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Abstract. The analysis of aeroacoustic phenomena is crucial for a deeper understanding of the damping mech-
anisms of a sound-absorbing bias flow liner (BFL). For this purpose, simultaneous measurements of the sound
field and the flow field in a BFL are required. The fluid velocity can serve as the measurand, where both the
acoustic particle velocity and the aerodynamic flow velocity contribute and, thus, can be acquired simultane-
ously. However, there is a need to separate these two quantities to distinguish between them. This is challenging
because they generally coincide with each other in the time domain. Due to the interaction of sound and flow
in a BFL, both velocities also overlap in the temporal frequency domain, having a coherent oscillation at the
acoustic frequency. For this reason, the recently developed natural Helmholtz–Hodge decomposition (NHHD) is
applied to separate both quantities from the measured oscillation velocity field in the spatial domain. The evalu-
ation of synthetic vector field data shows that the quality of the decomposition is enhanced when a smaller grid
size is chosen. The velocity field in a generic BFL, necessarily recorded within a three-dimensional region of in-
terest at more than 4000 measurement locations, is evaluated using NHHD. As a result, the measured oscillation
velocity in the BFL is dominated by the flow that is related to vortices and also by irrotational aerodynamic flow.
Moreover, indications for an aeroacoustic source near the facing sheet of the liner are revealed.

1 Introduction

In order to improve the efficiency of modern aeroacoustic
noise absorbers in aircraft engines, a deeper understanding of
the underlying damping phenomena is necessary, according
to Zhao and Li (2015). Therefore, an enhanced knowledge
about the interaction between flow and sound in noise ab-
sorbers has to be obtained. Since the effort of a direct numer-
ical simulation is too excessive, simultaneous measurements
of the flow field and the sound field are needed as a prerequi-
site for an aeroacoustic analysis. The choice of optical mea-
surement methods is advantageous, since these methods are
usually contactless and, thus, do not alter the measured field.
The measurement of the fluid velocity is beneficial concern-
ing the simultaneous acquisition of both the (aerodynamic)
flow velocity and the acoustic particle velocity, since both

are included in the measurand. However, the separation of
both quantities is impossible in the time domain because both
coincide with each other at the velocity signal in the tempo-
ral domain. A separation in the temporal frequency domain
is also challenging, since the flow velocity also oscillates at
acoustic frequencies. Such an oscillation occurs due to an in-
teraction of the flow and the sound wave. As an example,
this interaction is analyzed in a bias flow liner in this paper.
A bias flow liner is a perforated acoustic liner with an ad-
ditional flow through the perforation; see Heuwinkel et al.
(2010). Thus, the scientific question arises: can the decom-
position of the oscillating fluid velocity field, measured in
a bias flow liner, into the flow velocity field and the acoustic
particle velocity field, which is impossible in both the time

Published by Copernicus Publications on behalf of the AMA Association for Sensor Technology.



114 D. Haufe et al.: Aeroacoustic analysis using natural Helmholtz–Hodge decomposition

domain and the temporal frequency domain, be performed in
the spatial domain?

Previous separation approaches using the Proper Orthog-
onal Decomposition (POD) of the measured velocity field,
like in Rupp et al. (2010) and Marx et al. (2010), suffer from
ambiguities; i.e., it is unclear whether the resulting modes
are related to the flow field or the sound field. Unlike the
POD, the Helmholtz–Hodge decomposition (HHD) provides
the separation between the solenoidal (divergence-free) flow
velocity field and the irrotational (curl-free) acoustic parti-
cle velocity field for Mach numbers below 0.3; cf. De Roeck
et al. (2007). However, the unique calculation HHD relies
on the assumption of boundary conditions, which are typ-
ically not (exactly) known. To overcome this difficulty, an
enhanced method, called natural Helmholtz–Hodge decom-
position (NHHD) from Bhatia et al. (2014), has been devel-
oped recently, where the flow field is separated into inter-
nal (known) and external (unknown) components and, thus,
no flow-dependent boundary conditions have to been chosen,
though they result from the separation. Since the NHHD has
been applied neither to experimental data nor in aeroacous-
tics at all before, the application of this method is discussed
in this paper for the example of measurements in a generic
bias flow liner. The paper is structured as follows: first, the
NHHD method is explained and its implementation is pre-
sented in Sect. 2. Afterwards, the verification of this imple-
mentation and the characterization of the NHHD method for
the aeroacoustic application based on synthetic data is per-
formed in Sect. 3. Next, the NHHD is applied to separate the
acoustic particle velocity and the aerodynamic flow velocity
from the fluid velocity measured in a bias flow liner. This
application of the NHHD is demonstrated and the analysis
results are discussed in Sect. 4. Finally, the paper is closed
with a conclusion in Sect. 5, including an outlook for future
investigations.

2 Method

To split a spatially bounded vector field into its solenoidal
and its irrotational part, the conventional HHD has previ-
ously been applied in many research fields, including fluid
mechanics, by Denaro (2003), Rousseaux et al. (2007), and
Galvin et al. (2012). A comprehensive overview of applica-
tion fields and a history outline have already been given by
Bhatia et al. (2013). When using the HHD, however, bound-
ary conditions have to be known or at least assumed in order
to ensure a unique solution. This results in calculation errors
if the assumptions for the boundaries are inaccurate or in-
correct. Consequently, artifacts in the decomposed velocity
data set will occur for a given measured velocity field with
unknown boundary conditions. In contrast, the idea of the
NHHD, according to Bhatia et al. (2014), is to distinguish
between internal and external influences of the vector field,
determined by the measured field and resulting from the (un-

known) exterior field, respectively. Thus, the NHHD method
eliminates the need for flow-dependent boundary conditions
to uniquely decompose the measured field. This decomposi-
tion of a given vector field is termed natural, since the com-
plete information that is necessary is contained in the given
vector data itself. Hence, further knowledge about the exte-
rior field is not required, nor do any (potentially invalid) as-
sumptions about the boundary conditions have to be made.
One minor drawback for the application of the NHHD is that
orthogonality of the decomposed fields cannot be guaranteed
(in contrast to the conventional HHD using boundary condi-
tions), which may provoke higher errors in numerical simula-
tions; however, orthogonality is not required for the analysis
of data, in accordance with Bhatia et al. (2014).

In the following paragraphs, the theoretical aspects of the
NHHD from Bhatia et al. (2014) and its implementation de-
tails used for the subsequent Sects. 3 and 4 are briefly intro-
duced.

2.1 Theory

According to the ideas of Helmholtz (1858), every spatially
unbounded, simply connected vector field V : Rn −→ Rn for
n= 2,3 that vanishes at infinity can be decomposed into
a sum of an irrotational divergent term

d =∇D with ∇ × d = 0, (1)

related to the scalar potential D, and a solenoidal rotational
term

r = J∇R in R2 with ∇ · r = 0,

r =∇ ×R in R3 with ∇ · r = 0, (2)

where

J =

(
cosθ −sinθ
sinθ cosθ

)
with θ =

π

2
(3)

is the π/2-rotation operator, R is a scalar potential, and R

a vector potential. As a consequence, the divergence and curl
of the vector field V in a convex domain are completely rep-
resented by the divergence of d and curl of r , i.e.,

∇ · d =∇2D =∇ ·V in Rn (4)

and

∇ × r =∇ · (−J r)=∇2R =∇ ×V in R2,

∇ × r =−∇2R =∇ ×V in R3, (5)

where ∇2 is the (scalar) Laplacian (if R2) or the vec-
tor Laplacian (if R3). If a spatially bounded vector field
v(̃s) :�−→ Rn for n= 2,3 and the convex spatial domain
�⊂ Rn is considered such that V (̃s)= v(̃s) for all position
vectors s̃ ∈�, a harmonic term

h= v− d − r with ∇ ×h= 0 and ∇ ·h= 0 (6)
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may remain that is both irrotational and solenoidal, following
Bhatia et al. (2014).

Performing the NHHD means calculating the divergent
term d and the rotational term r inside the domain � us-
ing a unique solution of the Poisson Eqs. (4) and (5) for both
potential fields (D and R or R) using the given vector field
v. The potential fields

D (s)=
∫
�

G∞ (s, s̃)∇ · v (̃s) d̃s

+

∫
Rn\�

G∞ (s, s̃)∇ ·V (̃s) d̃s in Rn

and

R (s)=
∫
�

G∞ (s, s̃)∇ × v (̃s) d̃s

+

∫
Rn\�

G∞ (s, s̃)∇ ×V (̃s) d̃s in R2,

R (s)=−
∫
�

G∞ (s, s̃)∇ × v (̃s) d̃s

−

∫
Rn\�

G∞ (s, s̃)∇ ×V (̃s) d̃s in R3, (7)

result, whereG∞ is the free-space Green’s function (cf. Bha-
tia et al., 2014), which is a fundamental solution of the Pois-
son Eqs. (4) and (5) and reads

G∞ (s, s̃)=
1

2π
ln (|̃s− s|) in R2

or

G∞ (s, s̃)=−
1

4π |̃s− s|
in R3, (8)

for two-dimensional or three-dimensional problems, respec-
tively. Following Bhatia et al. (2014) the solution of Eqs. (4)
and (5) can be achieved under the approximation that the in-
tegral

∫
Rn\�(. . .) can be neglected since it only contributes

to the harmonic flow inside �. Hence, using the NHHD re-
quires no knowledge of the flow field outside �, since its
contribution is neglected for any unknown field V and, thus,
no flow dependent boundary conditions have to be chosen.
After calculating d and r using Eqs. (1) and (2), h can be
finally obtained using Eq. (6). Note that NHHD enables the
determination whether a harmonic flow is present or not.

2.2 Implementation

The NHHD algorithm from Sect. 2.1 is implemented in
MATLABr. For three-dimensional problems, the input data
consist of a three-dimensional vector field v =

(
vx,vy,vz

)T

of three vector components vx , vy , and vz, regarding the
Cartesian coordinate system given by the x, y, and z coor-
dinates. The calculation of the derivatives in Eq. (7) is ap-
proximated by central finite differences. For the sake of sim-
plicity, this approximation is given as an example for a two-
dimensional vector field v:

∇ · v (̃s)≈

vx

(
x̃+ δs
ỹ

)
− vx

(
x̃− δs
ỹ

)
+ vy

(
x̃

ỹ+ δs

)
− vy

(
x̃

ỹ− δs

)
2δs

and

∇ × v (̃s)≈

vy

(
x̃+ δs
ỹ

)
− vy

(
x̃− δs
ỹ

)
− vx

(
x̃

ỹ+ δs

)
+ vx

(
x̃

ỹ− δs

)
2δs

, (9)

where δs is the grid size on a regular grid of discrete positions
s̃ = (̃x, ỹ)T of the vector data. The numerical integration, as
an approximation of the Eq. (7), is accomplished using the
rectangle method (Riemann sum). Again, the approximation
is given as an example for a two-dimensional vector field v:

D (s)≈
∑
s̃∈�

G∞ (s, s̃)∇ · v (̃s) (δs)2

and

R (s)≈
∑
s̃∈�

G∞ (s, s̃)∇ × v (̃s) (δs)2 (10)

for the position vector s = (x,y)T, by means of summation
of the expressions from Eq. (9) over each vector s̃ within the
spatial region �. Note that a special treatment of Eq. (10)
is necessary in the case of s̃ = s, where the value G∞ of
the Green’s function from Eq. (8) converges to −∞. Here,
the corresponding value G∞ is arbitrarily set to zero, which
means that this particular value is excluded from the integra-
tion.

3 Qualification

In order to verify the implementation from Sect. 2.2 and char-
acterize the method presented in Sect. 2.1, exemplary tests
using synthetic data are performed. For the sake of simplic-
ity of the visualization, the test results are presented for two-
dimensional data only.

3.1 Database

A synthetic two-dimensional vector field with a quantity of
dimension one is selected as input data for the NHHD algo-
rithm. The original (Euclidean) vector field

v = vsource+ vvortex+ vshift with
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Figure 1. Synthetic input vector field terms (a), the corresponding
divergence (b) and curl (c), depicted for field data with a grid size
of δs = 1/2.

vsource = (x,y)T
· exp

[
−0.5

(
x2
+ y2

)]
,

vvortex = (−y,x)T
· exp

[
−0.5

(
x2
+ y2

)]
, and

vshift = (0.1,0.1) (11)

is a sum of exemplary terms, which are visualized in Fig. 1a,
with a grid size of δs = 1/2 regarding the Cartesian coor-
dinates x and y. According to the analytic expressions in
Eq. (11), the source term vsource in Eq. (11) has no curl (i.e.,
∇×vsource = 0) and the vortex term vvortex has no divergence
(i.e., ∇ · vvortex = 0). Given these fields, the source term is
representative of an acoustic field (spherical wave) and the
vortex term is representative of a rotational aerodynamic flow
field. The shift term vshift has neither curl nor divergence (i.e.,
∇×vshift =∇ ·vshift = 0) and represents an irrotational aero-
dynamic flow. Since vshift is solenoidal, it cannot be related
to the acoustic field because of its compressibility by defi-
nition. There are also nontrivial vector fields that have the
same properties as vshift, which are not considered here fur-
ther. Note that the exemplary terms were chosen such that
their divergence or curl has a (preferably representative) in-
homogeneous spatial distribution, which was realized by ex-
ponential functions in Eq. (11).

For comparison with the output vector field terms in the
following subsection, the divergence and curl of the input
vector field terms are calculated numerically using central fi-
nite differences; cf. Eq. (9). The resulting divergence and curl
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Figure 2. Output vector fields (a), as well as the corresponding
divergence (b) and curl (c) using the natural Helmholtz–Hodge de-
composition of the synthetic vector field from Eq. (11); cf. Fig. 1
for a grid size of δs = 1/2.

are depicted in Fig. 1b and c as well. The numerical result has
slight deviations below 10−2 from the analytic result due to
the discretization of the vector field terms and the approxi-
mation in Eq. (9). Note that the original field from Eq. (11) is
free from noise terms, which can, however, be easily included
in the synthetic data. As a consequence, the noise will be
independently decomposed into irrotational, solenoidal, and
harmonic terms due to the linearity of the NHHD. However,
the focus of this paper is an initial quantitative characteriza-
tion of the NHHD in the first place.

3.2 Characterization

Using its implementation according to Sect. 2.2, the NHHD
algorithm is applied to the input data base v from Eq. (11);
see Sect. 3.1. Assuming an ideal decomposition following
Sect. 2.1, the resulting output vector fields consequently read

d = vsource,

r = vvortex, and
h= vshift. (12)

The actual result of the NHHD is depicted in Fig. 2 for field
data of d,r , and h with a grid size of δs = 1/2, as well as
the corresponding divergence and curl. In the resulting out-
put field, there are no vector data at the outermost positions
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Figure 3. Resulting crosstalk, according to Eq. (13) as a quality
factor of the natural Helmholtz–Hodge decomposition, when ap-
plied to the synthetic input vector field from Eq. (11) for several
grid sizes δs of the vector field.

due to the double use of central finite differences for the ap-
proximation of the derivatives both in Eqs. (1)–(6) and in
Eq. (7). Notwithstanding, according to Eq. (12), Fig. 2 should
be identical to Fig. 1 in the case of an ideal decomposition. In
fact, there are (minor) deviations from the expectation; e.g.,
in particular, the term h does not completely agree with the
input vector field term vshift from Eq. (12). In addition, both
divergence and curl of h are not exactly zero, which is con-
trary to the characteristic properties defined in Eq. (6). Since
these deviations were not discussed before by Bhatia et al.
(2014), they are investigated in the following. In order to
characterize these deviations, the term crosstalk is used in
the following as a figure of merit. Typically, the crosstalk is
defined as the squared ratio of the root mean square of the
undesired signal to the root mean square of another adjacent
signal. Following that,

crosstalk∇·h =

∑
s∈�

|∇ ·h (s)|2∑
s∈�

|∇ · v (s)|2
and

crosstalk∇×h =

∑
s∈�

|∇×h (s)|2∑
s∈�

|∇× v (s)|2
(13)

are defined regarding the parasitic divergence and curl of the
harmonic signal h relating to the divergence and the curl of
the input vector field v, respectively, within the complete set
of the region �.

The crosstalk from Eq. (13) in Fig. 2 is investigated for
several grid sizes δs of the vector field; cf. Figure 3. In Fig. 2,
crosstalk∇·h and crosstalk∇×h are identical for the exemplary
terms chosen here. A smaller grid size obviously leads to
a lower crosstalk; a decrease of up to 30 dB per decade can
be achieved. This behavior can be explained by the fact that
computational errors of the spatial derivatives in Eqs. (1)–(7)
that are approximated by Eq. (9) using finite difference quo-

tients increase when the grid size is enlarged. Although not
being investigated further, a qualitatively similar observation
is expected for three-dimensional problems as well.

4 Application

In order to obtain experimental data for the aeroacoustic
analysis, an optical measurement of the velocity vector field
in a generic bias flow liner is performed using frequency-
modulated Doppler global velocimetry (FM-DGV) from
Haufe et al. (2013). In contrast to previous measurements
by Haufe et al. (2013), here, a set of three-dimensional ve-
locity vector data is gathered in order to apply the NHHD,
since a three-dimensional problem is expected for the vector
field in the bias flow liner. For the experiments, FM-DGV
offers a high dynamic range of more than 3 orders of mag-
nitude; see Haufe et al. (2013). Moreover, the velocity un-
certainty is nearly identical for all vector components (see
Sect. 4.1.2), which is in contrast to other optical methods
like stereoscopic particle image velocimetry. Apart from that,
any other measurement method providing volumetric veloc-
ity vector data can be considered for the evaluation using
NHHD. In any case, time-resolved or phase-resolved veloc-
ity data (when the region of interest is successively scanned,
like here) are necessary since time-averaged values do not
contain any acoustic information.

4.1 Experimental setup

4.1.1 Aeroacoustics

The aeroacoustic experiment in a generic bias flow liner is
conducted in Berlin at the “Duct acoustic test rig with rect-
angular cross section” (DUCT-R), which is about 3 m long.
The DUCT-R has anechoic terminations at both ends and
has a cross section of 60mm× 80mm (inner dimensions).
Flow and sound are generated under ambient conditions by
a radial compressor and a Monacor speaker KU-516, re-
spectively. The mean flow velocity is set to approximately
34 ms−1 (corresponding to Mach 0.1 and a mean mass flow
rate of about 700 kgh−1) with a turbulence intensity of about
7 %. The sound pressure level of the incident acoustic wave
is about 118 dB for the sinusoidal excitation at a frequency
of 1122 Hz, where the liner exhibits its maximum dissipation
coefficient of about 60 %, according to a previous study on
the same liner by Schulz et al. (2015).

The design of the bias flow liner is based on previous
work by Heuwinkel et al. (2010); see Fig. 4. The perforation
is composed of a 1 mm thick facing sheet with 53 circular
orifices, each with a diameter of 2.5 mm and a distance of
8.5 mm. The only difference of this liner to the one investi-
gated by Heuwinkel et al. (2010) is that the cross section is
rectangular in order to match with DUCT-R. The cavity is
a cuboid with a size of 60mm× 49mm× 72mm (in the di-
rection of x, y, and z). A bias flow with a mass flow rate of
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Figure 4. Top view of the setup of the aeroacoustic measurement in a generic bias flow liner with optical access through glass windows; the
point of origin is at the center of the central orifice.
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Figure 5. (a) Measured input vector field, i.e., phase-averaged oscillation velocity v, (b) its divergence ∇ ·v, and (c) curl ∇×v for a selected
phase ϕ = 2π at the lateral position z= 0 (see Fig. 4); vectorial quantities are depicted regarding their l2 norm.

5 kgh−1 is fed into the cavity. This value corresponds to an
estimated bias flow velocity, according to Heuwinkel et al.
(2010), of about 7 ms−1 at vena contracta, where an equal
distribution of the mass flow through the orifices and an em-
pirically found jet contraction factor of 0.61 is assumed. The
resulting Reynolds number of the bias flow is about 103, as-
suming dry air at 20 ◦C and the diameter of the orifice as the
characteristic length.

4.1.2 Metrology

The velocity data are measured by FM-DGV at eight
locations in parallel, linearly arranged in y direction, as
described in detail by Haufe et al. (2013). For this purpose,
tracer particles made of diethylhexyl sebacate with a diame-
ter of about 1 µm and a response time of 3,4 µs (see Albrecht
et al. (2003, p. 606)), corresponding to a slippage of less than
0.1 % at 1122 Hz, are added to the fluid. A measurement
frequency of 100 kHz is chosen, which is a typical choice
for the FM-DGV system and (more than) sufficiently large
to resolve the acoustic frequency, regarding the sampling
theorem. In order to achieve a volumetric acquisition,
successive linear traversing in the direction of x, y, and z
is used for 16, 2, and 16 positions. This results in a large
number of 163

= 4096 locations on a regular grid; the spatial
resolution is about 0.6 mm in each direction x, y, and z. The
minimal distance to the perforation was at y ≈ 0.8 mm. The
chosen region of interest is a cube with a volume of 1 cm3 in
the vicinity of the central orifice, where the optical access is

provided through glass windows. The laser light enters the
region of interest along the incidence vector i = (0,−1,0)T,
is scattered by the tracer particles, and is finally observed in
three different directions, along the observation vectors o1 =

(sin[35◦],0,cos[35◦])T, o2 = (−sin[35◦],0,−cos[35◦])T

and o3 = (sin[35◦],0,−cos[35◦])T, which gives three (non-
Cartesian) velocity components vo1−i , vo2−i , and vo3−i , each
along the vectors o1− i, o2− i, and o3− i, respectively.
The Cartesian velocity vector v = (vx,vy,vz)T is eventually
obtained by a coordinate transform, according to Schlüßler
et al. (2015). Following Schlüßler et al. (2015), the standard
uncertainty of vx , vy , and vz can be calculated by Gaus-
sian uncertainty propagation. The resulting uncertainties
read 1.74σ , 1.00σ , and 1.22σ , respectively, assuming an
equal uncertainty σ for each of the originally measured
(non-Cartesian) velocity components. As a consequence, the
uncertainty of all Cartesian velocity components vx , vy , and
vz is almost identical in this FM-DGV measurement.

4.2 Results and discussion

The NHHD is applied to the three-dimensional vector field
of the measured fluid velocity in order to separate the acous-
tic particle velocity and the aerodynamic flow velocity. Here,
this is only done for the oscillation velocity at the acoustic
excitation frequency fosc, as an example. For this purpose,
the time-dependent velocity signal is evaluated regarding the
phase ϕ with respect to fosc and yields a zero-mean phase-
averaged oscillation velocity, like in Haufe et al. (2013). In
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Figure 6. Output vector fields (l2 norm) at the lateral position z= 0, when applying the natural Helmholtz–Hodge decomposition on
the measured phase-averaged oscillation velocity v for a selected phase ϕ = 2π from Fig. 5a as input vector field, using a grid size of
δs ≈ 0.04 mm.

order to reduce computational errors due to discretization
of the spatial derivatives from Eqs. (1)–(7) according to the
Eq. (9) and the resulting crosstalk (see Fig. 3), an interpola-
tion of the vector data on a finer grid size (with an interpo-
lation factor N = 16) using cubic splines was performed be-
forehand. As a result, the spatial resolution of initially about
600 µm turns into a grid size of approximately 40 µm. As a re-
sult, the crosstalk is decreased, like observed in Sect. 3.2 (al-
though no measurement information is obtained by applying
the interpolation).

The phase-averaged oscillation velocity vector field, de-
noted by v in the following, as well as the corresponding
divergence and the curl of the vector field, are depicted in
Fig. 5, as an example for the plane at z= 0. Regarding
random deviations, the standard uncertainty of v is about
20 mms−1 for a measurement duration of 5 s, where a phase
resolution of π/8 is used for phase-averaging (i.e., 500,000
velocity samples are averaged), similar to Haufe et al. (2013).
According to Haufe et al. (2014), the phase-averaging acts as
a band pass filter, suppressing random velocity terms like the
turbulence and measurement noise with a spectral width of
1/T , where T is the measurement duration. Note that the
choice of the phase resolution results from a compromise

between short temporal resolution and low velocity uncer-
tainty. In order to further decrease the velocity uncertainty,
T may be increased, as proposed by Haufe et al. (2013). Ac-
cording to Fig. 5a, there is a high oscillation velocity in the
vicinity of the orifice, which coincides with previous obser-
vations by Heuwinkel et al. (2010). The magnitude of the
divergence of the oscillation velocity is low compared to its
curl; see Fig. 5b and c. Hence, a high vorticity is present,
which also agrees well with existing results from Heuwinkel
et al. (2010) using a comparable liner (though with circular
cross section). There are some domains of high oscillation
velocity in Fig. 5a which remain stationary above the orifice
and downstream at about x = (2. . .4) mm. In these places,
sources and sinks can be found (see Fig. 5b), which alternate
in time. However, most of the domains of high oscillation
velocity are convected downstream in time, as do the corre-
sponding domains of high vorticity in Fig. 5c, which agrees
with previous results in the identical liner from Schulz et al.
(2015).

In order to provide further insight, the NHHD is applied
to the measured data following Sect. 2.2. The resulting out-
put vector fields are depicted in Fig. 6, again as an exam-
ple for the plane at z= 0. In the irrotational term d, a struc-
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Figure 7. Root mean square (rms) of the output vector fields (l2 norm) from Fig. 6 at the lateral position z= 0 using all phase values ϕ
regarding the acoustic excitation frequency.

ture like a breathing sphere is identified near the orifice at
x = 2 mm, which coincides with the stationary domains of
high oscillation velocity seen in Fig. 5a. In the solenoidal
term r there are structures that move downstream, which co-
incides with the convecting domains of high oscillation ve-
locity from Fig. 5a. In addition, a pulsating structure occurs
within the harmonic term h, which could not be determined
in Fig. 5, but is discovered using the NHHD. According to
the theory of the NHHD, the divergence and curl of v are ap-
proximately equivalent to the divergence and the curl of the
irrotational term d and the solenoidal term r , respectively.
For the final discussion, the root mean square (rms) fields
of the values are visualized in Fig. 7 using all phase val-
ues regarding the acoustic excitation frequency. According
to Figs. 6 and 7, three scientific findings are obtained.

1. The irrotational term d , which is equivalent to the
acoustic particle velocity, amounts up to 0.13 ms−1

(rms) in the vicinity of the central orifice at (x,y)≈
(2mm,1mm). For comparison, the rms of the acous-
tic particle velocity of the incident wave would be only
about 0.04 m s−1, assuming plane waves and the char-
acteristic impedance of air; see Rossing (2007, p. 60f.).
Consequently, the local acoustic particle velocity at the

orifice is approximately 3 times higher than from the
acoustic excitation. Hence, the hypothesis arises that an
acoustic source near the facing sheet is supposed to be
induced by the interaction of sound and flow. Similar
observations have been made, e.g., by Marx et al. (2010)
in a liner without bias flow. In contrast, the application
of the NHHD in the present paper allows the aerody-
namic and the acoustic velocity field to be quantitatively
distinguished from each other for the first time.

2. The solenoidal term r , which is associated with the rota-
tional flow field, is mostly higher than d and has a max-
imum value of 0.31 ms−1 (rms). This proves the gener-
ation of flow vortices being induced by the interaction
of sound and flow, which agrees well with previous ob-
servations, e.g., by Eldredge and Dowling (2003), Rupp
et al. (2010), or (with a comparable liner) by Heuwinkel
et al. (2010).

3. The harmonic term h, which is associated with the ir-
rotational (and solenoidal) flow field, amounts up to
0.38 ms−1 (rms) and only approximately exhibits the
characteristic property ∇×h=∇ ·h= 0 as defined by
Eq. (6); i.e., the decomposition is not ideal. Like al-
ready investigated in Sect. 3.2, this is caused by the dis-
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cretization of the vector field data and can be reduced
by choosing a smaller grid size. The crosstalk in Fig. 6
according to the Eq. (13) is about −36 and −8 dB re-
garding divergence and curl, respectively.

To conclude, the application of the NHHD for aeroacoustic
analysis is a promising method in order to obtain a better un-
derstanding about the interaction of sound and flow in a bias
flow liner. The grid size has to be decreased in the future
in order to decrease the crosstalk, according to Fig. 3. This
can be done by utilizing a finer spatial resolution, e.g., us-
ing a velocity profile sensor from Haufe et al. (2014) with
micrometer resolution. Alternatively, the interpolation factor
can be increased further. Then, the finer discretization will
result in smaller computational errors, though the physical
information will of course not be enhanced. Note that the
computation time using an interpolation factor of N is in-
creased on the order of O(N6) for the complete solution of
three-dimensional problems as evident here. As an example,
the calculation time for generating the results from Fig. 6,
at z= 0 only, is about 23 days (for N = 16) using a Fujitsu
Celsius R920 workstation with an Intel® Xeon® hexa-core
processor E5-2620 at 2 GHz.

5 Conclusions

The aim of this work is to perform an aeroacoustic analysis of
an experimentally obtained volumetric velocity vector field,
measured in a bias flow liner. For this purpose, the oscilla-
tion velocity with respect to the frequency of the sinusoidal
acoustic excitation is evaluated using the natural Helmholtz–
Hodge decomposition (NHHD). This vector field decompo-
sition of the fluid velocity into the irrotational acoustic par-
ticle velocity and the solenoidal flow velocity is successfully
applied on a three-dimensional vector field in a 1 cm3 region
of interest. The phase-averaged oscillation velocity is mea-
sured at 163

= 4096 locations in a generic bias flow liner by
Doppler global velocimetry with laser frequency modulation.
The application of the NHHD was enabled by the first volu-
metric measurement in such a liner.

The analysis shows that the flow velocity, which is related
to vortices, dominates in the fluid velocity field, which coin-
cides with previous experimental work by Heuwinkel et al.
(2010). Moreover, the application of the NHHD also reveals
a prominent irrotational flow velocity. In addition, the hy-
pothesis of an aeroacoustic source near the facing sheet of
the liner was suggested. Thus, the application of the NHHD
offers a promising perspective for the future, especially for
the quantitative investigation of the energy transfer from the
sound field to the flow field, as proposed in Schulz et al.
(2015).

Furthermore, the influence of the grid size on the quality
of the NHHD is investigated using synthetic data. As a re-
sult, the grid size has to be minimized in order to minimize

computational errors. However, this yields a higher compu-
tational effort.

In the future, the employment of parallel computing, e.g.,
using a graphics processing unit, should be considered to
save calculation time (see Kirk and Hwu (2010)). On the
one hand, this facilitates an in-depth characterization of even
more complex vector fields and a detailed uncertainty analy-
sis by statistical means in the future, similar to Ribeiro et al.
(2016). On the other hand, an additional calculation of the de-
composition of the oscillation velocity regarding overtones
of the excitation frequency to study potentially nonlinear
damping phenomena is enabled. The analysis of aeroacous-
tic phenomena contributes to an enhanced understanding of
aeroacoustic damping.
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