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Abstract. This paper presents a scanning method for indoor mobile robot localization using the received signal
strength indicator (RSSI) approach. The method eliminates the main drawback of the conventional fingerprint,
whose database construction is time-consuming and which needs to be rebuilt every time a change in indoor
environment occurs. It directly compares the column vectors of a kernel matrix and signal strength vector using
the Euclidean distance as a metric. The highest resolution available in localization using a fingerprint is restricted
by a resolution of a set of measurements performed prior to localization. In contrast, resolution using the scan-
ning method can be easily changed using a denser grid of potential sources. Although slightly slower than the
trilateration method, the scanning method outperforms it in terms of accuracy, and yields a reconstruction error
of only 0.08 m averaged over 1600 considered source points in a room with dimensions 9.7m × 4.7m × 3m. Its
localization time of 0.39s makes this method suitable for real-time localization and tracking.

1 Introduction

Wireless indoor mobile robot localization is a challenging
problem and has gained wide attention in the research com-
munity (Huang et al., 2016). Location information is es-
sential for the robot to complete the tasks. In many mo-
bile robot applications, especially in the industry, high local-
ization and positioning accuracy are required (Zhang et al.,
2014; Röwekämper et al., 2012). Domestic robots and auto-
mated guided vehicles (AGV) are examples of mobile robots
used inside homes and in the industry, respectively. When a
mobile robot does not follow a predefined path, a real-time
tracking is necessary. This process can be seen as a sequen-
tially performed localization of a moving robot. Wireless
sensor networks (WSNs) are usually used to perform track-
ing (Zhang et al., 2014) and received signal strength indicator
(RSSI) is the most used signal property in wireless indoor lo-
calization (Farid et al., 2013). In this paper, we address the
problem of indoor mobile robot localization and tracking us-
ing WSNs.

Many algorithms exist to estimate a robot location in an
indoor environment. Fingerprint is a popular approach used
for this purpose. It can provide a highly accurate localization;

however, the fingerprint approach requires advanced mea-
surements of RSSI signals associated with the specific points
and collected in a database. The size of a database grows
if higher resolution is required for a specific application.
The closest match between the measurements in the database
and the existing measurement is done using deterministic or
probabilistic approaches. Improvements in the localization
accuracy of the traditional fingerprint technique are achieved
by incorporating the weighted fusion procedure (Ma et al.,
2015). A fingerprint method using WiFi based on the sim-
ilarity between unequal length sequences is used by Huang
et al. (2016) for localizing a robot. Another frequently used
technique to estimate the position of a robot in an indoor en-
vironment is trilateration. According to this geometry-based
localization technique, the dependency of signal strengths
is considered as a function of distance between a transmit-
ter and a receiver. Location estimation can be expressed as
the problem of determining the intersection of three spheres
by finding a solution for the system of quadratic equations,
provided that the centers and radii of spheres are known.
Although in the case of precise measurements, trilateration
can enable accurate localization, the noisy measurements de-
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grade the quality of trilateration (Yang and Liu, 2010). For
improved indoor localization based on trilateration, a tech-
nique based on particle filter can be used (Hsu et al., 2016).
Finally, the two localization techniques, fingerprint and tri-
lateration, could be integrated (Kodippili and Dias, 2010).

In this paper, we propose a new fast localization scheme
based on fingerprint using the RSSI approach. The method
has two major contributions to indoor robot localization:
first, it does not require offline acquisition, saving a lot of
time and manpower, and providing the same accuracy as
fingerprint. Second, it outperforms the standard trilateration
method, showing lower localization error in a noisy indoor
environment. The paper is organized as follows: Sect. 2 de-
scribes the problem, defines the forward model, and explains
the mathematical background of the method. Section 3 re-
ports the evaluation results of the proposed scanning method
with respect to fingerprint and trilateration. Finally, Section 4
concludes the paper and directs future work.

2 Methodology

2.1 Problem description and forward model

We observed a room with dimensions 9.7m×4.7m×3m. In
our simulations, we used radio transceiver AT86RF230 from
Atmel (2009) with a working frequency of 2.4GHz (Zig-
Bee/IEEE802.15.4 applications). The transmitter antenna
was simulated by the maximum output power of the trans-
mitter of Pt =+3 dBm with a gain of Gt =−0.5dBi. The
gain of the receiving antenna was also set to Gr =−0.5dBi.
A continuous path of the transmitter was presented by 18
positions equidistantly placed with a step of 0.5m at 1m
height (Fig. 1). We placed three receivers at the ceiling of
the room to eliminate obstructions from furniture or other
objects. The receivers’ positions were given by the following
coordinates: S1 (4.85m,0.35m,3m), S2 (5.7m,4.35m,3m)
and S3 (2.95m,2.35m,3m) and shown in Fig. 1. The re-
ceived signal power Pr at receiver position Ri is related to
the power of transmitter Pt at position rj according to the
forward model (Eq. 1), assuming a direct path between the
receiver and the transmitter and no signal interference occur-
rence (Garg, 2007):

Pr = Pt

(
λ

4πr

)2

GrGt, (1)

where r =
∣∣Ri − rj

∣∣ represents the distance between the
transmitter and the receiver; λ is the wavelength of propa-
gation and Gr and Gt are the gains of the receiver and the
transmitter antenna, respectively. We composed a kernel ma-
trix of dimensions n × m according to the forward model
(Eq. 1):
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where n corresponds to the number of receivers andm corre-
sponds to the number of discrete source points that the trajec-
tory of the transmitter is modeled with. We assigned to these
points the same transmitted power at m discrete moments
τj , j = 1, . . ., m. Then, we introduced a vector of transmit-
ted signal strengths P t(τ )= [Pt1(τ )Pt2(τ ) . . . Ptm(τ )]T of di-
mensions m × 1, where Ptj = Pt · δ(τ − τj ), j = 1, . . ., m.
Superscript T indicates the vector transpose. A Dirac delta
function is denoted by δ(τ − τj ), where j indicates a source
point where the transmitted antenna is placed along its path
at the moment τj . Now, we can simulate a vector of received
power strengths as

P r(τ )= L ·P t(τ ) (3)

where P r(τ )= [Pr1(τ )Pr2(τ ) . . . Prn(τ )]T is of dimensions
n× 1 and n denotes the number of receivers. We are aware
that the model (Eq. 1) and the corresponding kernel matrix
(Eq. 2) are, to some degree, imperfect and should be calcu-
lated taking into account major obstacles that appear in the
room. However, an accurate model requires perfect knowl-
edge of the environment and such a model would lack gen-
erality and reusability. For this reason, our approach is pre-
sented on a simple RSSI localization model.

2.2 Scanning method

First, we introduced discretization over the source space at
1m height, defining the total number of possible source
points as M . The density of the source points depended
on the accuracy one wants to achieve. We defined an M ×
1 column vector of transmitted signal strengths P t(τ )=
[Pt1(τ )Pt2(τ ) . . . PtM(τ )]T for all discrete moments τ = τj ,
j = 1, . . ., m, which models a continuous path of the source
antenna. Knowing the receiver position vectors Ri , i = 1, . . .,
N , a kernel matrix LN×M is composed according to Eq. (2).
The simulated power strength is already obtained using the
Eq. (3).

In general, an inverse problem involves estimation of the
source vector distribution P t(τ ) from the measurement vec-
tor P r(τ ). Because we have an isolated source, we are not
required to solve the whole system of linear equations and
find the distribution of P t(τ ) over the whole source space.
Instead, we can calculate the similarity or distance between
the column vectors cj (τ ), j = 1, . . ., M of the kernel matrix
LN×M and the received power strength vector P r(τ ), for all
discrete moments τ = τj , j = 1, . . .,m. In the following text,
we will skip the notation of the observed moment τ .
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Figure 1. Three receivers are placed at 3m height, shown as blue
points. The path of the moving transmitter (18 positions) is shown
as red points, joined by a red solid line. The plane of the moving
transmitter is discretized in 40× 40 source locations shown in grey.
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Figure 2. Path reconstruction using the scanning method and fin-
gerprint (a) and trilateration (b) for noise-free simulations.

As a similarity metric between vectors, the cosine between
the measurement vector and the columns of a kernel matrix
has usually been used (Shi, 2015; Chakraverty, 2014; Berry
and Kogan, 2010). However, this measures the similarity of
vectors with respect to the origin, and it is not influenced
by one magnitude being small compared to the other. This
can easily lead to wrong reconstruction because vectors that
greatly differ in amplitude can have a very high cosine sim-
ilarity. Therefore, we used the Euclidean distance d2(cj ,P r)
between the column vectors of a kernel matrix cj and the
simulated power strength vector P r

d2(cj ,P r)=
∣∣∣∣cj −P r

∣∣∣∣
2, j = 1, . . .,M, (4)

where || · ||2 denotes the Euclidean norm. The location of the
source ĵ is assigned to the index j corresponding to the min-
imal Euclidean distance d2 to the vector P r, that is,

ĵ = argmin
j

d2 (cj ,P r). (5)

Because we calculated column-by-column the degree of
similarity to the measurement vector P r and in a way
scanned the whole source space, we referred to this as a scan-
ning method.
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Figure 3. Path reconstruction using the scanning method and fin-
gerprint (a) and trilateration (b) for noisy simulation data.

Table 1. Comparison of reviewed localization methods in terms of
time and mean reconstruction error for noise-free simulations.

Scanning Trilateration Fingerprint
method

Time per localization (s) 0.375 0.304 2.779
MRE (m) 0.0999 0 0.0999

3 Results and discussion

The quantitative evaluation of the scanning method is per-
formed for the problem setup described in Sect. 2.1 by com-
paring with the trilateration and fingerprint methods. The
methods are compared with respect to the time required for
the source localization and the mean reconstruction error
(MRE) defined as

MRE=
1
m

m∑
i=1
|r rec− r real| (6)

where r rec and r real denote the position vectors of the recon-
structed and real simulated sources, respectively. The corre-
sponding simulations have been done for two cases: noise-
free simulated data and data with additive white Gaussian
noise (AWGN). A discretization of the source space has been
made using a step of 0.24m in the x direction and 0.12m in
the y direction, providing 40 × 40 considered source loca-
tions. Due to a kernel matrix L of dimensions 3× 1600, our
problem is extremely underdetermined. A path of the trans-
mitter is simulated by 18 discrete positions marked by red
points connected by a red solid line (Fig. 1).

3.1 Noise-free simulation

Comparison of different algorithms is performed on the same
noise-free data set. Table 1 shows the time required for one
localization and mean reconstruction error MRE averaged
over 18 discrete points simulating the path of the source, in
the application of the scanning method, trilateration, and fin-
gerprint.

The scanning method localizes a source within 0.375s,
providing a mean reconstruction error of MRE= 0.099m.
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Table 2. Comparison of reviewed localization methods in terms of
time and mean reconstruction error over 10 000 simulation runs un-
der the noisy conditions.

Scanning Trilateration Fingerprint
method

Time per localization (s) 0.396 0.344 2.920
MRE (m) for 0.1271 0.2255 0.1271
10 000 iteration runs
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Figure 4. Noise-free signals and signals with additive white Gaus-
sian noise simulated at the positions of three receivers (S1, S2, and
S3) and presented in logarithmic scale.

Fingerprint provides the same MRE as the scanning method,
requiring, however, much more time, that is, 2.779s per one
localization. This time consumption is expected because a
fingerprint database has to be built in offline mode, prior
to localization. Furthermore, a fingerprint database needs to
be rescanned and updated, because it is influenced by any
change in the environment (e.g., furniture position). In con-
trast to fingerprint, the scanning method does not require any
database and allows for real-time localization. The scanning
method can be seen as a kind of fingerprint method with only
online mode.

Trilateration performs best in the case of noise-free simu-
lations, accurately localizing the source position within only
0.304s. However, a noise-free setting is not sufficient be-
cause perfect noise-free measurements are never available.
Therefore, a noisy system has to be analyzed. A source path
reconstructed using the scanning method coincides with the
path obtained by fingerprint (Fig. 2a). Source localization us-
ing trilateration is shown in Fig. 2b.

Note that besides the Euclidean distance (Eq. 5), we have
also used a cosine metric as proposed in Zhang et al. (2015)
as a similarity metric between the column vectors of a ker-
nel matrix and the simulated power strength vector. However,
this metric performed worse than the Euclidean distance and
these results are not shown in the paper. The reason is that
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Figure 5. Distribution of the reconstruction error (RE) in the room
under noisy conditions and SNR = 103 dB using the scanning
method (a) and trilateration (b). The unit of the color bar is meters.

two vectors can be similar in terms of the angle between
them, but they can differ greatly in amplitude. Therefore, the
Euclidean distance turned out to be superior over the cosine
metric in the application of the scanning method.

3.2 Simulation with AWGN noise

To analyze the performance of the scanning method under
the effect of noise, we added an additive white Gaussian
noise (AWGN) to the simulation data. The signal-to-noise ra-
tio SNR was taken according to the data sheet of transceiver
AT86RF230 from Atmel (2009), with RSSI minimal sen-
sitivity of −91dBm. Considering a transmitted power of
Pt =+3dBm, an SNR value of 103dB was used.

Time requirements per one localization and mean recon-
struction error applying the scanning method, trilateration,
and fingerprint under the same noisy conditions are given in
Table 2. Trilateration performed best with respect to the time
(0.344s) needed for one localization; however, it showed the
largest mean reconstruction error of 0.2255m. Localization
accuracy was significantly better in the case of the fingerprint
and scanning method, showing the mean value of 0.1271m
averaged over 18 discrete source positions simulating the tra-
jectory and 10 000 iteration runs simulating the data with
white Gaussian noise. In terms of time, the scanning method
outperformed fingerprint, requiring 0.396s per one source lo-
calization compared to 2.920s. This high time consumption
makes the fingerprint method inappropriate for real-time tar-
get tracking in a dynamical environment like the industry.

Reconstructing paths, relying on noisy data, and applying
the scanning method and the fingerprint are shown in Fig. 3a.
Figure 3b shows the path reconstruction under the same noise
conditions applying the trilateration. One example of noise-
free data and data with Gaussian white noise at receiver po-
sitions is presented in the logarithmic scale in Fig. 4.

As a final stage, we assessed the robustness of the scanning
method through the distribution of the reconstruction (lo-
calization) error in the whole room RE=

∑M
i=1|r rec− r real|,

where r rec and r real denote the position vectors of the recon-
structed and real simulated sources, respectively. We consid-
ered 1600 source points located at the plane of 1m height and
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added white Gaussian noise with SNR= 103dB. The distri-
butions of the localization error using the scanning method
and trilateration are shown in Fig. 5. The unit of the color
bar in Fig. 5 is meters. The results in Fig. 5 show that the
scanning method exhibits superior performance, and mean
localization error is 0.0838m over 1600 source points con-
sidered in the room, with the maximal error value at 1.113m.
By contrast, the mean reconstruction error using trilateration
was 0.3066m, even showing a maximum of 3.345m.

The computations were performed with MATLAB2014a
on a computer with a CPU (Intel Core i5-3470, 3.2GHz) and
16GB of RAM.

4 Conclusions

We studied the problem of wireless indoor mobile robot lo-
calization and tracking using noise-free data and data with
additive white Gaussian noise at three receiver positions. We
proposed a new scanning method to overcome the drawbacks
of fingerprint, which includes time-consuming construction
of a database and its need for rebuilding every time a sig-
nificant change in the environment occurs. Moreover, local-
ization in a noisy environment using the scanning method
shows a lower error compared to the traditional trilateration.
Low computational costs and high accuracy, without the need
for a database, make this scanning method a powerful tool
for indoor object localization and tracking. Further work will
explore 3-D variants of the scanning method using the mea-
sured data sets.

Data availability. Data used for transceiver AT86RF230 from
Amtel (2009) are available at http://www.atmel.com/images/
doc5131.pdf.
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