not the only ones possible but are commonly used to de-
scribe the behaviour of dynamically excited beams (Hähnle,
1931).

With these analogies, the structure of the mechanical rep-
resentation is preserved with only the masses being treated
specifically as one of their connection points always has to be
the frame, hence ground in the electric case (Klotter, 1950).
The resulting electric representation is depicted in Fig. 3.
Please note that the piezo actuator’s effect is that of a peri-
odic displacement of the microcantilever: A(t)= A0 sin(ωt),
which is recalculated into a periodic velocity by v0(t)=
∂A(t)/∂t = A0ωcos(ωt). Hence, the voltage source is on the
left-hand side of the circuit in Fig. 3.

The sensor concept itself is of a general nature, but in or-
der to show some quantitative evaluation of the following
calculations, the mechanical properties of one fabricated co-
resonant sensor are given in Table 2, as well as the corre-
sponding values for the electric elements. Since we do not
want to discuss the absolute values for the oscillation am-
plitude of the sensor, we did not use a conversion factor for
calculating the electric elements as it is suggested by others
(Ballas et al., 2009) but instead simply used the analogies in
Table 1. The values for the mechanical elements have been
determined from experiments (Körner et al., 2015), and the
mass mi of each cantilever beam equals the effective mass
given by the beam’s spring constant ki and its eigenfrequency
fi after the frequency matching process:

mi = ki/(2πfi)2. (1)

The damping constants di are derived from the mechanical
quality factor Qi by

di =
√
miki/Qi . (2)

Since the eigenfrequencies f1,2 and quality factors Q1,2
of the two cantilevers are needed for calculating the effective

Table 1. Analogies used for the conversion of mechanical systems
into an electric circuit.

Mechanical Electrical

Force F Current I
Velocity v Voltage U
Mass m Capacitor C ≡m
Spring k Inductor L≡ 1/k
Damper d Resistor R ≡ 1/d

Table 2. Values for the mechanical and electrical elements, the lat-
ter being calculated according to Table 1.

Element Mechanical Electrical

Eigenfrequency f1 (723 080± 1) Hz 723 080 Hz
Spring k1 (133.8± 8) Nm−1 0.0075 H
Q-factor Q1 (3390± 100) 3390
Mass m1 (6.5± 0.4)× 10−12 kg 6.5× 10−12 F
Damper d1 (8.7± 0.8)× 10−9 kg s−1 1.15× 108�

Eigenfrequency f2 (725 610± 1) Hz 725 610 Hz
Spring k2 (0.009± 0.005) Nm−1 116.74 H
Q-factor Q2 (450± 50) 450
Mass m2 (4.1± 2.7)× 10−16 kg 4.12× 10−16 F
Damper d2 (4.2± 3)× 10−12 kg s−1 2.4× 1011�

masses m1,2 and the damping d1,2 in the mechanical model,
they are also given in Table 2, although they are not needed
in the circuit model. The experimental determination of the
quality factor and damping has been done for each cantilever
before the frequency matching. Please note that the eigenfre-
quencies f1,2 are given for the matched state.

At this point it is useful to review the terms eigenfre-
quency and resonance frequency. The eigenfrequency is the
frequency where the maximum amplitude occurs for an un-
damped driven harmonic oscillator. For the case of a damped
driven harmonic oscillator the frequency where the maxi-
mum amplitude occurs is termed resonance frequency (Tipler
and Mosca, 2015, p. 440). Please note that this is only one
possible distinction and that for systems with low damping
these terms are commonly used interchangeably. Through-
out this paper we will be using the term resonance frequency
for all discussions related to the coupled system. The term
eigenfrequency is only used when talking about the single
cantilevers in order to distinguish their properties from the
coupled system. In addition, frequency values are given for
the experimental case and all numerical information, whereas
all mathematical expressions include the angular frequency
ω, related to the frequency f by ω = 2πf .
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Figure 4. Simplified circuit model from Fig. 3 without damping
and external interaction, i.e. di = 0,k3 = 0.

4 Circuit model without damping and external
interaction

The simplest case we will consider is the circuit from Fig. 3
where we neglect any damping, i.e. d1 = d2 = d3 = 0, and
the external interaction k3 = 0, therefore reducing it to the
rather simple structure shown in Fig. 4.

The quantities of interest are the velocities v1 and v2, i.e.
the voltages over the capacitors, as the ratios v1/v0 and v2/v0
correspond directly to the amplitudes of the oscillating can-
tilever beams in the mechanical system. 1 The expressions
for v1 and v2 can be found analytically by applying the rule
for voltage division. To shorten the expressions the symbol ||
is used to represent a parallel circuit:

v1
v0
=

1
jωm1

‖

(
1

jωm2
+ jω 1

k2

)
1

jωm1
‖

(
1

jωm2
+ jω 1

k2

)
+ jω 1

k1

(3)

v2
v0
=

1

1−ω2
(
m2
k2

) v1
v0
. (4)

Rearranging and using the relation ω2
i = ki/mi, i ∈ [1,2]

yields

A1(ω)=
∣∣∣∣v1
v0

∣∣∣∣= v1

v0
=

1

1−
(
ω
ω1

)2
−
m2
m1
·

(ω/ω1)2

1−(ω/ω2)2

(5)

A2(ω)=
∣∣∣∣v2
v0

∣∣∣∣= v2

v0
=

1

1−
(
ω
ω2

)2 ·
v1

v0
. (6)

These expressions are evaluated for the numerical values
given in Table 2, and the resulting curves are depicted in
Fig. 5. The coupled system exhibits two distinct resonances
ωa and ωb due to the closely matched eigenfrequencies ω1
and ω2 of the two cantilevers. However, since no damping is
considered, the amplitudes reach infinite values at the reso-
nance frequencies ωa and ωb, which is not the case for a real
system. Nevertheless, it is possible to calculate these poles of

1Underscores will be used throughout the text to indicate vari-
ables with complex values, and variables without underscores de-
note the magnitude.

Figure 5. Amplitude curves of both cantilevers of the circuit
from Fig. 4 without damping and external interaction, according to
Eqs. (5) and (6).

the amplitude curves by evaluating the denominator for the
two expressions in Eqs. (5) and (6). In both cases we arrive
at the same formula, giving the two resonance frequencies
of the coupled system. We will denote them with ωa and ωb
(or fa and fb) in the following to avoid confusion with the
eigenfrequencies ω1 and ω2 (or f1 and f2) of the individual
subsystems. The poles are given by

ωa,b =±

√√√√B1±

√
B2

1 − 4B2

2B2
(7)

B1 =
m2

m1ω
2
1
+

1
ω2

2
+

1
ω2

1
(8)

B2 =
1

ω2
1ω

2
2
. (9)

Please note that the complete solution for ωa,b also con-
tains negative frequencies, but they are not considered since
they do not correspond to actual frequency values. The com-
parison of the coupled system’s resonance frequencies ωa,b
to the eigenfrequencies ω1,2 of the subsystems shows that the
coupled frequencies are further apart than the eigenfrequen-
cies. Furthermore, comparing the calculated values to mea-
surements (see Table 3), we observe that the values agree
within the margins of uncertainty.
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Table 3. Comparison of calculated and measured resonance fre-
quencies fa and fb of the coupled system represented by the circuit
in Fig. 4.

Calculated Measured

fa (721.2± 0.6) kHz (720.68± 0.01) kHz
fb (727.5± 0.7) kHz (728.05± 0.07) kHz

Figure 6. Bode plots for both subsystems of Fig. 4 without damping
and external interaction obtained with the circuit analysis software
LTspice.

The electric circuit given in Fig. 4 has also been evaluated
with LTspice in order to obtain a Bode plot (Dorf and Svo-
boda, 2010), which is shown in Fig. 6 for A1 and A2. In this
form of representation, A1(ω), i.e. the amplitude response
curve for the microcantilever, shows a so-called antireso-
nance at the eigenfrequency ω2 of the nanocantilever. At
an antiresonance point, the oscillation of the microcantilever
would go to zero due to the presence of the nanocantilever
(Joe et al., 2006). This behaviour is well known and used in
vibration damping (Axisa, 2004). For a more detailed discus-
sion on antiresonance please refer to Belbasi et al. (2014).

With this simplified circuit model it is possible to obtain
the resonance frequencies as well as find typical features of
the coupled system like frequency shifting compared to the
eigenfrequencies of the subsystems and antiresonance be-
haviour.

Figure 7. Circuit model with damping and without external inter-
action, (a) complete, (b) with parallel branches combined into com-
plex impedances Z1,2.

5 Circuit model with damping and without external
interaction

5.1 Amplitude and phase relations

The model so far does not represent the finite amplitudes of
the resonance peaks; therefore, the expected amplitude am-
plification between the nano- and the microcantilever can-
not be studied. Hence, we will include the damping in this
section and derive an analytical expression for this case. We
again consider a coupled system without external interaction,
i.e. d3 = 0 and k3 = 0, but include d1 and d2. Furthermore,
we will be using the relations ni = 1/ki and ri = 1/di, i ∈
[1,2] to facilitate the resulting expressions, leading to the
circuit depicted in Fig. 7a. Adding the two resistors results
in two new parallel branches of the circuit. In order to facili-
tate the analytical derivation, we combine each of the paral-
lel branches in a complex impedance Z1 and Z2 as shown in
Fig. 7b. The resulting expressions become

Zi =
jωniri

ri + jωni
. (10)
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With that we can again apply the rule for voltage division
to derive expressions for v1 and v2:

v1
v0
=
R1
N + jX

1
N

RD + jXD
(11)

v2
v0
=
R2
N + jX

2
N

RD + jXD
(12)

with the following substitutions

R1
N = r1r2�2−ω

2n1n2 (13)

R2
N = r1r2−ω

2n1n2 (14)

RD = r1r2

[
�2−

(
ω

ω1

)2(
m2

m1
+�2

)]
−ω2n1n2 (15)

X1
N = ω [r1n2+ r2n1�2] (16)

X2
N = ω [n1r2+ n2r1] (17)

XD = ω

[
r1n2�1+ r2n1�2− r1n1

(
ω

ω2

)2
]

(18)

�1 = 1−
(
ω

ω1

)2

(19)

�2 = 1−
(
ω

ω2

)2

. (20)

This time the expressions are complex, but by separating
the real and imaginary parts of numerator and denominator
and applying the rules for complex numbers (Bronstein et al.,
2005) it is possible to obtain the amplitude Ai(ω)=

∣∣vi/v0
∣∣

and phase relations for both expressions.

A1(ω)=
∣∣∣∣v1
v0

∣∣∣∣= (21)√(
R1
NRD +X

1
NXD

)2
+
(
X1
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1
NXD

)2
R2
D +X

2
D

A2(ω)=
∣∣∣∣v2
v0

∣∣∣∣= (22)√(
R2
NRD +X

2
NXD

)2
+
(
X2
NRD −R

2
NXD

)2
R2
D +X

2
D

tan(81(ω))=

(
X1
NRD −R

1
NXD

R1
NRD +X

1
NXD

)
81 ∈ (−π,0) (23)

tan(82(ω))=

(
X2
NRD −R

2
NXD

R2
NRD +X

2
NXD

)
82 ∈ (−2π,0) (24)

In this work we focus on the amplitude expressions since
the amplitude response is used as the main measurement sig-
nal in our experiments. In case the phase of the oscillation
becomes important, for example if a phase-locked loop is
used to track the change of the resonance frequencies of the

Figure 8. Amplitude curves obtained with Eqs. (21) and (22) for
both subsystems of the circuit model with damping and without ex-
ternal interaction from Fig. 7.

Table 4. Calculated resonance frequencies fa,b of the coupled sys-
tem for both subsystems obtained with the circuit model of Fig. 7
that includes damping. Furthermore the frequency fmin, which cor-
responds to the amplitude minimum between the two resonance
peaks is given.

Calculation based on

A1(ω) A2(ω)

fa (721.2± 0.4) kHz (721.2± 0.4) kHz
fb (727.6± 0.4) kHz (727.4± 0.4) kHz
fmin (725.5± 0.4) kHz (724.4± 0.4) kHz

coupled system, the corresponding phase relations are given
for completeness. With these phase relations, one is able to
conduct a similar discussion as follows for the amplitude ex-
pressions. Plotting Eqs. (21) and (22) with the parameters of
the real sensor gives the amplitude curves depicted in Fig. 8.
With the resonant amplitudes reaching finite values it is pos-
sible to study the behaviour of the coupled system in more
detail.

First, the two resonance frequencies ωa and ωb are ob-
tained by setting the derivatives of Eqs. (21) and (22) to zero.
The software Mathematica has been used for this and all fol-
lowing calculations in this work. The results for the reso-
nance frequencies for both peaks and evaluation of A1(ω)
and A2(ω) are given in Table 4. They barely differ from the
ones obtained with the simplified model without damping.
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Figure 9. (a) Amplitude amplification factor for both resonance
peaks and (b) resonance frequencies of the coupled system with
varying eigenfrequency ω2 = 2πf2 of the nanocantilever.

Furthermore, it is also possible to find the frequency fmin
value for the minimum amplitude in between the two reso-
nance peaks. In case of A1(ω), i.e. the microcantilever, this
frequency again corresponds to the antiresonance state of its
oscillation. However, due to the damping, the amplitude does
not go to zero anymore (Belbasi et al., 2014) but the effect is
merely an asymmetric shape of the resonance curve.

5.2 Amplitude amplification

In addition, it is possible to study the amplitude ratio between
the amplitudes of nano- and microcantilever, which we will
term amplitude amplification in the following. The amplitude
of the nanocantilever is increased compared to that of the mi-
crocantilever due to the co-resonant coupling; the amplitude
amplification factor 3= A2/A1 can be obtained, which is a
function of the distance of the subsystem’s eigenfrequencies.
In general, one could simply calculate A2(ω)/A1(ω) for all
ω. But in that case, the maximum amplitude amplification
would occur close to the antiresonance frequency of subsys-
tem 1 where its amplitude A1 is minimal. From the exper-
imental point of view, only the amplitude amplification at
the resonance peaks of the microcantilever, i.e. A1(ωa) and
A1(ωb), is of interest since this would be measured for a sen-
sor. Hence, we will discuss the amplification accordingly.

A general approach to find the amplitude amplification
factor is to determine the resonance frequencies ωa and
ωb of the coupled system, which then leads to two am-
plification factors, namely 3a1 = A2(ωa)/A1(ωa) and 3b1 =
A2(ωb)/A1(ωb) of the two resonance peaks of subsystem 1.
These calculations have been carried out for ω1 = constant

Figure 10. Bode plot of amplitude curves for both cantilevers of
the coupled system from Fig. 7 for varying ω2 = 2πf2.

and varying ω2 for the values of the sensor given in Ta-
ble 2. The eigenfrequency ω2 of the nanocantilever has been
changed from 2π×710 to 2π×740 kHz. The resulting ampli-
tude amplification curve for both resonance peaks of subsys-
tem 1 is depicted in Fig. 9a as well as the dependence ωa(ω2)
and ωb(ω2) in Fig. 9b. Please note that ωa always denotes the
lower resonance frequency, i.e. the left-hand side peak and
ωb the resonance peak at the higher frequency. From Fig. 9b
it is obvious that the two resonance frequencies are approach-
ing each other and get closest when ω2 ≈ ω1 but then di-
verge again without ever crossing. This behaviour is called
“avoided crossing” and is well known from discussions of
coupled harmonic oscillator models describing quantum sys-
tems (Novotny, 2010; Rubbmark et al., 1981).

When looking at Fig. 9a, one has to keep in mind the prac-
tical relevance of the amplitudes of the two resonance peaks
in order to understand the amplification induced by the cou-
pled system. To clarify this point, Fig. 10 depicts amplitude
curves A1(ω) and A2(ω) for several values of ω2. From these
we see that for the cases ω2 < ω1 and ω2 > ω1 (dashed lines
in Fig. 10) the resonance peak close to the eigenfrequency
ω2 of the nanocantilever in A1 is very small, whereas in
A2 it is significant since A2 describes the amplitude of the
nanocantilever. Hence, the amplitude amplification would be
very high for this comparatively small peak, corresponding to
the upper left branch in Fig. 9a. In terms of measuring, this is
not sensible since one would usually track the peak with the

www.j-sens-sens-syst.net/5/245/2016/ J. Sens. Sens. Syst., 5, 245–259, 2016
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Figure 11. Amplification factor for the higher resonance peak of
the coupled system for varying eigenfrequency ω2 = 2πf2 of the
nanocantilever. The eigenfrequency ω1 = 2πf1 of the microcan-
tilever is kept constant and is indicated by the vertical line.

higher amplitude and, due to noise of the measurement set-
up, the smaller peak might not even be visible. Therefore,
from an experimental point of view, only the amplitude am-
plification factor represented by the lower left branch of the
curve in the diagram in Fig. 9a is considered. The same rea-
soning can be applied for the two branches on the right-hand
side of Fig. 9a. Conclusively, when tracking the resonance
peak with the higher amplitude, one can obtain the amplitude
amplification factor depending on ω2 depicted in Fig. 11. The
curve has been cut off for an amplification higher than 110
since – for very close eigenfrequencies ω1 and ω2 of the two
subsystems – the two resonance peaks reach a similar ampli-
tude.

5.3 Analytical determination of the eigenfrequency of
the nanocantilever

In order to describe the coupled systems’ behaviour with the
circuit model, the properties of the subsystems have to be
known. They can be determined from their geometric and
material properties as well as from measurements. However,
it is particularly difficult to determine the eigenfrequency ω2
of the nanocantilever, and during sensor production it is only
possible to make a rough estimate of it. Nevertheless, in or-
der to use the sensor for quantitative measurements, it is
necessary to know the eigenfrequencies ω1 and ω2 of both
subsystems as accurate as possible. By using the above for-
mula describing the amplitude curve of the coupled system
measured at the microcantilever Eq. (21), the eigenfrequency
ω2 = 2πf2 of the nanocantilever can be estimated rather ac-
curately. Besides the properties of the two cantilevers (spring
constant, damping, effective mass), the eigenfrequency ω1 of
the microcantilever – as well as one of the resonance fre-
quencies of the coupled system ωa or ωb – is required. These
frequencies can easily be obtained from measurements.

Applying these values in Eq. (21) for the amplitude re-
sponse curve of the microcantilever, the amplitude A1 can
be described dependent on the eigenfrequency ω2 of the
nanocantilever instead of the frequency ω, which is fixed to

ωa or ωb. The frequency where the maximum of A1 (ω2) oc-
curs corresponds to the eigenfrequency ω2 of the nanocan-
tilever. The maximum may be obtained numerically or an-
alytically, in the latter case by setting the derivative of the
amplitude curve A1 (ω2) to zero and calculating the fre-
quencies for which the second derivative of the amplitude
curve is negative. The numerical values of our sensor demon-
strate the applicability of this approach. The eigenfrequency
of the nanocantilever has been determined experimentally
to be f2 ≈ (726 250± 100) Hz right after sensor fabrication.
Handling the sensor, which included exposure to air and
the transfer into another machine for the magnetic measure-
ments, is expected to alter the eigenfrequency ω2, which is
proved by a change of the coupled system’s resonance fre-
quencies ωa and ωb as well. Therefore, the above expressions
have been used to determine the nanocantilever’s eigenfre-
quency and f2 ≈ (725 610± 500) Hz is obtained, which is in
good agreement with the expected decrease of the eigenfre-
quency due to exposure to air (Botman et al., 2008).

6 Circuit model with damping and external
interaction

The most general description of the coupled sensor is the one
depicted in Fig. 3 with all elements including the external in-
teraction modelled by the spring k3 and the damping element
d3. It is possible to derive analytical expressions for v1/v0
and v2/v0 by the following steps.

First, parallel branches are combined into complex
impedances to simplify the circuit. As depicted in Fig. 3, the
elements m2, k3 and d3 lie in parallel with the same voltage,
i.e. velocity, v2 over them. Hence, these elements are com-
bined into the impedance Z3, advantageously written in the
Euler form for complex numbers, i.e. Z3 = Z3 ·e

jϕ3 . Further-
more, using n3 = 1/k3 and r3 = 1/d3 gives

Z3 =

√(
ω2n2

3r3
)2
+
(
ωn3r

2
3
(
1−ω2m2n3

))2(
r3−ω2m2n3r3

)2
+ (ωn3)2

(25)

ϕ3 = arctan

(
r3
(
1−ω2m2n3

)
ωn3

)
. (26)

The same is done for the parallel branches of r1,n1 and
r2,n2, now represented by the complex impedancesZi = Zi ·
ejϕi , i ∈ [1,2]:

Zi =

√(
ω2n2

i ri
)2
+
(
ωnir

2
i

)2
r2
i + (ωni)2 (27)

ϕi = arctan
(
ri

ωni

)
. (28)

With these transformations we get the circuit depicted in
Fig. 12. In a next step, the sum of the impedances Z23 =
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Figure 12. Simplified circuit model for Fig. 3 to derive analytical
expressions for v1 and v2 in case of a given external interaction
k3,d3 at the nanocantilever.

Z2+Z3 is calculated:

Z23 = (29)√√√√
ω4

(
n2

2r2

N2
+
n2

3r3

N3

)2

+ω2

(
n2r

2
2

N2
+
n3r

2
3 (1−ωm2n3)

N3

)2

,

ϕZ23 = arctan

(
n2r

2
2N3+ n3r

2
3N2

(
1−ω2m2n3

)
ω
(
n2

2r2N3+ n
2
3r3N2

) )
(30)

with

N2 = r
2
2 + (ωn2)2 and (31)

N3 =
(
r3−ω

2m2n3r3

)2
+ (ωn3)2. (32)

In order to express all elements of the circuit in Euler
form so that the following calculations will be facilitated,
the capacitor m1 will also be described by an impedance
Zm = Zm · e

jϕm :

Zm =
1
ωm1
; ϕm =

π

2
. (33)

With the above definitions and combinations it is now pos-
sible to give expressions for v1/v0 and v2/v0.

A1 =
v1
v0
=

Zm ‖ Z

Zm ‖ Z+Z1
=

1
Re+ j · Im

(34)

Re = 1+
Z1

Z
cos(ϕ1−ϕz)+

Z1

Zm
cos(ϕ1−ϕm) (35)

Im= Z1

(
1
Z

sin(ϕ1−ϕz)+
1
Zm

sin(ϕ1−ϕm)
)

(36)

A2 =
v2
v0
=

Z3
Z3+Z2

·
v1
v0
=
Z3

Z
ej (ϕ3−ϕz) ·

v1
v0

(37)

These expressions can easily be separated into real and
imaginary part to obtain magnitude and phase. Figure 13
shows the exemplary amplitude response curves

∣∣A1(ω)
∣∣ and∣∣A2(ω)

∣∣ for k3 = 0 and k3 = 2× 10−5 Nm−1 (in both cases
d3 = 0), which demonstrate the change in the amplitude re-
sponse curves due to an external influence. It is obvious that

Figure 13. Amplitude curves for both cantilevers for the circuit
model in Fig. 12 with and without an external interaction, repre-
sented by the spring k3 and d3 = 0.

the external interaction leads to a shift of the coupled sys-
tem’s resonance frequencies ωa,b as well as a change of the
resonance amplitudes.

In the following discussion we will only consider the addi-
tional spring k3 as external interaction and neglect the damp-
ing element d3, since this will enable a comparison between
simulation results and exemplary measurements carried out
with the sensor considered here.

7 Effective sensor properties

In the last section, the frequency shift for both resonance
peaks of the coupled system caused by an additional spring
k3 is discussed and exemplary resonance curves are depicted
in Fig. 13. However, the frequency shifts of both peaks are
not equal: the one with the smaller amplitude exhibits a
stronger frequency shift than the peak with the larger am-
plitude. This behaviour can be explained by a closer look at
the properties of the coupled system. As already suggested
by Torres et al. (2007), the properties of a coupled sensor
system are a mixture of both subsystems’ features. The dif-
fering frequency shifts of the resonance peaks furthermore
indicate that the underlying sensor properties are different
for each peak. Hence, the peak with the smaller amplitude is
more strongly dominated by the nanocantilever than the peak
with the higher amplitude. In the following, we introduce a
single-harmonic-oscillator description for each of the reso-
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Figure 14. Transformation of the circuit model without external
interaction (a) into a complex impedance Z: (b) conversion of r–n-
parallel in series circuit, (c) combination of parallel branches into a
complex impedance Zp, (d) summation of R1, X1 and Zp to Z.

nance peaks ωa and ωb to take the different behaviour into
account and to obtain effective sensor properties describing
the respective resonance peak. A corresponding derivation
based on the circuit model is carried out, and the resulting
effective sensor properties are verified by experimental data
in Sect. 8, demonstrating the applicability of the approach.
The knowledge of the effective sensor properties is not only
a theoretical consideration but crucial for the practical eval-
uation of measured data. For example, in many applications
it is important to know the effective spring constant describ-
ing each resonance peak in order to gain reliable informa-
tion from measured data (Sader et al., 2012; Cleveland et al.,
1993). Furthermore, gaining insight in the coupled sensor’s
effective properties allows for an optimal design process be-
cause the sensor’s behaviour can be predicted and optimized
more easily before actual fabrication.

The approach of determining the effective sensor prop-
erties is based on a series/parallel conversion of the circuit
model in such a way that the coupled system is expressed as a
complex impedance Z as depicted in Fig. 14d. This complex
impedance is then compared to the total impedance Zp of the
circuit model in Fig. 15b, which describes a single equivalent
cantilever. In order to facilitate the necessary determination
of real and imaginary part of this total impedance, the equiv-
alent cantilever’s circuit representation is transformed into a

Figure 15. (a) Equivalent series resonance circuit for the circuit
from Fig. 14 used to determine the effective properties of each reso-
nance peak of the coupled system and (b) circuit model representing
an effective cantilever.

series resonance circuit, with the total impedance Zr , by an-
other series/parallel conversion (Fig. 15a). The elements of
this circuit representation correspond to the mechanical ele-
ments as follows: resistor→ inverse effective damping con-
stant, inductance→ inverse effective spring constant, capac-
itor→ total effective mass. The transformation is only valid
for one resonance frequency if numerical values are calcu-
lated; furthermore, it has to preserve the total impedance of
the circuit as well as the phase relations for current and volt-
age (Weißgerber, 2009).

The transformation steps are depicted in Fig. 14, where
first the parallel elements r1, n1 and r2, n2 are converted into
series elements R1, X1 and R2, X2 respectively:

R1 =
r1(ωn1)2

r2
1 + (ωn1)2 ; X1 =

n1r
2
1

r2
1 + (ωn1)2 ; (38)

R2 =
r2(ωn2)2

r2
2 + (ωn2)2 ; X2 =

n2r
2
2

r2
2 + (ωn2)2 . (39)

Further transformation of the resulting circuit leads to a
total complex impedance Z given by

Z = Re
{
Z
}
+ j · Im

{
Z
}

(40)

Re
{
Z
}
= R1+

R2 (1−ωm1B +ωm1R2B)

(1−ωm1B)2
+ (ωm1R2)2 (41)

Im
{
Z
}
=X1+

B (1−ωm1B)−ωm1R
2
2

(1−ωm1B)2
+ (ωm1R2)2 (42)

B =X2−
1
ωm2

. (43)

This total impedance consists of a real and an imaginary
part which can be compared to their respective counterparts
of the series resonance circuit depicted in Fig. 15a consisting
of the resistor R, the inductor L and the capacitor C with the
total impedance Zr :

Zr = R+ j

(
ωL−

1
ωC

)
. (44)

The comparison yields R and an infinite number of so-
lutions for L and C. Hence, in order to determine the cor-
rect solution, another boundary condition is necessary which
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can be obtained with the following considerations: for a sin-
gle cantilever it is well known that a force gradient, which
is small and sufficiently linear over a vibration period, can
be translated into an interaction spring constant k3 (Giessibl,
2003) as it is also considered in the circuit model in Fig. 3.
This interaction spring constant will induce a frequency shift
of the cantilever’s eigenfrequency. In case of a small inter-
action, this frequency shift 1ω is related to the interaction
spring constant k3 and the cantilever’s spring constant k by
the following expression (Giessibl, 2003):

1ω

ω
≈
k3

2k
. (45)

This formula can also be applied for the coupled system
when each resonance peak is described as a single cantilever
with effective properties. Hence, k has to be substituted by
kaeff or kbeff, and if the additional spring k3 is smaller than
the smallest spring constant in the coupled system (Bhushan,
2010).

As the discussion in Sect. 6 showed, the amplitude curve
of the coupled system with external interaction can be ob-
tained from the circuit model. The determination of the reso-
nance frequencies ωa and ωb of the coupled system with and
without external interaction can either be done analytically
or by means of a circuit analysis software. These calculations
give the necessary frequency shifts1ωa,b for both resonance
peaks for a known interaction spring constant k3, as well as
the resonance frequencies in case of neglected external in-
teraction ωa,b. By rearranging Eq. (45), the effective spring
constant ka,beff for each resonance peak can be determined. Ac-
cording to the analogies from Table 1, L= 1/keff. If the ca-
pacitance C (which corresponds to the effective mass) of the
equivalent circuit is required, it can be determined by

C =
1

ω
(
ωL− Im

{
Z
}) . (46)

With these considerations, all elements of the series res-
onance circuit are defined. Hence, another series/parallel
transformation of the resistor and inductor is carried out to
obtain a circuit which is structurally equivalent to that of a
cantilever, i.e. with inductor and resistor in parallel as shown
in Fig. 15b. Both resonance peaks of the coupled system can
be described by this equivalent cantilever with effective prop-
erties by employing either one of the resonance frequencies
ωa and ωb. The calculations have been carried out for the ex-
emplary sensor, and the numerical values for the electrical as
well as the mechanical elements are summarized in Table 5.
As these values show, the effective parameters for the peaks
differ due to a different influence of the subsystems. Please
note that Ca,b and subsequently ma,b have been calculated
according to Eq. (46).

As the numerical values in the next section indicate, it is
a valid approach to represent each of the coupled system’s

Table 5. Calculated values for the equivalent circuit model for both
resonance peaks of the coupled system in Fig. 15b based on the
properties given in Table 2.

Electrical Mechanical

Left peak fa
La = 35.71 H kaeff = 0.028 Nm−1

Ca = 1.37× 10−15 F ma = 1.37× 10−15 kg
Qa = 1170 Qa = 1170
Ra = 1.89× 1011 � da = 5.29× 10−12 kg s−1

Right peak fb
Lb = 83.33 H kbeff = 0.012 Nm−1

Cb = 5.73× 10−16 F mb = 5.73× 10−16 kg
Qb = 590 Qb = 590
Rb = 2.25× 1011 � db = 4.45× 10−12 kg s−1

resonance peaks by an equivalent single cantilever, hence
a single harmonic oscillator. With this in mind, there is an
alternative to calculate ma,b by employing the expression
ω2

0 = keff/meff for the eigenfrequency ω0 of the harmonic
oscillator. By rearranging it and using the effective spring
constant ka,beff and resonance frequency ωa,b for the respec-
tive resonance peak, the effective mass of the equivalent
harmonic oscillator representation can be obtained as well.
However, this still requires the determination of the effective
spring constant beforehand.

8 Experimental verification of the circuit model

In the experiment, the nanocantilever was made of an iron-
filled carbon nanotube (FeCNT). Therefore, the external in-
teraction was given by a magnetostatic interaction between
the iron nanowire and a magnetic field introduced by a per-
manent magnet (Körner et al., 2016). The magnetic field can
be estimated rather accurately by 2-D finite element sim-
ulation of the magnet with the software package FEMM
(Meeker, 2015), leading to an interaction spring constant of
k3 ≈ (−2± 0.5)× 10−5 Nm−1 for a magnetic field of ap-
proximately −400 mT (Körner et al., 2016). Whereas the
frequency shift of the sensor has been measured in differ-
ent magnetic field strengths in the experiment, we will only
choose one value as an example here. The complete mea-
sured data and further experimental details are discussed in
another publication (Körner et al., 2016).

The value for k3 has already been used for the exemplary
calculation depicted in Fig. 13. Comparing this to the micro-
cantilever’s measured amplitude response curve depicted in
Fig. 16, we find a good qualitative agreement. The values for
the frequency shift induced by the external interaction are
given in Table 6. Here we also find a good agreement, es-
pecially for the higher left resonance peak. The rather large
difference of the frequency shift values for the smaller peak
can be attributed to the measurement noise and the increased
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Table 6. Comparison of analytically derived and measured frequency shift values for an external interaction of k3 ≈ (−2±0.5)×10−5 Nm−1.

Measurement Circuit model Equivalent model

Left peak 1fa (−278± 20) Hz (−257± 51) Hz (−258± 52) Hz
Right peak 1fb (−761± 166) Hz (−617± 123) Hz (−620± 124) Hz

Figure 16. Amplitude response curve of the coupled system mea-
sured with laser deflection at the microcantilever under high vacuum
(≈ 10−5 mbar) and at room temperature.

width of this peak, making it difficult to determine its actual
resonance frequency. In addition, one should always keep in
mind that the values for the mechanical elements in the cir-
cuit model have also been obtained by measurements and,
therefore, have an uncertainty. We assumed an uncertainty of
20 % for the frequency shift values obtained with the circuit
model, based on the uncertainty estimations for the interac-
tion spring constant and the systems’ spring constants (Clif-
ford and Seah, 2005). From that we conclude that the circuit
model is a valid description of the sensor’s behaviour. Fur-
thermore, we also applied the circuit model to other sensors
in the same experiment and also found a good agreement be-
tween the measurement and simulation results.

As already mentioned above, we can also test the equiv-
alent circuit model for each of the two resonance peaks ωa
and ωb derived in Sect. 7 with the additional spring k3. The
results are given in Table 6 as well and agree with the mea-
sured values and the ones obtained with the complete circuit
model within the margins of uncertainty for both peaks.

9 Circuit model for a beam with shear and torsion

In the previous sections we have seen that a simple coupled
harmonic oscillator model describes the behaviour of a co-
resonantly coupled sensor very well. However, one has to
keep in mind that this model is only valid for one resonance
frequency. This is not a limitation for the case given, as only
one flexural vibration mode of both beams is of interest.

However, the rather simple model does not take any
shear deformation into account (Rossing and Fletcher, 2004),
which may be of interest, e.g. if the sensor shall be used in a
torsional vibration mode. To describe the one-side clamped
beam in greater detail, a more complex model has to be used
(Lenk et al., 2001). It consists of a translational and a rota-
tory part, and the beam is divided into smaller elements in
order to linearize its behaviour. The chosen number of ele-
ments determines the number of vibration modes which can
be considered with this model (Lenk et al., 2001).

Each element contains an inductor in the rotatory and a re-
sistor and capacitor in the translational part. These two parts
are connected via a current-controlled voltage source. For the
set-up of two coupled cantilever beams, the corresponding
circuit is given in Fig. 17. We chose a number of six elements
to model each cantilever beam, which is sufficient since only
the first resonance mode of the oscillating system is of in-
terest here. Furthermore, the boundary conditions have to be
defined, which are given by a fixed clamping on the left side,
preventing any rotational movement. This would ideally be
represented by a short circuit. For numerical stability of the
circuit analysis software, a resistor R1 with a very small re-
sistance is used. Furthermore, the excitation applied to the
microcantilever is modelled by a voltage source. The connec-
tion between the two cantilevers is assumed to be stiff and,
therefore, direct connections are used. The nanocantilever’s
free end is not restrained in any case. Therefore, the resis-
tor R2 and inductor L13 are used with very high values cor-
responding to an open circuit. We employed an inductor in
the translational part in order to allow for modelling of the
external interaction with the environment if desired. These
boundary conditions are specific to our sensor set-up, but
other boundary conditions can be found in Lenk et al. (2001)
and Ballas et al. (2009).

Figure 18 depicts the Bode plots for both cantilevers,
showing the first two vibrational modes for the microcan-
tilever. A closer look at the first vibrational mode in Fig. 19
shows a very good agreement with the curves obtained with
the circuit model for the coupled harmonic oscillator, indi-
cating once more that this rather simple model can be used
to obtain sufficient information on the coupled system’s be-
haviour.
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Figure 17. Circuit model of two coupled cantilever beams with translational and rotatory degrees of freedom of the movement.

Figure 18. Bode plot for both cantilevers of the coupled system
of Fig. 17 represented by a discrete beam model, depicting several
resonance modes.

10 Conclusions

Application of electro-mechanical analogies is a commonly
used tool to describe and analyse mechanical systems. We
have applied the electric circuit model to our recently devel-
oped concept of a co-resonantly coupled sensor consisting of
a micro- and a nanocantilever. The mechanical representation

Figure 19. Amplitude curves for both cantilevers for the first bend-
ing mode obtained with the discrete beam model in Fig. 17.

of the sensor set-up can be considered as a simple coupled
harmonic oscillator, which then has been transferred into an
electric circuit. Analysis of the circuit can be performed com-
pletely analytically and with the software LTspice in order
to gain profound understanding of the system’s behaviour
and to examine various features of the coupled system. This
knowledge can be used to predict the behaviour of the sensor
and help interpret and understand measurement results. Fur-
thermore, the circuit model can also be employed for sensor
design, allowing for determination of expected sensor char-
acteristics such as the effective spring constant, which deter-
mines the sensitivity of the system.
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Additionally, the more complex model of a beam taking
bending and shear deformation into account has been applied
for the coupled sensor system. Generally, it has been shown
that the simple coupled harmonic oscillator model describes
the sensor’s behaviour sufficiently well.

11 Data availability

The data presented in this paper is available on request from
the corresponding author.
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