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Abstract. In industrial processes a vast variety of different sensors is increasingly used to measure and control
processes, machines, and logistics. One way to handle the resulting large amount of data created by hundreds or
even thousands of different sensors in an application is to employ information fusion systems. Information fusion
systems, e.g. for condition monitoring, combine different sources of information, like sensors, to generate the
state of a complex system. The result of such an information fusion process is regarded as a health indicator of a
complex system. Therefore, information fusion approaches are applied to, e.g., automatically inform one about
a reduction in production quality, or detect possibly dangerous situations. Considering the importance of sensors
in the previously described information fusion systems and in industrial processes in general, a defective sensor
has several negative consequences. It may lead to machine failure, e.g. when wear and tear of a machine is not
detected sufficiently in advance. In this contribution we present a method to detect faulty sensors by computing
the consistency between sensor values. The proposed sensor defect detection algorithm exemplarily utilises the
structure of a multilayered group-based sensor fusion algorithm. Defect detection results of the proposed method
for different test cases and the method’s capability to detect a number of typical sensor defects are shown.

1 Introduction

A sensor, which is acquiring signals in an application, is gen-
erally assumed to be operating correctly. Sensors can never-
theless fail and do so during typical operation. Failure causes
include improper handling, wear and tear, or random failure.
The failure may on the one hand be a complete failure of the
sensor, which is easily detectable, as the sensor stops deliv-
ering any data. On the other hand, partial defects are more
difficult to detect: if a sensor continuously delivers values, it
is neither directly detectable, nor decidable if the sensor mea-
surements are valid or not. In case of partial defect, the sensor
might produce values that deviate more from the true value
than their given accuracy. This is problematic for condition
monitoring purposes in manufacturing processes. Here, sen-
sor defects lead to a decrease in product quality or a reduc-
tion in the produced quantity of a given product. Depending
on the sensor’s use case, a sensor defect has possibly even
more severe consequences.

There are multiple possible ways to detect and handle sen-
sor defects. An overview over the most important methods
for detecting sensor faults is given in the following.

Simple approaches use rule-based threshold systems to de-
tect sensor faults. For example in Sharma et al. (2010) the
standard deviation of a sensor measurement within a win-
dow is used to detect sensor noise and the rate of change of a
sensor measurement to detect short peak errors.

Apart from the aforementioned simple approaches, most
algorithms are more complex and use statistical measures,
machine learning methods or a combination of both.

Examples of statistical methods that are used for sensor
fault detection are principal component analysis (PCA; Ker-
schen et al., 2005) and linear discriminant analysis (LDA;
Helwig et al., 2015). In Kerschen et al. (2005) PCA is used
to detect sensor faults differences between a reference mea-
surement and live measurements for linear systems. The ap-
proach used in Helwig et al. (2015) utilises the data of mul-
tiple sensor fault states and a fault-free state to generate
an LDA space, which is a space reduced in dimensional-
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ity that allows for a linear separation between the different
fault states and the non-faulty state. More complex PCA-
based methods use dynamic PCA-based approaches for sen-
sor fault detection, as for example in Hu et al. (2012), where
a self-adapting PCA-based method is used. For the detection
of sensor defects in non-linear systems, PCA-based methods
that use kernel functions are proposed (Choi et al., 2005).

Bayesian belief network (BBN) based methods are pro-
posed in Mehranbod et al. (2003, 2005). They model every
sensor as its own multiple-node BBN. Training data are used
to generate state probabilities (example states: very nega-
tive, negative, zero, positive, very positive) for the nodes and
when there are deviations from these trained state probabili-
ties a sensor error is detected.

Artificial neural networks (ANNs) (cf. e.g. Mattern et al.,
1998; Xu et al., 1999; Zhu et al., 2012; Helwig et al.,
2015) and approaches based on clustering (cf. e.g. Bay and
Schwabacher, 2003; Kusiak and Song, 2009) to detect sensor
faults. While clustering-based algorithms detect sensor faults
with the help of outlier detection, ANNs are used to gener-
ate a fault-free sensor output via sensor correlation (Mattern
et al., 1998; Xu et al., 1999) or to detect if the sensor state is
faulty or fault free (Zhu et al., 2012).

One approach is the application of sensors that execute
self-tests to detect the sensor performance and sensor de-
fects. Depending on the type of sensor and the intended use,
this may be a valid way to handle sensor defects. Never-
theless, self-testing capabilities are often limited to simple
function tests. Additionally, such sensors have higher acqui-
sition costs compared to sensors without self-test abilities:
considering standard off-the-shelf sensors, additional elec-
tronics must be integrated to each sensor to facilitate self-
testing. This requires additional engineering, hardware, and
production costs, which are added on top of the original sen-
sor price. Moreover, sensors with self-test abilities are not
available for every use case, especially when applications im-
pose special requirements, e.g. explosion protection.

The approach followed in this contribution is the appli-
cation of multiple sensors for monitoring one and the same
object or property. In such a use case, standard sensors can be
applied with no additional acquisition costs. Their signals are
collected, aggregated, and processed in a multisensor infor-
mation fusion process. The fusion system serves for super-
vision of the monitored system and also of the applied sen-
sors. Here, additional one-time costs for the engineering and
acquisition of the fusion system apply instead of increased
costs for each sensor. In addition, retrofitting of existing ap-
plications is facilitated in this way. Then already applied sen-
sors are utilised for fusion, which is enriched by defect de-
tection. The fundamentals of such a multisensor information
fusion approach are described in the following section.
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Figure 1. Multimodal system.

1.1 Multisensor information fusion

Many recent systems are based on one main sensory appa-
ratus. They rely on the evidence of a single source of in-
formation (e.g. photodiode scanners in vending machines,
greyscale cameras in inspection systems). These systems,
called unimodal systems, have to contend with a variety of
general difficulties. According to Ross and Jain (2005), these
are raw data noise, intraclass variations, interclass similari-
ties, and non-universality. Some of these mentioned limita-
tions are overcome by the inclusion of multiple information
sources. Such systems, known as multimodal systems, are
expected to be more reliable due to the presence of multiple,
partly signal-decorrelated, sensors. They address the prob-
lems of non-universality and, in combination with meaning-
ful interconnection of signals (fusion), the problem of inter-
class similarities. At least, they can inform the user about
problems with intraclass variations and noise. A generic mul-
timodal system consists of four important units (cf. Fig. 1):
(i) the sensor unit, which captures raw data from different
measurement modules (i.e. sensors); (ii) the feature extrac-
tion unit, which extracts an appropriate feature set as a rep-
resentation for the system, from which the raw data are cap-
tured; (iii) the classification unit, which compares the current
features to their corresponding features stored in a database;
(iv) the decision unit, which uses the classification results
to determine whether the obtained results represent, e.g., a
safe state of a hazardous material store (Lohweg and Mönks,
2010b).

The basic information fusion concept relies on the fact that
the lack of information supplied by sensors is completed by
the fusion process. It is assumed that, for example, two sen-
sors (S1 and S2) with different active physical principles (e.g.
pressure and temperature) are connected in a certain way.
With fusion of different sources the perceptual capacity and
plausibility of a combined result should be increased. Fur-
thermore, the resulting information should in some sense be
better than in the case where the sources are used individu-
ally. The common resulting effect is the generation of infor-
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mation, which is more dense and of higher quality than every
single data source (Luo and Kay, 1989) and thus a decrease
of the result’s inherent uncertainty.

A simple way to process multiple observations in an in-
formation fusion sense is a threshold system. Every sensor
observation is classified individually, based on a threshold.
These results are fed into a majority voting system to gener-
ate a global decision about a status (Alpaydın, 2010). This
approach may decrease the impact of a sensor defect, as
multiple non-defective sensors overrule one defective sensor.
Nevertheless, such systems are too simple to model a com-
plex application sufficiently. Hence, more adequate (but also
more complex) multisensor information fusion algorithms
are used for the processing of sensor observations and the
robust determination of a system’s state. These methods are
known in the literature for many years (Khaleghi et al., 2011;
Hall and Llinas, 2001a). This field has gained increasing at-
tention starting in the 1970s when new sensors, advanced
processing techniques, and increasingly powerful processing
hardware became available. Starting then, appropriate data
processing models and fusion algorithms have been driven
nearly exclusively by applications in the military defence
sector. During the 1990s and early 2000s, those algorithms
have been adopted by the civil sector for applications in in-
dustrial fault diagnosis and condition monitoring applica-
tions (Hall and Llinas, 2001a). A current fusion definition
was introduced by Steinberg and Bowman (2001):

Definition 1. Information fusion (Steinberg and Bowman,
2001, p. 2–4): “[the] process of combining data or in-
formation to estimate or predict entity states.”

Fusion is possible at three distinct levels (Hall and Lli-
nas, 2001b). At signal level, sensor signals are combined. It
is necessary that the signals are comparable in the sense of
data amount, i.e. sampling rate (adaption), dimension, reg-
istration, and time synchronisation. If this constraint cannot
be fulfilled, fusion on any of the following two levels is ap-
propriate. At feature level, signal descriptors (features) are
combined. Human cognitive functions rely on this associa-
tion principle for recognition tasks. At symbol level, classifi-
cation results are combined. This happens either after obtain-
ing all individual decisions per sensor, or on top of a number
of features or signal level fusion steps. The degree of ab-
straction increases from signal level to symbol level, whereas
the fusion itself is more efficient with increasing abstraction.
Nevertheless, additional processing steps in advance to fu-
sion might increase the overall complexity.

Besides, Ross and Jain (2005) state that fusion at an early
processing stage is usually more effective than at a later
stage, since input signals or features contain more informa-
tion about the physical data than score value outputs of clas-
sifiers. High abstraction level fusion is less effective also due
to the fact that data reduction methods are applied in the in-
termediate steps resulting in information loss (cf. Hall and
Llinas, 2001b).

1.2 Related work

New concepts of distributed intelligent sensors have recently
been introduced, in which an intelligent sensor is defined
to be a system equipped with communication and process-
ing capabilities, and acquires data from several elementary
sensors attached to it (Duquet, 2015). Such concepts and ar-
chitectures pose challenges to the design and operation of
distributed monitoring systems (Mönks et al., 2015), among
which is the handling of conflicts between sensor observa-
tions during operation: conflict occurs whenever information
bear evidence for not only one opinion/proposition, but also
for another. This might either be due to actual failure in the
observed process or system, or caused by one or more de-
fective sensors. The latter case is the most severe one, since
wrong decisions might be derived if sensors were considered
reliable, although they are not.

Conflict handling is to a certain extent independent from
the model applied to represent the information: while prob-
ability theory (Jaynes, 2003; Bishop, 2009) and possibil-
ity theory (Zadeh, 1978; Dubois and Prade, 1993) need to
incorporate further processing steps for conflict handling,
the Dempster–Shafer theory of evidence (DST) (Dempster,
1967; Shafer, 1976) is inherently designed to handle con-
flicts. Nevertheless, the DST has shown to bear defects with
respect to high-conflicting situations (cf. e.g. Zadeh, 1986;
Yager, 1987).

A conflict-handling data fusion algorithm, based on
the DST and improving its deficiencies, is the multilayer
attribute-based conflict-reducing observation (MACRO) sys-
tem (Mönks and Lohweg, 2013, 2014). Its fusion algorithm
has shown good performance, especially in situations, where
the input data are conflicting (Mönks et al., 2012). It never-
theless offers no direct way for the fusion algorithm to detect
defective sensors. The situation is similar for other sensor
fusion approaches like Bayes’ theorem in the scope of prob-
ability theory (Bishop, 2009), Dempster’s rule of combina-
tion in the scope of DST (Shafer, 1976), or ordered weighted
averaging (OWA) aggregation (Yager, 1988) in the scope of
fuzzy set theory (Zadeh, 1965). They are all standard and
widely applied fusion approaches, which do not offer inher-
ent defect detection methods.

There are approaches in the literature for the detection of
process anomalies by using sensor fusion methods, includ-
ing methods that handle or reduce conflicts between sensor
observations (Khaleghi et al., 2011). Almost no sensor fusion
algorithm exploits the conflict between sensor measurements
or consistency measures as a method to predict or detect de-
fective sensors. One detection method for defective sensors
based on conflict is proposed in Ricquebourg et al. (2008).
Background of this method is the computation of a conflict
factor between pairs of sensors. The conflicts are analysed
and classified concerning the duration and intensity of a con-
flict so that in the end every sensor has a dedicated state (fail-
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ure, no failure). During sensor fusion, the state of a sensor is
used to exclude sensors that have a failure state.

Another exception is Krüger (2015), where conflicts in
Bayesian networks are used to detect sensor failures. In this
work four approaches for sensor failure detection are de-
scribed. Two of the described approaches are based on binary
conflicts (conflict present or no conflict present), while the
other two approaches utilise a gradual conflict measure that
shows the actual level of conflict. For the approaches with bi-
nary conflicts the frequency of conflicts is used as a measure
for defect detection. The algorithms based on gradual con-
flicts use the mean gradual conflict value for defect detection.
The final defect detection is carried out with the help of de-
tection thresholds. Furthermore, all approaches described in
Krüger (2015) use an adjustable sliding test-window, which
incorporates multiple classification cases for defect detec-
tion.

Other sensor fusion approaches incorporate sensor relia-
bility or similar values into the fusion process. In Elouedi
et al. (2004) a DST-based sensor fusion approach that incor-
porates a discounting factor for sensors is proposed. This dis-
counting factor is computed based on the existing knowledge
compared to the measurement of a sensor. The difference be-
tween the known class of the objects in a training data set and
the assessment of a sensor is used to determine the discount-
ing factor, with higher differences resulting in a higher dis-
counting factor. The smaller the discounting factor, the more
reliable the sensor considered.

The reliability computation method proposed by Martin
et al. (2008) is also based on DST. It utilises the distances
between a sensor’s measurement and the combination of all
other sensors’ measurements to compute a conflict measure.
The reliability value of a sensor is then in turn computed
based on a decreasing function, which utilises the conflict
measure. This results in a lower reliability value for sensors
with higher conflict, which is used as a discounting factor
during the sensor fusion process.

The approach presented in this article is partly based on
Glock et al. (2011), which introduces a method to determine
the reliability of sensors. This is in turn used to weight the
sensors during a sensor fusion process.

In summary, sensor fusion approaches are available, which
incorporate a form of reliability computation for sensors.
Their outcome is applied to weight sensors during the sen-
sor fusion process (Elouedi et al., 2004; Martin et al., 2008;
Glock et al., 2011). Only a few methods use sensor fusion
approaches to actually detect sensor defects (Ricquebourg
et al., 2008; Krüger, 2015).

This article proposes a method that uses group-based
structures where the sensor defects are computed based on
groups of sensors instead combining all sensors at once, as
other approaches do.

1.3 Structure

In this paper, a method is proposed that utilises the inher-
ent multilayer group-based structure of MACRO and detects
sensor defects with the help of sensor consistency compu-
tations. While the structure of MACRO is utilised in the
presented approach, it is also applicable in other group-
based fusion approaches. Its effectiveness is demonstrated in
the scope of the research project “itsowl-IGel” (itsowl-IGel,
2015). The main goal of itsowl-IGel is the development of
a condition monitoring and early warning system for haz-
ardous material stores, which safely contain materials like
dangerous chemicals. No automatic monitoring mechanisms
are legally demanded; hence, itsowl-IGel represents pioneer-
ing work in this area.

This paper is separated into the following sections: Sect. 2
presents a brief overview about the information fusion sys-
tem MACRO, followed by a more detailed view into the
method for sensor defect detection. The experiments and re-
sults are given in Sect. 3. The paper concludes with Sect. 4 by
giving a discussion of the results and delivering an outlook
on future work.

2 Approach

The approach section is divided into multiple parts: first
a description of the applied information fusion system
MACRO is presented. This subsection is followed by pre-
liminary information for the following parts and subsections
on sensor reliability and consistency computation. The con-
tributed sensor defect detection approach, which combines
a consistency-based reliability computation with the sensor
fusion system, concludes the approach.

2.1 Multilayer attribute-based conflict-reducing
observation (MACRO)

The MACRO approach is applied for the fusion of sev-
eral sensor signal inputs. MACRO’s structure is depicted in
Fig. 2.

The basic multilayer structure of this approach is in-
spired by the decision-making process of groups of humans:
individual humans (sensors) discuss their opinions (mea-
surements) in groups (attribute layer). This group decision-
making process includes conflicts. The information gener-
ated in the various groups is then combined on an organ-
isational level (system layer) to make a global decision.
For more information on the human group decision-making
background of MACRO, the reader is referred to Mönks and
Lohweg (2013). It was shown that the application of this ap-
proach for hazardous material store monitoring is beneficial
compared to state-of-the-art installations (Ehlenbröker et al.,
2014).

The MACRO fusion approach for the determination of a
system’s global state is carried out as follows: signals from
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Figure 2. Multilayer attribute-based conflict-reducing observation
system MACRO (Mönks and Lohweg, 2014).

the system as well as from its environment (like tempera-
ture) are acquired by sensors (signal sources). Features are
extracted from the signals in the following signal condition-
ing step, which may also include signal preprocessing pro-
cedures. Multiple features may be extracted from one signal,
as shown in Fig. 2, e.g. to determine the mean and variance
from one signal. Without loss of generality, the following as-
sumes one feature per signal.

In the signal conditioning step, the sensor measurements,
which may include all sorts of (physically) different types
of measurements (e.g. temperature, air pressure), are trans-
formed into a unitless space. A fuzzy set theory (Zadeh,
1965) approach has been chosen for modelling the acquired
data in a common unitless space between 0 and 1. It is capa-
ble of model uncertainty in the data, which is coming from,
e.g., sensor noise, and allow variations in the system’s be-
haviour due to environmental changes (e.g. in temperature,
humidity), which do not affect the fulfilment of the sys-
tem’s task. The Modified-Fuzzy-Pattern-Classifier (MFPC)
(Lohweg et al., 2004) models the information by a uni-
modal potential function applied as fuzzy membership func-
tion µ :R→ [0,1]. This information model has proven its
performance scientifically as well as in real-world applica-
tions (e.g. Lohweg et al., 2004; Niederhöfer and Lohweg,
2008; Mönks et al., 2010).

It employs an automatic learning procedure to determine
the membership function based on measurement data:

Definition 2. Modified-Fuzzy-Pattern-Classifier learning
(Lohweg et al., 2004; Mönks et al., 2010): the measure-
ments of sensor Si at discrete time instance k ∈N are
denoted as xi[k]. The vector xi = (xi[k]), 1≤ k ≤N
consists of the N individual measurements. Then the
measurements are represented by the Modified-Fuzzy-

Pattern-Classifier membership function as

µ(x,pi)= 2−d(x,pi ) (1)

with d(x,pi)=
(
|x− xi |

Ci

)Di
.

The parameters pi = (xi,Ci,Di) are determined based
on the measurement data xi by

xi =
1
N

N∑
k=1

xi[k],Ci =
1
2
· (max(xi)−min(xi)) . (2)

The integer-valued parameter Di is chosen empirically,
typically as a power of 2 to keep computation of Eq. (1)
hardware efficient.

Hence, the parameter vector p defines the membership
function’s properties: x is its mean value, C denotes the
width, and D determines the steepness of the membership
function. Since p is automatically determined on the basis
of measurement data, the current condition is encoded in the
parameters. In order to actually represent the normal condi-
tion of the monitored system by p, the measurement data
must be acquired within a period of time, in which the sys-
tem is operated in normal condition, which must be verified
manually by a human expert, e.g. an experienced machine
operator. Then the membership function is denoted as Nµ.
Please note: the fusion approach poses one demand on the
applied sensors: the signals should be compatible to those
during normal condition if the system does not change its be-
haviour, whereas they need to change if the system changes
its behaviour. Whether the sensors output signals represent
the ground truth is irrelevant in this scope; hence, calibration
is not necessary. Instead, the reaction on changes is impor-
tant.

The fuzzy membership function is applied to compute the
grade of membership Nµi(x)=Nµi(x,pi), to which a sen-
sor’s measurement x represents the normal condition. Note
that one membership function is utilised per sensor Si . An
exemplary membership function for a temperature sensor is
shown in Fig. 3.

MACRO then combines ensembles of conditioned signals
in groups denoted as attributes. They represent certain prop-
erties or physical parts of the observed system, such as air
quality, ventilation, or air conditioning. Hence, each attribute
has a semantic meaning, which relates it to the physical sys-
tem. The attributes are application dependent and manually
defined during the fusion system design process. Redundan-
cies, which occur by combining at least two information
sources to one attribute, are exploited for both (i) detecting
sensor faults and (ii) cross-checking the consistency of sen-
sor values. The latter is carried out implicitly by the psy-
chologically inspired fuzzified balanced two-layer conflict
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Figure 3. Exemplary membership function for the normal condi-
tion of a temperature sensor with x = 21 ◦C, C = 3 ◦C, and D = 4.
A measurement of x = 18 ◦C results in a membership of µ(x)=
0.5, as marked by the dashed lines.

solving (µBalTLCS) fusion approach (Lohweg and Mönks,
2010a; Mönks et al., 2012; Mönks and Lohweg, 2013). It cre-
ates one output Nµa : [0,1]n→ [0,1] per attribute a from
its inputs. It additionally assigns each attribute an impor-
tance measure Ia ∈ [0,1]. The importance measure is based
on the conflict between the sensors’ individual opinions Nµi .
Hence, the higher the conflict between an attribute’s inputs,
the lower this attribute’s importance. The importance are em-
ployed in the subsequent fusion of the attributes’ opinions
Nµa , which are aggregated on a system level using the im-
plicative importance-weighted ordered weighted averaging
(IIWOWA) operator (Larsen, 1999) to reason about the en-
tire system under supervision.

This operator is based on the importance-weighted ordered
weighted averaging (IWOWA):

Definition 3. Importance-weighted ordered weighted aver-
aging (Larsen, 1999): let µ= (µ1,µ2, . . .,µn) be a vec-
tor of fuzzy memberships, and I = (I1,I2, . . ., In) a vec-
tor of corresponding importance weights. The vector of
weights w = (w1,w2, . . .,wn) determines whether the
operator behaves more like the maximum or more like
the minimum aggregation (more optimistic or more pes-
simistic), with

n∑
j=1

wj = 1 and ρ(w)= 1−
1

n− 1

n∑
j=1

(n− j ) ·wj ,

where ρ(w) ∈ [0,1] determines the aggregation’s and-
ness degree. This is a measure indicating to which de-
gree the operator behaves like the minimum operation.
An andness of ρ(w)= 0 represents a pure maximum,
ρ(w)= 1 a pure minimum operation. The operator is
able to model any degree of andness between ρ = 1 and
ρ = 0 (Yager, 1988). Then the class of IWOWA opera-
tors is defined as

hIWOWA(I ,w,µ)=
n∑
j=1

wj · b(j ), (3)

with j ∈Nn = {1,2, . . .,n}, and bj = ρ(w)+ Ij ·(
µj − ρ(w)

)
, where (·) denotes a permutation on b with

b(1) ≥ b(2) ≥ . . .≥ b(n), i.e. the importance-weighted
memberships sorted in decreasing order.

Larsen (1999) showed in Larsen (1999) that the class of
IWOWA operators is order equivalent to the weighted arith-
metic mean (WAM) operator. Order equivalence is sufficient
when the operator is applied to provide preference order-
ing (Larsen, 2002). However, in situations where the aggre-
gated value is used for other purposes, such as information
fusion, full value equivalence to WAM is necessary. This
property is obtained by normalising Eq. (3) in the interval
of hIWOWA(I ,w,0) and hIWOWA(I ,w,1). This leads to the
following class of operators:

Definition 4. Implicative importance-weighted ordered
weighted averaging (Larsen, 2002): let 0= (0, . . .,0)
be a vector of zeros and 1= (1, . . .,1) a vector of ones,
each of length n. Then the class of IIWOWA operators
is defined with Eq. (3) as

hIIWOWA(I ,w,µ)

=
hIWOWA(I ,w,µ)−hIWOWA(I ,w,0)
hIWOWA(I ,w,1)−hIWOWA(I ,w,0)

. (4)

In the scope of MACRO, the result of
hIIWOWA(I ,w,Nµ) is denoted system health N h, with
Nµ= (Nµ1,

Nµ2, . . .,
NµA) being the attribute’s member-

ships obtained by µBalTLCS fusion, and I = (I1,I2, . . ., IA)
the corresponding importances.

Detailed information regarding MACRO and µBalTLCS is
found in Mönks et al. (2012); Mönks and Lohweg (2013),
while optimisations concerning an efficient implementation
are found in Mönks and Lohweg (2014). This contribu-
tion concentrates on MACRO’s fusion on the attribute layer.
Here, the sensor signals are fused initially and checked for
consistency.

2.2 Monitoring of sensor reliability

Sensors are utilised in real-world applications to acquire sig-
nals, which represent the current situation in the application.
The IEEE standard 610-1990 defines “reliability” as follows:

Definition 5. Reliability (IEEE Computer Society, 1990,
p. 170): “[t]he ability of a system or component to per-
form its required functions under stated conditions for a
specified period of time.”

A sensor’s reliability determines the quality of such a map-
ping from the physical situation to the sensor’s output signal.

Glock et al. (2011) proposed a method to monitor sensor
reliability, which is followed in this contribution. It is defined
by
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Definition 6. Sensor reliability measure (Glock et al., 2011):
the sensor reliability measure of sensor Si ∈ S, i ∈Nn
is defined as

ri =min
(
rs
i , r

d
i

)
, (5)

where rs
i denotes a sensor’s static and rd

i its dynamic
reliability.

Reliability is split in a static and a dynamic part. Static re-
liability rs

i expresses the probability that the sensor operates
correctly in general. Each sensor in a real-world application
is exposed to external, inevitable effects like ageing, which
affects its output signal such that it deviates from the actual
situation of the application. In consequence, the sensor’s re-
liability is affected over time. This is represented by the dy-
namic part rd

i .
In order to compute the dynamic reliability, Glock et al.

(2011) make use of the concepts of majority observation
and consistency. In Glock et al. (2011), information fusion
for machine condition monitoring is considered. It employs
multiple sensors acquiring their signals from the same ap-
plication. The sensor outputs are approximations of the true
value and hence prone to uncertainty, which is determined by
each sensor’s characteristics. Therefore, each sensor’s mea-
surement is considered by

Definition 7. Sensor observation (Glock et al., 2011): let
xi be the output of sensor Si . Then this measurement
is represented by the possibility distribution πi :R→
[0,1], which is denoted as sensor observation and mod-
els the sensor output’s characteristics for the given mea-
surement xi .

Based on this, the degree of consistency between individ-
ual observations is determined by

Definition 8. Consistency index (Glock et al., 2011): let
T ⊆ S be a subset of sensors Si ∈ S with their respec-
tive observation πi . Then the consistency index of their
observations is determined as

h(T )= sup
x∈R

(
min
i|Si∈T

(πi(x))
)
, (6)

with h(T ) ∈ [0,1] for all T .

A geometric interpretation of the consistency index is the
height of the overlapping parts of all considered possibil-
ity distribution functions, i.e. observations. In case the ob-
servations of the employed sensors Si ∈ T are on differ-
ent measurement scales, these need to be transformed to a
common scale by fuzzification, hence a mapping µi : xi→
[0,1]. Such situations occur due to unequal dimensions (two-
dimensional image vs. one-dimensional force) or physical

units (colour temperature in K vs. force in N). Thus, with-
out fuzzification, the consistency index is not computable,
whereas this measure is necessary to determine the majority
observation. It is defined as

Definition 9. Majority observation (Glock et al., 2011): let
2S be the set of all subsets of S. Then the set of sensors
Sm, determined by

Sm =

{
T

∣∣∣∣∣ sup
T ∈2S

(h(T )> 0)

}
, (7)

forms the majority observation, if and only if |Sm|> 1.

Considered geometrically, the observations of each mem-
ber of Sm overlaps with at least one other member of Sm. All
of their observations are considered fully consistent and span
the range of the majority observation.

Although the remaining sensors {S rSm} do not con-
tribute to the majority observation, their observations are
considered consistent to a certain degree. In order to quan-
tify the consistency, Glock et al. (2011) proposed to relate
the centres of gravity of each observation πi to the range of
the majority observation:

Definition 10. Majority consistency measure (Glock et al.,
2011): let πi be the observation of sensor Si ∈ S. It is
defuzzified by the centre of gravity method (Klir and
Yuan, 1995, p. 336):

c (πi)=

∞∫
−∞

πi(x) · x dx

∞∫
−∞

πi(x) dx
.

The range of the majority observation
[
cmin

m , cmax
m
]

is
determined over the respective observations’ centres of
gravity by

cmin
m = min

i|Si∈Sm
(c (πi)) ,cmax

m = max
i|Si∈Sm

(c (πi)) .

Then the majority consistency measure is defined as

Com (πi)=

 cmin
m − c (πi) , c (πi)< cmin

m ,

c (πi)− cmax
m , c (πi)> cmax

m ,

1, otherwise.
(8)

If any of the observations overlap, no majority observa-
tion is determined (|Sm| = 1). In this case an average con-
sistency measure is determined, which utilises the weighted
arithmetic mean.
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Definition 11. Weighted arithmetic mean: let a = (ai) with
ai ∈R and i ∈Nn be a vector of input values, and
q = (qi) with qi ∈R a vector of corresponding weights.
Then the weighted arithmetic mean is determined by

λWAM (q,a)=

n∑
i=1
qi · ai

n∑
i=1
qi

. (9)

Then the average consistency measure is defined as

Definition 12. Average consistency measure (Glock et al.,
2011): let πi be the observation of sensor Si . For the re-
maining sensors Sj with j 6= i, the vector π∗ = (πj |j 6=
i) contains the respective observations, r∗ = (rj |j 6= i)
contains the respective reliability measures after Eq. (5),
and v∗ = (vi,j |j 6= i) contains the vicinity measures of
observation πi to πj , which is defined as

vi,j = 1−
∣∣c(πi)− c(πj )

∣∣ .
Then the average consistency measure is determined by

Coa(πi)= (10)

max
(

1−
n

max
j=1|j 6=i

(rj ),λWAM
(
r∗,v∗

))
,

if and only if no majority observation is determined;
hence |Sm| = 1.

This measure determines the average of the vicinities be-
tween πi and πj , weighed by the respective reliabilities rj in
the case of high reliabilities (rj → 1 for all j ). If the other
sensors are unreliable (rj → 0 for all j ), the observation
of sensor Si is considered consistent to the truth such that
Coa(πi)→ 1.

To summarise, the consistency measure for arbitrary ob-
servations is defined by

Definition 13. Consistency measure (Glock et al., 2011): let
Sm denote the set of sensors, which form the major-
ity observation after Definition 9. Then the consistency
measure is determined by

Co(πi)=
{

Coa (πi) , |Sm| = 1,
Com (πi) , otherwise. (11)

After introducing the concepts of majority observation and
consistency, the dynamic sensor reliability is defined as
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Figure 4. Development of the dynamic reliability rd
i
[k] of an ex-

emplary sensor Si with ω = {0.01,0.1,0.5}. At the beginning of the
pictured period the measured value of the sensor drastically changes
and is in conflict with other sensors.

Definition 14. Dynamic sensor reliability (Glock et al.,
2011): let Co(πi) be the consistency measure of the ob-
servation of sensor Si ∈ S. Then the dynamic sensor re-
liability at discrete time instance k ∈N is determined as

rd
i [k] = ω ·Co(πi)+ (1−ω) · rd

i [k− 1], (12)

with rd
i [k] = 1 for all k < 0, and ω ∈ [0,1].

Glock et al. (2011) defined the dynamic reliability mea-
sure in the form of an exponential moving averaging infi-
nite impulse response filter (Meyer-Baese, 2007) to account
for noise in the sensor observations and include information
about the inertia of the monitored application by the smooth-
ing factor ω: in order to react fast to changes in application
with high inertia, the smoothing factor is set to ω→ 1. In
low-inertia applications, signal changes occur faster and thus
demand ω→ 0 in order to mitigate the influence of possi-
ble outliers in the adjustment of the sensor’s reliability. An
overview of the influence of ω on an exemplary dynamic
sensor reliability is shown in Fig. 4. The smoothing effect
of small values for ω is clearly visible.

2.3 Sensor defect detection

Sensor defects lead to sensor outputs, which do not represent
the ground truth of the monitored system. In consequence,
signals acquired by defective sensors result in information,
which is in conflict with the information from intact sensors.
These deliver signals, which represent the ground truth. Al-
though the effects of conflicts in the input information is re-
duced by the µBalTLCS fusion algorithm applied in MACRO,
additional detection of sensor defects can be utilised to iden-
tify and replace defective sensors. Then, conflicts between
the acquired information vanish, which consequently leads
to increased importance of the previously affected attributes.

In order to facilitate sensor defect detection, the approach
of Glock et al. (2011) for monitoring sensor reliabilities is
utilised (cf. Sect. 2.2). The reliability of sensor Si is deter-
mined on the basis of a static part rs

i and a dynamic, hence
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time-dependent, part rd
i [k]. It is assumed that the sensor is

reliable at the beginning of the monitoring and hence set to
rs
i = 1. If additional information is available regarding static

reliability, this value may be adjusted. Since the dynamic part
of the sensor reliability is time dependent, the whole measure
is time dependent. Based on this, a sensor defect is detected,
when its reliability measure ri[k] falls below a certain thresh-
old:

Definition 15. Sensor defect decision rule: let ri[k] be the
reliability of sensor Si ∈ S at discrete time instance k.
The average reliability of all sensors is computed as

r[k] =
1
n

n∑
i=1

ri[k].

Then a sensor defect is determined by evaluating the
sensor defect decision rule:

ri[k]< η · r[k] ⇒ sensor Si is defective, (13)

where η ∈ [0,1] controls the decision threshold.

The decision threshold is designed variable with respect to
r[k] to mitigate wrong decisions in real-world applications.
If the monitored application changes its behaviour over time,
this is not necessarily detected by all sensors at the same
time. Hence, the observations of a subset of sensors become
inconsistent and the respective reliabilities are decreased al-
though no sensor defects occurred. After some time, all sen-
sors that are contributing to one attribute, detect the change
of the system leading to an equilibrated situation: sensor ob-
servations are consistent such that the previously decreased
reliabilities increase again. If the decision threshold was con-
stant in this case, a number of sensors would be declared as
defective for some time and later as intact again.

Besides introducing a sensor defect decision rule, this con-
tribution adapts the approach of Glock et al. (2011) to deter-
mine the individual reliabilities within groups of sensors.

Definition 16. Groupwise sensor reliability measure: the in-
dividual sensor reliability measure is determined on the
basis of consistency evaluations among groups of sen-
sors. These sensor groups are defined such that their
sensors acquire signals influenced by the same property
or constituent part of the monitored application. Each
sensor group is a subset of all sensors denoted as Sg ⊆ S
with g ∈N, where an individual sensor Si is a member
of one or more groups of sensors Sg . Consequently, the
groupwise sensor reliability measure is determined as

ri[k] =
1
G

G∑
g=1

ri,g[k], (14)

where ri,g is the sensor reliability measure of sensor Si
in group g determined after Eq. (5) with S→ Sg , and
G denotes the number of sensor groups Sg , to which
sensor Si is assigned.

This groupwise procedure is motivated due to several as-
pects:

– The sensors’ signals inherit semantic or spatial proximi-
ties, as they are influenced by the same property (seman-
tic proximity) or constituent part (spatial proximity). If
the signals are influenced by a property, which is limited
to one constituent part, semantic and spatial proximity
occur at the same time.

– Due to said proximities, no coincidental correlations be-
tween independent signals occur. Causal relations be-
tween the signals inside one group are trustworthy.

– Applied within the context of MACRO, the required
sensor groups are already defined as attributes. Hence,
no further effort needs to be invested.

Although the application within the context of MACRO is
beneficial, the approach is not restricted to it. It is applicable
wherever grouping of sensors is possible. If no grouping is
possible and all sensors need to be evaluated at once, the ap-
proach is also applicable: in this case only one group exists.

The approach of Glock et al. (2011) for monitoring sen-
sor reliabilities is based on possibility distributions πi , which
model the sensor characteristics with respect to measurement
uncertainties given output xi . It is assumed to be available
for each sensor in their approach. To the best knowledge of
the authors, such information does not exist for any (non-
)commercially available sensor. Thus, it must be determined
manually for each sensor in order to make the approach us-
able in real-world applications, for which the following prac-
ticable procedure is proposed:

Definition 17. Determination of sensor observation: the
characteristics of sensor Si in terms of measurement
uncertainty with respect to its current output xi is ex-
pressed by the probability density function (pdf) pxi .

If no other pdf is predetermined, it is assumed to be a
uniform pdf on the interval [a,b]:

pxi (x)=


1

b− a
, a ≤ x ≤ b,

0, otherwise.

The interval [a,b] limits the maximum measurement er-
ror of sensor Si in case of xi . It is either available from
the sensor’s data sheet, determined experimentally, or is
approximated sensibly by an expert.

Then the statistical sensor characteristics function pxi is
transferred to the sensor observation πi by the truncated
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triangular probability–possibility transform (Lasserre
et al., 2000; Mauris et al., 2000), which also allows for
the transfer of Gaussian, triangular and Laplacian pdfs.

This procedure is carried out separately for each mea-
surement xi . The foundations of the truncated triangular
probability–possibility transform are not included in this
contribution since it is only applied and Lasserre et al. (2000)
and Mauris et al. (2000) provided excellent introductions to
it.

In order to determine the consistency measure for arbitrary
sensors, their measurement scales are fuzzified before trans-
forming pxi to πi .

Definition 18. Fuzzification of sensor measurement scales:
with respect to MACRO, the fuzzification of the
sensors’ measurement scales is delivered through
Modified-Fuzzy-Pattern-Classifier learning (cf. Defini-
tion 2) by Nµi :R→ [0,1] for sensor Si . Then the
sensor characteristics function pxi :R→ [0,1] is trans-
ferred to Npxi : [0,1] → [0,1] with

Npxi
(Nµi(x)

)
= pxi (x). (15)

Consequently, the sensor observation πi :R→ [0,1] is
transferred to Nπi : [0,1] → [0,1] with

Nπi
(Nµi(x)

)
= πi(x). (16)

The fuzzification through MFPC learning is already avail-
able as it is applied in MACRO for fusion on the attribute
layer. Hence, the integration of arbitrary sensors is achieved
in MACRO without any extra effort. In order to assist read-
ability, Nπi=

Nπi
(Nµi(x)

)
is applied in the following. An

exemplary sensor observation determined on fuzzified mea-
surement scales is visualised in Fig. 5.

In addition, fuzzification has implications on the determi-
nation of the consistency index (cf. Eq. 6). Without fuzzi-
fication the whole range of real numbers is necessary to be
evaluated (x ∈R), whereas due to fuzzification, the unit in-
terval is evaluated (Nµi(x) ∈ [0,1]).

From the following example, the necessity of an adapta-
tion of the majority consistency measure as defined in Eq. (8)
and Glock et al. (2011) is revealed.

Example 1. Properties of the majority consistency measure:
regardless of the fuzzification of the measurement scale,
let the centres of gravity of the following two observa-
tions be

c(π1)= cmax
m + ε,c(π2)= cmin

m − ε,

with 0< ε� 1. Thus, both observations are close to
the borders of the majority observation. Then the cor-
responding majority consistency measures are

Com(π1)= ε, Com(π2)= ε.
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Figure 5. Exemplary determination of the sensor observations N π1
and N π2 on fuzzified measurement scales. The plots depict the re-
spective functions of sensor S1 measuring a force in N in blue, and
those of sensor S2 measuring an electric current in A in red. Note
the incomparable measurement ranges and physical units, which are
transformed step-by-step from (a) to (e) into a common space (a, b:
sensor characteristics at measurement value xi (given by the dashed
stem) represented by uniform probability density functions; c, d:
fuzzy membership functions Nµi modelling the normal condition
as acquired by the respective sensor along with the fuzzified mea-
surement value (given by the dashed line); e sensor observations as
determined by the truncated triangular probability–possibility trans-
form on the common fuzzified measurement scale along with the
respective fuzzified measurement (given by the dashed stems)). The
majority observation is visible in (e) in the overlapping region of
the two functions.

Now let

c(π ′1)= cmax
m + ε′,c(π ′2)= cmin

m − ε
′,

with ε′ > ε being two observations further away from
the majority observations’ borders compared to π1 and
π2. Then

Com(π ′1)= ε′ > Com(π1),Com(π ′2)= ε′ > Com(π2).

The preceding example shows that the majority consis-
tency measure increases with increasing distance of an ob-
servation to the majority observation. Contrarily, the major-
ity consistency measure was defined in Glock et al. (2011) to
be decreasing with increasing distance to the majority obser-
vation.

Glock et al. (2011) deduced Com(πi) ∈ [0,1) for all i.
This is only fulfilled if the measurement scales of the sen-
sors are fuzzified. Without fuzzification, observations with
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c(πi)= cmax
m +1, where 1 ∈R, are valid and possible. This

leads to Com(πi)> 1 for 1> 1.
Therefore, the majority consistency measure is proposed

to be adapted:

Definition 19. Adapted majority consistency measure: let
Nπi be the observation of sensor Si ∈ S on a fuzzified
scale according to Eq. (16). Then the adapted majority
consistency measure is defined as

Com
(Nπi)= (17) 1−
(
cmin

m − c
(Nπi)) , c

(Nπi)< cmin
m ,

1−
(
c
(Nπi)− cmax

m
)
, c

(Nπi)> cmax
m ,

1, otherwise,

with Com
(Nπi) ∈ [0,1] for all i. It is a measure, which

decreases with increasing distance of an observation to
the majority observation.

All necessary parts for sensor defect detection are now
available. To summarise, the sensor defect detection ap-
proach proposed in this section

– is based on the sensor reliability monitoring approach
presented in Glock et al. (2011);

– demands fuzzification of the measurement scales in all
cases, which is delivered at no additional cost in the con-
text of MACRO;

– determines observation consistency within groups of
sensors, which are delivered at no additional cost in the
context of MACRO;

– adapts the majority consistency measure defined in
Glock et al. (2011).

3 Experiments and results

In this section, the defect detection results under normal op-
erating conditions are presented first. Afterwards it is shown
that the defect detection also works when the monitored sys-
tem is not in a normal operating state. The capabilities of the
sensor fault detection approach for different fault types are
finally shown. The real-world use case is a hazardous mate-
rial store from the research project itsowl-IGel (itsowl-IGel,
2015). Different types of sensors are applied, which are listed
in Table 1.

For the detection of leakages, electro-optical switches are
used; they are activated when the measuring tip is surrounded
by liquid and are placed at the bottom of the hazardous ma-
terial store. The sensors are combined into 17 attributes and
are positioned on the inside, the air ducts (ventilation), and
the outside of the hazardous material store. A schematic view
of the store and the used sensors is given in Fig. 6.

The attributes are listed in Table A1. Some attributes are
defined manually based on their location (e.g. ventilation in),

Table 1. List of all sensors applied to the hazardous material store.

Sensor type Quantity Output

Temperature 14 analog
Smoke detector 4 digital
Differential pressure switch 1 digital
Gas sensor 1 analog
Leakage detector 2 digital

Overall 22

Figure 6. A schematic view of the hazardous material store with
the sensors included. The different sensors are shown in different
colours (temperature sensor: orange; smoke detector: red; leakage
detector: blue; gas sensor: yellow; differential power switch: green).
Additionally the air ducts are marked.

with some attributes also being defined based on their se-
mantics (e.g. leakage). Others are a combination of the two
aforementioned approaches (e.g. fire inside).

For the experiments, ω is set to 0.01 to avoid sudden
changes in the computation of dynamic reliabilities rd

i due
to outliers (cf. Fig. 4 for ω = 0.5). The data and detailed con-
figuration used for these experiments are available via Ehlen-
bröker et al. (2016a).

3.1 Defect detection under normal operating conditions

Sensor data were gathered in a hazardous material store
demonstrator, which has been built for the itsowl-IGel
project, under the following conditions: the hazardous ma-
terial store was in a normal operating state with tem-
peratures around 25 ◦C, whereas one temperature sensor
(Temp_Inside_8) was delivering incorrect values (140 to
150 ◦C).

As can be seen in Fig. 7, the sensor defect is clearly de-
tectable, as the sensor’s reliability falls below the defect de-
cision threshold.

The reliability value increases temporarily between 12:00
and 20:00 min because the temperature sensor randomly
jumps back to values that are consistent with the other sen-
sors in the hazardous material store. At the end of the ex-

www.j-sens-sens-syst.net/5/337/2016/ J. Sens. Sens. Syst., 5, 337–353, 2016



348 J.-F. Ehlenbröker et al.: Sensor defect detection in multisensor information fusion

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

t [min] (∝ k)

r
[k

]

Temp_Inside_8

Defect decision threshold

Figure 7. The defect decision threshold (η = 0.75) and the reliabil-
ity r[k] of the defective sensor Temp_Inside_8 with a random
error (ω = 0.01).

periment, the measurements of Temp_Inside_8 are again
more consistent with the values of the other sensors and con-
sequently the reliability increases.

3.2 Defect detection during non-normal operating
conditions

To demonstrate that the detection of a sensor defect is also
possible, if the hazardous material store is in a critical state,
a smoke detector is falsely activated during an actual leak-
age in the store. Leakages occur, e.g., after a container with
chemicals was damaged during the handling of the contain-
ers. As the stored chemicals are often toxic or flammable, it
is important to reliably detect leakages, in spite of possible
sensor defects.

The leakage in this scenario is an ongoing process: a dam-
aged container releases its fluid content, which begins to
gather itself at the bottom of the hazardous material store.
At the same time parts of the leaking fluid evaporate and are
detected by the gas sensor. The detection of the leaked fluids
at the bottom of the store takes a longer time, as the leakage
detectors only detect larger quantities of fluid.

The defective smoke detector was falsely activated after
3:00 min. This results in a steady decrease of this sensor’s
reliability, as displayed in Fig. 8. The defect of this sensor
was detected at around 5:30 min, when the sensor’s reliability
crossed the defect decision threshold η.

Although Smoke_Inside_0 delivered incorrect values,
the critical system state caused by the leakage is reliably rep-
resented in the decreasing system health N h[k] (cf. Eq. 4), as
can be seen in Fig. 9.

The system health develops stepwise, with the first drop
at about 3:00 min caused by the defect of the smoke detec-
tor. The following two drops are caused by the gas detector,
which detects a gas leakage (at about 8:00 min), and the two
leakage detectors activating at around 13:00 min. The visible
jitter of the system health is caused by fluctuating measure-
ments of the gas sensor.
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Figure 8. The defect decision threshold (η = 0.75) and the reliabil-
ity r[k] of the defective sensor Smoke_Inside_0 (ω = 0.01).
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Figure 9. The system health N h[k] of the monitored system during
a leakage over time. It is the aggregated result of the fusion process
on system level (cf. Eq. 4) and represents the state of the store. The
depicted warning and alarm thresholds were manually set. They are
used for the generation of alarms for operators.

3.3 Defect detection of different fault types

In the following an overview about the detection of four
sensor fault types with different strengths is given. For
this evaluation, a multi-hour data recording of sensor
Temp_Inside_2 from the hazardous material store in nor-
mal operation has been superposed with the following typical
defects (cf. Helwig et al., 2015):

Peaks: Sensor reading outliers are simulated by adding
100 ◦C at random time instances with rates between 1
and 10 peaks per minute.

Offset: Sensor values are evaluated at constant offsets be-
tween 1 and 5 ◦C.

Drift: Drifting sensor data are evaluated for constant rates
between 1 and 5 ‰ h−1.

Noise: Additive zero-mean Gaussian noise is evaluated for
signal-to-noise ratios (SNR) of 10 and 0 dB.

Defect decision threshold η and ω are set identical to the
previously used values (η = 0.75, ω = 0.01). The data and
detailed configuration used for these experiments is available
via Ehlenbröker et al. (2016b).
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Figure 10. Reliability and detected defects for peak sensor faults.
Peaks are randomly inserted to the measurement with frequencies
from 1 to 10 peaks per minute by adding 100 ◦C to the original
sensor readings. The detected defect is marked by a red dot.
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Figure 11. Reliability and detected defects for offset sensor faults.
Results are shown for constant offsets between 1 and 5 ◦C. Detected
defects are marked by a red dot.

The evaluation results in terms of sensor reliabilities are
depicted in Figs. 10–13. For reference, the sensor reliability
without a defect is included in each figure. It is visible that
these fault-free cases are correctly detected to include no de-
fect.

Figure 10 shows the performance of the proposed algo-
rithm for peak errors. No defects are detected up to a peak
frequency of 5 peaks per minute, whereas a defect is detected
at 1 min running time at a level of 10 peaks per minute.

Results on offset faults are shown in Fig. 11. An offset of
1 ◦C remains undetected, whereas it takes around 75 and 35 s
to detect 2 and 5 ◦C offsets, respectively.

The defect detection behaviour for peaks and offset is due
to the exponential averaging of the sensor reliability. It allows
sensor behaviour deviations to a certain extent, which does
not imply an actual defect. Its sensitivity is adjusted by ω.

For drift errors, the detection is dependent on the length of
the observed period: a drift fault of 5 ‰ h−1, as depicted in
Fig. 12, is detected after 10 h. The detection of a drift error of
2 ‰ h−1 takes 16 h. The drift fault of 1 ‰ h−1 is not detected
during the monitored time period.
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Figure 12. Reliability and detected defects for drift sensor faults.
Results are shown for drift rates between 1 and 5 ‰ h−1. Detected
defects are marked by a red dot.
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Figure 13. Reliability and detected defects for noise sensor faults.
The evaluated signals contain additive zero-mean Gaussian noise
with signal-to-noise ratios (SNR) of 10 and 0 dB. No defect is de-
tected.

Figure 13 depicts the results for noise faults. As is seen
in the figure, no noise faults are detected. Compared to other
sensor faults, the reliability decreases to r = 0.985 on aver-
age for the signal containing maximal noise (SNR 0 dB).

The detection behaviour for the latter two defect types at-
tributed to the fact that the MACRO information fusion ap-
proach, on which this sensor defect approach is based. It is
geared to be tolerant towards signal variations and noise in
order to show stable behaviour to real-world system varia-
tions and prevent wring decisions. However, its sensitivity
is adjusted by manual adjustments of the membership func-
tions’ widths Ci .

Compared to the results from Helwig et al. (2015), the
proposed sensor defect detection is less sensitive towards the
evaluated defect types. As mentioned before, the sensitivity
is adjustable. However, the required sensitivity is dependent
on the respective application. It has nevertheless been shown
that defect detection is possible in general.
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4 Conclusion and outlook

This paper presents a method to generate a consistency-based
reliability assessment for sensors, which is utilised to de-
tect sensor defects. The approach is embedded into the in-
formation fusion system MACRO, which is well-suited for
the implementation of the proposed sensor defect detection
approach. As MACRO combines sensors in attributes, sen-
sor groups with semantic and/or spatial proximity, which are
primed to be used in the proposed consistency-based defect
detection approach, are already employed. However, the ap-
proach is applicable also in the context of other information
fusion applications. It was shown that the approach is capable
of detecting sensor defects. The tests were carried out in the
context of two real-world examples, in which a hazardous
material store was monitored during normal operation and
during a leakage. It was possible to detect the sensor defects
in both scenarios. Additional tests for typical sensor defect
types evaluate the defect detection approach with respect to
peak, offset, drift, and noise. It is shown that defect detection
is in general possible.

Sensor defects directly influence the conflict between
sensor inputs. Hence, the conflict (which is the attribute’s
negated importance in the context of MACRO, delivered at

no additional cost) seems to be an appropriate indicator for a
possible sensor defect. It is to be investigated, whether this is
exploitable to determine and assess sensor reliabilities only
in cases, where the conflict exceeds a certain level. The pre-
sumably saved computational resources and effects on the
defect detection’s accuracy are to be evaluated. Further, a de-
tailed look into more complex scenarios is of interest: defects
of multiple sensors have not been considered, yet. If nec-
essary, the proposed defect decision rule and the groupwise
sensor reliability measure will be adapted. An investigation
of false-positive and false-negative defect detection rates and
the identification of optimisation possibilities of said rates
needs also to be carried out. As the presented approach is in-
sensitive to sensor faults of small values, an investigation of
changes to detect additional sensor faults is also of impor-
tance.

5 Data availability

The data applied in this article are published on Zenodo as
the two data sets “Sensor Defect Detection Datasets with
Configuration” and ”Typical Sensor Defects Dataset” under
Creative Commons Attribution License and are free for ev-
eryone to download (Ehlenbröker et al., 2016a, b).
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Appendix A: Attributes

The list of all attributes and their associated sensors is presented in Table A1.

Table A1. List of all attributes and their associated sensors. Attributes are named according to their position (e.g. outside, inside up, ventila-
tion in). Additionally, most attributes also include a monitored physical property (e.g. temperature) or semantics (e.g. fire).

Attribute Sensors

Temperature outside Temp_Outside_0, Temp_Outside_1, Temp_Ventilation_In
Temperature inside up Temp_Inside_0, Temp_Inside_1, Temp_Inside_2, Temp_Inside_3
Temperature inside down Temp_Inside_6, Temp_Inside_7, Temp_Inside_8, Temp_Inside_9
Temperature inside Temp_Inside_0, Temp_Inside_1, Temp_Inside_2, Temp_Inside_3,

Temp_Inside_4, Temp_Inside_5, Temp_Inside_6, Temp_Inside_7,
Temp_Inside_8, Temp_Inside_9, Temp_Ventilation_Out

Fire outside Smoke_Ventilation_In, Temp_Outside_0, Temp_Outside_1,
Temp_Ventilation_In

Fire inside Temp_Inside_0, Temp_Inside_1, Temp_Inside_2, Temp_Inside_3,
Temp_Inside_4, Temp_Inside_5, Temp_Inside_6, Temp_Inside_7,
Temp_Inside_8, Temp_Inside_9, Temp_Ventilation_Out, Smoke_Inside_0,
Smoke_Inside_1, Smoke_Ventilation_Out

Smoke emission inside Smoke_Inside_0, Smoke_Inside_1, Smoke_Ventilation_Out
Gas leak inside Gas_Ventilation_Out
Leakage inside Gas_Ventilation_Out, Leakage_0, Leakage_1
Ventilation in Smoke_Ventilation_In, Temp_Ventilation_In
Ventilation out Gas_Ventilation_Out,

Diff_Pressure_Switch_Pressure_Ventilation_Out,
Smoke_Ventilation_Out, Temp_Ventilation_Out

Air exchange Diff_Pressure_Switch_Ventilation_Out
Fire container up Temp_Inside_0, Temp_Inside_1, Temp_Inside_2, Temp_Inside_3,

Smoke_Inside_0, Smoke_Inside_1
Fire inside left Temp_Inside_1, Temp_Inside_3, Temp_Inside_6, Temp_Inside_8,

Smoke_Inside_0
Fire inside right Temp_Inside_0, Temp_Inside_2, Temp_Inside_7, Temp_Inside_9,

Smoke_Inside_1
Temperature inside down left Temp_Inside_6, Temp_Inside_8
Temperature inside down right Temp_Inside_7, Temp_Inside_9
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