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Abstract. Increasing the lifespan of a group of distributed wireless sensors is one of the major challenges in

research. This is especially important for distributed wireless sensor nodes used in harsh environments since it

is not feasible to replace or recharge their batteries. Thus, the popular low-energy adaptive clustering hierarchy

(LEACH) algorithm uses the “computation and communication energy model” to increase the lifespan of dis-

tributed wireless sensor nodes. As an improved method, we present here that a combination of three clustering

algorithms performs better than the LEACH algorithm. The clustering algorithms included in the combination

are the k-means++, k-means, and gap statistics algorithms. These three algorithms are used selectively in the

following manner: the k-means++ algorithm initializes the center for the k-means algorithm, the k-means algo-

rithm computes the optimal center of the clusters, and the gap statistics algorithm selects the optimal number

of clusters in a distributed wireless sensor network. Our simulation shows that the approach of using a combi-

nation of clustering algorithms increases the lifespan of the wireless sensor nodes by 15 % compared with the

LEACH algorithm. This paper reports the details of the clustering algorithms selected for use in the combination

approach and, based on the simulation results, compares the performance of the combination approach with that

of the LEACH algorithm.

1 Introduction

Wireless sensor networks are being used for many different

applications, such as monitoring chemical spills, detecting

and assessing the extent of environmental contamination, and

monitoring the movement of soldiers and weapons on the

battlefield. However, their limited lifespan is a great concern

when they are used in remote locations or in harsh environ-

ments.

Many different techniques have been introduced in an ef-

fort to maximize their lifespan, but these techniques have

focused on having the nodes in a cluster send their data to

a selected cluster head node that, in turn, reports the data

to the base station. Therefore, the choice of the number of

clusters and the way the cluster head node is selected are

the main focuses of these techniques. Clustering and the use

of cluster heads in wireless sensor networks have the po-

tential to enhance the lifespans of a group of sensor nodes

and to minimize the generation of noise in the signals ex-

changed between the sensor nodes and the base station (sink)

(Heinzelman et al., 2000). In this approach, the cluster head

organizes a reservation scheme to improve communication

with the sensor nodes in the cluster, and the cluster head uses

this scheme to aggregate, compress, and transmit the clus-

ter’s sensing data to the base station. Several technologies

have been designed to improve the lifespan of the sensors.

For example, algorithms were developed for this purpose by

the energy efficient heterogeneous clustered scheme (EEHC)

(Kumar et al., 2009) by the design of a distributed energy ef-

ficient clustering (DEEC)(Qing et al., 2006), and by the low-

energy adaptive clustering hierarchy (LEACH) (Heinzelman

et al., 2000). These goals of these algorithms were to de-

termine the optimal number of clusters in a given number

of sensor nodes and to selecting a head in a cluster of sen-

sors. The low energy consumption clustering routing proto-

col (Kumar et al., 2009) improved the LEACH algorithm by

utilizing the k-means algorithm that divides the sensor nodes

into k clusters in the setup and steady-state phases. A major

problem of the k-means algorithm was that it could not ac-

Published by Copernicus Publications on behalf of the AMA Association for Sensor Technology.



64 D. D. Mebratu and C. Kim: Combination of clustering algorithms

3 

 

composed of two components, i.e., 𝐸𝑇𝑥˗𝑒𝑙𝑒𝑐(𝑞), the electrical energy consumed for digital coding, modulation, and filtering 

a signal and 𝐸𝑇𝑥˗𝑎𝑚𝑝(𝑞, 𝑑), the energy required for amplification.  

 

Figure 1: Radio Energy Model 
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Then, the total energy used to transmit a q-bit message over a distance 𝑑 is expressed by: 

𝐸𝑇𝑥(𝑞, 𝑑)  =  𝐸𝑇𝑥˗𝑒𝑙𝑒𝑐(𝑞)  +  𝐸𝑇𝑥˗𝑎𝑚𝑝(𝑞, 𝑑)                                                                                                                                     (1) 

The energy for k-bit amplification is expressed by 𝐸𝑇𝑥˗𝑎𝑚𝑝(𝑞, 𝑑) =  𝑞𝜀𝑓𝑠𝑑
2

, in a free space path (𝜀𝑓𝑠 ) with distance 

squared (𝑑^2). When a multi-path is considered, the amplification energy is defined as  𝐸𝑇𝑥˗𝑎𝑚𝑝(𝑞, 𝑑)  =  𝑞𝜀𝑚𝑝𝑑
4

, for  q 

bits with distance to the fourth power (d
4
). The LEACH algorithm proposed that the free space (fs) model be used when the 10 

distance between the transmitter and the receiver is less than the threshold distance do (base station distance); otherwise, the 

multipath (mp) model is used, as summarized below: 

    𝐸𝑇𝑥(𝑞, 𝑑) = 𝐸𝑇𝑥˗𝑒𝑙𝑒𝑐 
+ 𝑞𝜀𝑓𝑠𝑑

2
,        𝑑 < 𝑑𝑜                                                                                                                

(2) 

    𝐸𝑇𝑥(𝑞, 𝑑) = 𝐸𝑇𝑥˗𝑒𝑙𝑒𝑐 
+ 𝑞𝜀𝑚𝑝𝑑

4
,       𝑑 ≥ 𝑑𝑜                                                                                                                               

(3) 

The receiver’s energy for a q-bit receipt is calculated by:   15 
             𝐸𝑅𝑥(𝑘) =

 𝑞𝐸𝑒𝑙𝑒𝑐                                                                                                                                                                          (4) 

                 Let us now consider energy consumption by the sensor nodes in a cluster of a multi-cluster sensor network.  

Assuming that there are N wireless sensor nodes uniformly distributed in a square region of M x M geographical units that 

have k clusters, there are N/k nodes per cluster, and, in each cluster, there is one cluster head node and (N/k) − 1 non-cluster-

head nodes (or "cluster member nodes"). In a cluster, during the steady-state phase, data transfers from the nodes to a cluster 20 

head as well as from the cluster head to the sink, which is located a long distance away, so the energy of the cluster head’s 

battery is being depleted faster that of any of the member nodes, because the cluster head receives data from the member nodes, 

aggregates and compresses them, and transmits the compressed data to the sink. The energy consumption of a cluster head is 

calculated by: 

𝐸𝐶𝐻 = 𝑞𝐸𝑒𝑙𝑒𝑐 (
𝑁

𝑘
− 1) + 𝑞𝐸𝐷𝐴 (

𝑁

𝑘
) + 𝑞(𝐸𝑇𝑥−𝑒𝑙𝑒𝑐 + 𝜀𝑚𝑝𝑑𝑡𝑜𝐵𝑆

4 )                                                                                            (5) 25 
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Figure 1. Radio energy model.

commodate the inevitable situation that the number of clus-

ters gradually changed as the energy levels of the nodes de-

creased. Also, the method did not solve the sticky issue of ini-

tialization of the k-means process (Zhong et al., 2012). How-

ever, k-harmonic means (KHM) clustering solved the initial-

ization problem by providing “soft membership”, which as-

sumes that a data element belongs to more than one cluster;

also, if a data point is not close to any center or cluster, a “dy-

namic weighting function” provides a higher weight to the

data element in the next iteration so that it becomes a can-

didate for all of the clusters. However, the KHM algorithm

cannot provide an optimal number of clusters.

In this paper, we have provided detailed discussions of

clustering algorithms; the combination of k-means++, k-

means, and gap statistics algorithms; the selective ways in

which each is used and combined; and how, using the com-

bination, the optimal number of clusters is generated, which

leads to the maximum lifespan of a group of distributed wire-

less sensors. Before discussing the clustering algorithms and

their combination, in the next section, we discuss a popular

clustering algorithm, known as the low-energy adaptive clus-

tering hierarchy algorithm (LEACH), for extending the lifes-

pan of wireless sensors. Section 3 describes the selected clus-

tering algorithms and their combination for determining the

optimal number of clusters. Last, Sect. 4 provides the simula-

tion results and compares the results provided by a combined

clustering algorithm and the LEACH algorithm. Section 5

presents the conclusion.

2 Clustering algorithms

2.1 Low-energy adaptive clustering algorithm (LEACH)

The LEACH algorithm was developed to minimize the power

consumption of wireless sensor nodes by determining the op-

timal number of clusters, k, in a group of distributed homoge-

neous wireless sensors based on the “computation and com-

munication energy model” (Heinzelman et al., 2000). In or-

der to determine the optimal number of clusters, k, first, the

algorithm considers how much energy the head of a cluster

consumes using the radio energy model depicted in Fig. 1.

In the radio energy model, for a single bit transmission over

a unit distance, ETx is the transmission energy dissipated,

which is composed of two components, i.e., ETx-elec(q), the

electrical energy consumed for digital coding, modulation,

and filtering a signal and ETx-amp(q,d), the energy required

for amplification.

Then, the total energy used to transmit a q bit message

over a distance d is expressed by

ETx(q,d)= ETx-elec(q)+ETx-amp(q,d). (1)

The energy for k bit amplification is expressed by

ETx-amp(q,d)= qεfsd
2, in a free space path (εfs) with dis-

tance squared (d2). When a multi-path is considered, the am-

plification energy is defined as ETx-amp(q,d)= qεmpd
4, for

q bits with distance to the fourth power (d4). The LEACH

algorithm proposed that the free space (fs) model be used

when the distance between the transmitter and the receiver

is less than the threshold distance do (base station distance);

otherwise, the multipath (mp) model is used, as summarized

below:

ETx(q,d)= ETx-elec+ qεfsd
2, d < do, (2)

ETx(q,d)= ETx-elec+ qεmpd
4, d ≥ do. (3)

The receiver’s energy for a q bit receipt is calculated by

ERx(k)= qEelec. (4)

Let us now consider energy consumption by the sensor

nodes in a cluster of a multi-cluster sensor network. Assum-

ing that there are N wireless sensor nodes uniformly dis-

tributed in a square region of M ×M geographical units that

have k clusters, there are N/k nodes per cluster, and, in each

cluster, there is one cluster head node and (N/k)− 1 non-

cluster-head nodes (or “cluster member nodes”). In a cluster,

during the steady-state phase, data transfer from the nodes to

a cluster head as well as from the cluster head to the sink,

which is located a long distance away, so the energy of the

cluster head’s battery is being depleted faster that of any of

the member nodes, because the cluster head receives data

from the member nodes, aggregates and compresses them,

and transmits the compressed data to the sink. The energy

consumption of a cluster head is calculated by

ECH =qEelec

(
N

k
− 1

)
+ qEDA

(
N

k

)
(5)

+q
(
ETx-elec+ εmpd

4
to BS

)
,
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where dto BS is the distance between the cluster head and the

base station, and (EDA) is the energy dissipation per bit for

data aggregation and compression.

The energy consumption by a member node for transmit-

ting a q bit message to the cluster head is defined as

ENon-CH = q
(
ETx-elec+ q∈fsd

2
CH

)
, (6)

where d2
CH is the distance between the member nodes and the

cluster head.

Now, let us calculate the energy consumption in a cluster

in the aforementioned sensor network, i.e., N sensors dis-

tributed uniformly in an M ×M geographical unit square

area that is divided into k clusters. First, we can say that each

cluster in the area takes up approximately (M2/k) of the ge-

ographical region. Second, the location of a sensor node can

be described by a Cartesian coordinate ρ(x,y) (Heinzelman

et al., 2000). If the area is a circle, the sensor’s location can be

described by a polar coordinate ρ(r,θ ), where r is the radius

and θ is an angle, with the radius defined by r =M/
√
πk.

Third, the expected square distance in a circular area between

the cluster head and the member sensor nodes is calculated

by

E
[
d2

to CH

]
= ρ

2π∫
θ=0

M∫
r=0

/
√
πkr3drdθ =

ρM4

2πk2
, (7)

where due to the uniform region of a node,

ρ =
1

(M2/k)
, E

[
d2

to CH

]
=
M2

2πk
, (8)

ENon-CH = qETx-elec+
qεfsM

2

2πp
. (9)

Fourth, the total energy consumption for a cluster is the

sum of that for the cluster head and for the non-cluster head

member nodes:

Etotal =ECH+ENon-CH, (10)

Etotal =q (Eelec (N/k− 1)+EDA (N/k)+ 2ETx-elec (11)

+εmpd
4
to BS+ qεfsM

2/2πk
)
.

Finally, the optimal number of clusters, k, can be deter-

mined by setting the derivative of Etotal with respect k to

zero, resulting in

k =

√
N
√
εfsM

√
2π
√
εmpd

2
to BS

(12)

εfs = 10pJbit−1 m−2, εmp = 0.0013pJbit−1 m−4.

Based on Eq. (12), let us assume that the number of sensor

nodes (N ) and the network region (M) are constant, but the

base station distance (d) increases; subsequently, the optimal

number of clusters (k) decreases. Ultimately, some clusters

have many sensor nodes when the number of clusters de-

creases due to k is the inverse squared distance. As Haibo et

al. (2010) described, a cluster head with many sensor nodes

consumes more energy than a cluster head with a few sen-

sor nodes, because it aggregates, receives, and compresses

more sensing information than a cluster head with few sensor

nodes. In addition, if there is a large distance between a clus-

ter head and the base station, the cluster head node consumes

more energy than it would if the distance were shorter. If the

current cluster head runs out of energy, the entire wireless

sensor network is no longer operational. The main challenge

is to minimize the power consumption of the cluster head,

especially when many sensor nodes are allocated to a single

cluster.

2.2 k-means++ algorithm

The k-means++ algorithm is used to assign the initial center

of the k-means algorithm. Since the k-means algorithm ran-

domly chooses the initial centroid, it is not guaranteed that

clustering by the k-means algorithm is optimal. For example,

if the initial random centroid is far away from the cluster’s

true center, the number of iterations required to optimize the

centroid takes longer, and an incorrect clustering result may

be obtained (Arthur et al., 2007; Avros et al., 2012). To rem-

edy these problems, the k-means++ algorithm randomly se-

lects the initial center from the sensor nodes’ locations, but

their location depends on their squared distances from the

closest center that already has been selected.

For example, the first single initial center (c1) is selected

randomly; however, the remaining centers, such as those in

the range from (c2) to (cl), are calculated based on the steps

described below.

First, let us assume that the sensor nodes are represented

by X = (x1, . . .,xn) and that l centers are represented as C,

where C = (c1, . . .,cl). The distance between each sensor

node and (c1) is calculated by

D1 = ‖x1− c1‖
2, D2 = ‖x2− c1‖

2 (13)

and Dn = ‖xn− c1‖
2.

The distance of each sensor nodes and over the average dis-

tance is calculated by

p (x1)=
D2

1

D2
1

, p (x2)=
D2

2

D2
1 +D

2
2

, (14)

p (xn)=
D2
n

D2
1 +D

2
2 + . . .+D

2
n

.

Second, the algorithm generates a random number. Then,

one of the values of p (x1) ,p (x2) , . . .,p (xn) close to a ran-

dom number (i.e., xi) becomes the second center. For exam-

ple, for the random number of R ≈ p (x4), the sensor node

x4 becomes (c2); otherwise, the algorithm generates another
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value. The third step is to choose the third center (c3). The

distance is calculated as

D2
1 =min(‖x1− c1‖

2
‖x1− c2‖

2),

D2
2 =min(‖x2− c1‖

2
‖x2− c2‖

2), (15)

D2
3 =min(‖x3− c1‖

2
‖x3− c2‖

2) .

The distance of each sensor node and over the average dis-

tance of sensor nodes is also calculated as

p (x1)=
D2

1

D2
1

, p (x2)=
D2

2

D2
1 +D

2
2

, (16)

p (xn)=
D2
n

D2
1 +D

2
2 + . . .+D

2
n

.

Again, the algorithm generates a random number to

choose one of the values of p (x1) ,p (x2) , . . .,p (xn). The

process of selecting the initial centers using the above steps

continues until l centers are selected.

Moreover, Arthur et al. (2007) chose the initialization cen-

ter of a data set one by one in a controlled fashion using the

k-means++ algorithm. For example, the first initial center

was selected randomly in a sensing region, but the subse-

quent centers depended on the value of the previous center.

For example, c2 depends on c1, and c3 depends on c2 and

c1. If we expand the illustrative example, the k-means++ al-

gorithm can be conveniently generalized for any number of

nodes and clusters.

The first step is to choose the first single initial center (c1)

randomly. The second step is to compute the distance be-

tween all sensor nodes and (c1) and choose c2 by the follow-

ing:

Di = ‖xi − c1‖
2, (17)

p (x1)=
D2

1

D2
1

, p (x2)=
D2

2

D2
1 +D

2
2

, (18)

p (xn)=
D2
n

D2
1 +D

2
2 + . . .+D

2
n

.

The algorithm generates a random number. Then, one of

the values of p (x1) ,p (x2) , . . .,p (xn) close to the random

number, xi , becomes a second center, c2. Third, recompute

the distance vector to choose the third center as

D2
i =min(‖xi − c1‖

2
‖xi − c2‖

2, . . .,‖xi − cl‖
2). (19)

Calculate p (x1) , . . .,p (xn) as Eq. (16) and generate a ran-

dom number close to p (x1) , . . .,p (xn) to choose the third

center (c3). The difference between Eqs. (17) and (19) is that

Eq. (17) is used to calculate the distance between the initial

center (c1) and the sensor nodes, whereas Eq. (19) is used to

calculate the distance based on (c1) and (c2). In general, all

remaining centers, such as cl , are calculated as

D2
n =min(‖xi − c1‖

2, . . .,‖xi − cl‖
2), (20)

7 

 

center for sensor nodes, which are in the same group. For example,  𝑐1𝑛𝑒𝑤 =
1
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{(𝑥1−𝑐2)2 + (𝑥2−𝑐2)2}. Last, we continue calculate the center based on the previous equation until the new center is the same 

as the previous center location. When the previous and the new center location are the same, the centers are optimal, which 

shows in figure 3d. 
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Figure 2. k-means algorithm diagram: a) location of the sensor nodes; b) initial centers; c) new center after multiple iterations; 

d) optimal centers  
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      𝑐𝑗 =
1

𝑢𝑗
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The cluster center 𝑐𝑗 represents the current estimation of the location of the center of cluster j, and 𝑢𝑗 is the number of sensor 

nodes in cluster j. 

2.4.  Gap Statistics 

“Gap statistics” is a standard technique for determining the optimal number of clusters for a dataset (or a group of 

sensor nodes) by comparing the observed weight curve to the expectation of a referenced weight curve (Tibshirani et al., 2001). 20 

The observed weight is the sum of the distance between all observed sensor nodes (actual data) and the center of the cluster; 

the referenced weight is the sum of the distance between all referenced sensor nodes (ideal) and the center of the cluster (Yan, 
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Figure 2. k-means algorithm diagram: (a) location of the sensor

nodes; (b) initial centers; (c) new center after multiple iterations;

(d) optimal centers.

p (x1)=
D2

1

D2
1

, p (x2)=
D2

2

D2
1D

2
2

, . . ., (21)

p (xn)=
D2
n

D2
1 +D

2
2 + . . .+D

2
n

.

2.3 k-means algorithm

The k-means algorithm is a method of grouping or classify-

ing sensor nodes into k numbers of groups/clusters (Zhong et

al., 2012). This technique selects an optimal center location

of a cluster from which the sum of the squared distances to

the locations of the sensor nodes is minimized.

Figure 2 illustrates how the k-mean algorithm is used

to select an optimal center. First, sensor nodes are repre-

sented as (x1,x2,x3,x4) in Fig. 2a, and let us randomly

choose two centers, called c1 and c2 (Fig. 2b). Next, calcu-

late the distance between each sensor node to the two centers,

‖x1− c1‖
2, . . .,‖x4− c1‖

2 and ‖x1− c2‖
2, . . .,‖x4− c2‖

2.

Third, group sensor nodes are based on sensor nodes’

minimum distance to the centers. For example, if x1 and

x2 are closest to c1, then x1 and x2 will be in the

same group. Similarly, if x3 and x4 are closest to c2,

then x3 and x4 will be in the same group. In addition,

Fig. 2c shows that sensor nodes are grouped based on

the closest distance to the centers. Four, calculate a new

center for sensor nodes, which are in the same group.

For example, c1new =
1
2

{
(x1− c1)2

+ (x2− c1)2
}

and c2new =

1
2

{
(x1− c2)2

+ (x2− c2)2
}
. Last, we continue to calculate

the center based on the previous equation until the new center

is the same as the previous center location. When the previ-

ous and the new center location are the same, the centers are

optimal, shown in Fig. 2d.
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If we expand the illustrative example, the k-means algo-

rithm can be generalized conveniently for any number of

nodes and clusters. In general, the locations of n sensor nodes

are represented by X, where X = (x1, . . .,xn), and l centers

are represented by C, where C = (c1, . . .,cl). The k-means

objective function, which minimizes the distance between

sensor node (xi) and the cluster center
(
cj
)
, is defined as

KM(X,C)=

n∑
i=1

∥∥xi − cj∥∥2
(22)

i = 1, . . .,n and j = 1, . . ., l,

where

cj =
1

uj

∑
xiεuj

xi . (23)

The cluster center cj represents the current estimation of

the location of the center of cluster j , and uj is the number

of sensor nodes in cluster j .

2.4 Gap statistics

“Gap statistics” is a standard technique for determining the

optimal number of clusters for a data set (or a group of sen-

sor nodes) by comparing the observed weight curve to the

expectation of a referenced weight curve (Tibshirani et al.,

2001).

The observed weight is the sum of the distance between

all observed sensor nodes (actual data) and the center of the

cluster; the referenced weight is the sum of the distance be-

tween all referenced sensor nodes (ideal) and the center of

the cluster (Yan, 2005; Zhang, 2001). The observed weight

and the expectation of the referenced weight can be derived

mathematically as shown below.

First, let us assume that the sensor nodes are represented

by X = (x1, . . .,xn). Also, if there are sensor nodes in a clus-

ter, the distance between each of them is defined by

Dk =

′∑
ii

d ′ii′ i = (1, . . .,n) (24)

=

∑n

i=1

∑n

i′=1
‖xi − xi′‖

2,

=(x1− x1)2
+ (x1− x2)2

+ (x1− x3)2
+ (x2− x1)2

+ (x2− x2)2
+ . . .+ (xn− xn)2

x1− x1 = 0, x2− x2 = 0, . . .,xn− xn = 0.

Therefore, Dk = 2nk

n∑
i=1

‖xi − x‖
2,

where x =
x1′+x2′+...+xn′

n
, and x is the center of the cluster,

n is the number of sensor nodes, and di,i′ is the distance

between two nodes (i and i′), k is the number of clusters,

8 
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three clusters.  20 
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Cluster 2
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Figure 3. Sensor nodes in a cluster.

(k = 1, . . .,g), and g is the maximum number of clusters. The

weight in the k cluster is defined by

Wk =

g∑
k=1

1

2nk
Dk. (25)

Figure 3 also illustrates the distance between each of the

sensor nodes, the number of clusters, and the number of

sensor nodes in a cluster. For example, k = 2, n1 = 3, and

n2 = 3, D1 is the total distance between sensor nodes to the

center at cluster 1, and D2 is the total distance between sen-

sor nodes to the center at cluster 2.

Second, the algorithm generates the referenced weight by

adding a small noise into the original sensor nodes or the

observed sensor nodes. The referenced weight is Wk , and

the referenced weight dispersion is W ∗kb; k is the number of

clusters, k = 1, . . .,g, and b refers to the reference data sets,

b = (1,2, . . .,B), where B is the maximum number of data

sets. For example, when k = 3 and b = 5, the algorithm gen-

erates five different locations for sensor nodes which are dis-

tributed across three clusters.

Third, the algorithm calculates the expected value of the

referenced weight, E∗n(Wkb), and n is the number of sen-

sor nodes. In order to analyze the difference between ob-

served weight and the expected value of referenced weight,

the algorithm uses the logarithmic scale graph since it shows

a visual differentiation between observed and referenced

weight. Therefore, the observed weight is represented as log

(Wk), and the expected referenced weight is represented as

E∗n (log(Wkb)).

As expressed above, the main goal of the gap statistics

method is to compare the curve of the observed weight

(log(Wk)) to the curve that represents the expectation of a

referenced weight (E∗n {log(Wkb)}) to determine the optimal

number of clusters based on the maximum gap between the

two curves. As Yan (2005) and Zhang (2001) describe, the

number of optimal clusters can be found when (log(Wk)) falls

the farthest below the expected referenced weight dispersion

curve.

However, when there is a small gap between the

log(Wk) curve and the expected referenced weight curve
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Figure 4. Results of the example with three clusters: (a) sensor nodes; (b) weight dispersion, Wk , as a function of k number of clusters.

(E∗n {log(Wkb)}), the cluster is not optimal because the ob-

served sensor nodes have noise that is the same as that of

the referenced weight sensor nodes. Conversely, when there

is a maximum gap between the log(Wk) curves and the ex-

pected referenced weight curve (E∗n {log(Wkb)}), the cluster

is optimal. In other words, the observed sensor nodes have

very small noise at the maximum gap compared to that of

the referenced sensor nodes, which are generated with noise.

In this discussion, the term “noise” indicates that the sensor

nodes are not close to each other and that they do not form

the optimal number of clusters.

For example, Fig. 4a shows a scatter graph in which the

sensor nodes are distributed across three clusters; one clus-

ter is well separated from the other two clusters, which are

connected. Figure 4b shows that using the gap statistics algo-

rithm determines the optimal number of clusters in Fig. 4a.

As Fig. 4b shows, the increased number of clusters results

in decreased weight. The red line indicates the location of

the original sensor nodes within the cluster and has observed

weight (log(Wk)); the graph shows a rapid decrease up to

cluster number 2, and, then, it decreases slowly from clus-

ter numbers 3–10. In addition, the blue line is the referenced

weight, (E∗n {log(Wkb)}). The optimal number of clusters is

determined to be three, because, at that point, the gap be-

tween the two lines is at its maximum.

3 Combination of the clustering algorithms

As summarized above, the LEACH (Heinzelman et al., 2000)

algorithm uses a computation and communication energy

model to increase the lifespan of the sensor nodes. But the

method is still far from being a complete and optimal solution

to the problem. For example, the LEACH algorithm selects

a fixed number of clusters, but it ignores the fact that some

of the sensor nodes in a cluster can be reallocated to another

cluster. It also ignores the fact that the cluster head’s energy

will be depleted quickly when too many sensor nodes remain

in a single cluster, because more energy is required for ag-

gregating, compressing, and transmitting more information.

With this background of partial solutions to the problem, our

intention was to attain a complete solution by using other
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Figure 5. Combination of the three clustering algorithms.

clustering algorithms that were developed for other purposes.

This section provides details concerning how they were used.

The operation of wireless sensor nodes is divided into three

phases, i.e., setup, advertisement, and steady state. In this re-

search, we focused only on the setup phase. During the setup

phase, first, the sensor nodes identify their locations and po-

sitions and then transmit the information to a base station.

At the base station, where this combined algorithm is located

and runs, the k-means++ algorithm generates the initial cen-

ter for the sensor nodes’ location. Second, the k-means algo-

rithm chooses the optimal centers of the clusters. Finally, the

gap statistics algorithm is used to select the optimal number

of clusters for the nodes.

Figure 5 shows the steps that are used to choose the op-

timal number of clusters based on the three clustering algo-

rithms (k-means++, k-means, and gap statistics).

In the first step, we represent the location of the sensor

node. In the second step, we initialize the cluster’s center

based on the k-means++ algorithm. In the third step, we

choose the optimal center for the cluster based on the k-

means algorithm. In the fourth step, we used the gap statistic

algorithm to calculate the optimal number of clusters.
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The first step starts with a number of sensor nodes repre-

sented by X = (x1, . . .,xn) In the second step, we calculate

the initial centers for the sensor nodes based on Eqs. (17)–

(19).

Third, we calculate the optimal centers of the distributed

sensor network based on the k-means algorithm using

Eqs. (22) and (23). The k number of clusters is defined as

(k = 1, . . .,g). Using Eqs. (24)–(25), the sum of the clus-

ters’ weight (Wk) is calculated, and the mean of a reference

weight (W ∗kb) is generated. b refers to the reference data sets,

b = (1, 2, . . .,B), where B is the maximum number of data

sets. In order to analyze the difference between the observed

weight and the expected value of the referenced weight, the

algorithm uses a logarithmic scale graph since it shows a

visual differentiation between the observed weight and the

referenced weight. Therefore, the observed weight is repre-

sented as log (Wk), and the expected referenced weight is

represented as E∗n (log(Wkb)). The gap statistics is defined

by

Gapn(k)= E∗n {log(Wkb)}− log(Wk) . (26)

As expressed above, the main goal of the gap statistics

method is to compare the curve of the observed weight

(log(Wk)) to the curve that represents the expected reference

weight (E∗n {log(Wkb)}) to determine the optimal number of

clusters based on the maximum gap between the two curves.

max(Gapn(k))≈ k̂opt (27)

4 Simulation and discussion

4.1 Test sensor network and scope of simulation

The test sensor network is of the sensor nodes randomly dis-

tributed between u(0,0) and u(100m,100m) as illustrated in

Fig. 6, with their location expressed as X = [(xij )], where

(i = 1,2, . . .,n) and (j = 1,2, . . .,k). In addition, the base

station (sink) is assumed to be at (50 m, 175 m).

For the simulation of the test sensor network, we used the

LEACH algorithm’s simulation parameters, as indicated in

Table 1. For example, the initial energy for each of the sensor

nodes was set to 0.5 J. Each of the data messages were 525

bytes long, and the broadcast packet size header was 25 bytes

long.

The radio electronics energy was 50 nJ bit−1, and the

radio transmitter energy was set to 10 pJ bit−1 m−2 or

0.0013 pJ bit−1 m4. The cluster head collects data from the

sensor nodes and aggregates those data prior to sending them

to the base station. The energy used to aggregate the data

(EDA) was 5 nJ bit−1 signal−1.

4.2 Code structures for the clustering algorithms

The simulation steps of the three combined algorithms are

described in Table 2. First, the k-means++ algorithm simu-

lates choosing the initial center of the sensor nodes; second,

Figure 6. 100 wireless sensor nodes in the area of the sensing net-

work.

Table 1. Simulation parameters.

Parameter Value

Network field From (0,0) to (100,100)

Number of nodes 100

Base station At (50,175)

Initial energy 0.5 J

Data packet size 525 bytes

Broadcast packet size 25 bytes

Eelec 50 nJ bit−1

εfs 10 pJ bit−1 m2

εemp 0.0013 pJ bit−1 m−4

EDA 5 nJ bit−1 signal−1

Threshold distance (do) 75 m

the k-means algorithm simulates the calculation of the opti-

mal center. Third, the gap statistics algorithm simulates the

calculation of the optimal number of clusters.

4.3 Simulation

Step 1: determination of the optimal center of the cluster

using the k-means algorithm

The k-means++ algorithm and the k-means algorithm were

used to generate the optimal location of the center of the

sensor nodes. For example, in Fig. 7, the optimal center is

marked by “X”, and the sensor nodes are marked by gray,

blue, green, cyan, dark blue, black, and Red.

Step 2: determination of the optimal number of clusters

using gap statistics

After the optimal location of the center of the sensor nodes

was calculated, the gap statistics algorithm determined the

optimal number of sensor nodes by comparing the observed

weight curve (log(Wk)) to the expected reference weight

curve E∗n {log(Wkb)}.
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Table 2. Combination of clustering algorithms.

Algorithm 1: k-means++

Require: generate a uniform random number sensor nodes’ location

1: c1← select a single center from uniformly distributed sensor node location X

2: while ci < kdo >k is the number of cluster

3: sample x ∈X with probability
D2
i∑

i=1

D2
i

4: ci← ci ∪ {x} end while > select a new center

5: end while

Algorithm 2: k-means

6: use Initial center from k-means++ C ⊂X >C = c1. . .cl
7: repeat

8: for all x ∈X find KM(X,C) (closet center c ∈ C to x)

9: for all i ∈ k let cj = average {x ∈X|KM(X,C)= cj } >j = 1, . . ., l

10: until The set C is unchanged

Algorithm 3: gap statistics

Require: cluster the observed data, with the number of clusters fixed at k = 1,2, . . .,g

11: for k = 1→ g do
12: Dk←

∑
i,i′
dii′

13: Wk←
∑g
k=1

1
2nk
Dk > total distance within clusters

14: end for

Require: generate reference data W∗
kb

, >b = 1,2. . .B, k = 1,2, . . .,g

15: for k = 1← g do
16: for b = 1→ B do
17: Dk←

∑
i,i′
dii′

18: W∗
kb
←
∑g
k=1

1
2nk
Dk

19: end for

20: end for

21: Gapn(k)= E∗n {log(Wkb)}− log(Wk)

22: max(Gapn(k))≈ k̂opt

Figure 7. Sensor nodes grouped in seven clusters.

Figure 8 shows the observed and reference weight func-

tions versus the number of clusters. In addition, the red dots

on the red curve are the observed weight curve (log(Wk)).

The blue curve is the reference weight curve E∗n {log(Wkb)}

for different numbers of clusters, which was used to calcu-

late the gap statistics. The optimal number of clusters was

estimated to be seven because the maximum gap between

the reference (blue) and the observed (red) curves reached its

maximum at the seven-cluster point.

Step 3: Comparison of the LEACH algorithm and the

combination of clustering algorithms

We compare our approaches with the LEACH algorithm’s

approaches to determine which method provided a longer

lifespan for the wireless sensor nodes.

As discussed in Sect. 2, the LEACH algorithm determines

the optimal number of clusters, k, in a group of distributed

homogeneous wireless sensors based on the “computation

and communication energy model”.

To assess the two methods, we used the LEACH algorithm

to choose a cluster head within sensor nodes in a cluster. For

example, sensor nodes randomly chosen from 0 to 1. When
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Figure 8. log(mean) dispersion of reference and log dispersion

original data sets.

the randomly chosen value is less than the T (n), the sensor

node becomes a cluster head; otherwise, a different sensor

node chooses another random number to become a cluster

head.

The value of T (n) is calculated based on the probability

of a sensor node becoming a cluster head and the number of

rounds. For example, if there are 20 sensor nodes in a clus-

ter, the probability of becoming a cluster head for each sensor

node is p = 1/20= 0.05. After the first cluster head is cho-

sen, the probability of 1 of the remaining 19 sensor nodes

becoming a cluster head in the next round is 1/19. Thus, the

number of rounds required for every sensor node to become

a cluster head is r = 1/p.

T (n)=

{ p

1−p · (r ·mod 1/p)
if nεG

0 otherwise
, (28)

where r is the number of rounds remaining, G is a group of

sensor nodes that have not yet become cluster heads in the

previous rounds, p is the expected probability to become a

cluster head, and n is a sensor node.

The operation of the LEACH algorithm depends on the

rounds. Each round has two phases, i.e., a setup phase and

a steady-state phase. During the setup phase, the number of

clusters and the cluster head are selected. In the steady-state

phase, data are transferred from the sensor nodes to cluster

head, which sends them to the base station.

4.4 Comparison of performance

Figure 9 shows the number of sensors still alive over time and

shows the advantage of using the combination of the cluster-

ing algorithms (blue curve) over the LEACH algorithm (red

curve). The energy of the sensor nodes begins to diminish at

t = 62 cycles using the LEACH algorithm, while it begins to

diminish at t = 75 cycles using the combination of cluster-

ing algorithms. In the LEACH algorithm, all of sensor nodes

became inactive at t = 73 cycles, whereas they lasted up to

Figure 9. Lifespans of homogenous wireless sensor nodes: (red)

LEACH algorithm; (blue) combination of clustering algorithms.

87 cycles in the combination of clustering algorithms. Over-

all, the combination of clustering algorithms provided 15 %

greater lifespan for the sensor nodes than the LEACH algo-

rithm.

5 Conclusions

To improve the lifespan of sensor networks, we proposed

using a combination of clustering algorithms, i.e., the k-

means algorithm, the k-means++ algorithm, and gap statis-

tics, and we compared that approach with the use of the popu-

lar LEACH algorithm. In applying the clustering algorithms,

the k-means algorithm was used to classify or group sensor

nodes into k clusters based on their locations. Also, the k-

means++ algorithm obtained more appropriate initial center

locations for the k-means algorithm, which allowed the op-

timization of the cluster’s center, and gap statistics was used

to select the optimal number of clusters for a wireless sensor

network.

Our simulation demonstrated the advantage of using the

combination of clustering algorithms over using the LEACH

algorithm in that the lifespan of the wireless sensor nodes

was increased by 15 %.
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