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Abstract. In this paper, a fourth-order Kalman filter (KF) algorithm is implemented in the wireless sensor node
to estimate the temperatures of the stator winding, the rotor cage and the stator core in the induction machine.
Three separate wireless sensor nodes are used as the data acquisition systems for different input signals. Six Hall
sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All of them
are processed to root mean square (rms) in ampere and volt. A rotary encoder is mounted for the rotor speed and
Pt-1000 is used for the temperature of the coolant air. The processed signals in the physical unit are transmitted
wirelessly to the host wireless sensor node, where the KF is implemented with fixed-point arithmetic in Contiki
OS. Time-division multiple access (TDMA) is used to make the wireless transmission more stable. Compared
to the floating-point implementation, the fixed-point implementation has the same estimation accuracy at only
about one-fifth of the computation time. The temperature estimation system can work under any work condition
as long as there are currents through the machine. It can also be rebooted for estimation even when wireless
transmission has collapsed or packages are missing.

1 Introduction

Electrical machines are widely used in the industry, espe-
cially with the increasing interest in electric and hybrid elec-
tric vehicles. The thermal behavior of an induction machine
largely determines the maximum lifetime, to cope with over-
load conditions and also the accuracy in a high-performance
controller (Sonnaillon et al., 2010). Normally, three methods
are used for the temperature monitoring. The most common
method is the measurement by construction of a tempera-
ture measurement system using a mounted sensor. Even the
rotor temperature can be measured by a wireless sensor net-
work (WSN) (Ben Brahim et al., 2016; Brahim et al., 2016),
or by some optimized optical fiber sensors (Hudon et al.,
2016; Wang et al., 2009). An indirect approach is the tem-
perature calculation based on the estimation of resistive pa-
rameters. Based on the stator windings resistance variation
with temperature, a sensorless internal temperature monitor-
ing method for an induction motor is introduced (Sabaghi
et al., 2007). Thermal analysis based on a lumped-parameter

thermal network (Haumer et al., 2012) is a third way which
can be used for the temperature monitoring directly.

Meanwhile the WSNs have many applications, such as in-
dustry, environment monitoring, tracking of things and inter-
net of things. A number of methods for temperature moni-
toring of induction machines can be found in the literature.
Some of the methods do not provide satisfying results or can
only estimate the temperatures of stator winding and rotor
cages without a stator core (Ozsoy et al., 2010). Other meth-
ods require powerful computation capabilities which cannot
be run on a resource-limited node.

In conclusion, many of the monitoring applications for the
electrical machine based on a WSN can be found in the litera-
ture. However, none of them has implemented a temperature
estimation algorithm on a resource-limited wireless sensor
node. The temperature monitoring system of an induction
machine based on a WSN is explored in this paper. We fo-
cus on the algorithmic implementation on the wireless sensor
network. The input signal is the processing of the signals of a
single node distributed over different nodes and transmitted
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Figure 1. The thermal network of the machine.

to the host node, where the algorithm is implemented. Sec-
tion 2 gives a description of the system. The implementation
of a wireless transducer interface module (WTIM) and a net-
work capable application processor (NCAP, IEE, 2007a) is
described in Sects. 3 and 4. The communication of the WSN
system is described in Sect. 5. Experimental results are dis-
cussed in Sect. 6 and the conclusions are followed in Sect. 7.

2 The system description

2.1 The thermal model of the asynchronous machines

The thermal network of the machine can be summarized as
the following Fig. 1, which is based on the thermal model
(Haumer et al., 2012).

From the above figure, the state-space equations of the sys-
tem are defined as the following equations:
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Csw
+
Psw

Csw
, (1)
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where subscript sw indicates the stator winding, rc the rotor
cage, sc the stator core and c the coolant air. 1T is the tem-
perature above ambient, R is the thermal resistance, C is the
thermal capacitance and P is the power loss in the parts of
the machine (indicated by the indices). The losses Psw, Prc,
and Psc can be calculated from Eqs. (4) to (8).

In the simplified thermal model, Psw,Prc are ohmic loss,
and Psc is the frequency-dependent iron loss, which are de-
scribed in the paper by Haumer et al. (2009). Rs, Rr are the
ohmic resistances, between any two line terminals, ωm is the
mechanical speed of the rotor in rad s−1, and kiron is the iron

loss constant.

Psw(t)= I 2
s Rs(t) (4)

Psc(t)= kironω
2
m(t) (5)

As the currents of the rotor cage are not available to be mea-
sured or to be estimated using a simple method, the rotor
cage losses can be calculated indirectly, which is defined by
the IEEE Power Engineering Society (Society, 2004).

Prc(t)= (Pin(t)−Psw(t)−Psc(t))× s(t), (6)

Pin(t)=
√

3×UL(t)× IL(t)× cos(φ), (7)

s(t)=
ws−wr(t)

ws
× 100%, (8)

where Pin is the input power of the machine, and UL and IL
are the line voltage and the line current, respectively. ωs is
the synchronous speed, ωr is the rotor speed, and s is the slip
of the machine.

The temperatures of the stator winding and rotor cage will
increase largely. Normally it will be much higher than the ref-
erence ambient temperature. The rising temperature makes
the resistance greater by more than 40 %. The electrical resis-
tances will increase as the machine is running. So the ignored
increasing temperature should be considered to calculate re-
sistance, which is with respect to time. All in all, the stator
winding loss can be calculated much more accurately than
that of the constant value of the electrical resistance. Rs can
be replaced by Eq. (9):

Rs(t)= RsRef(1+αs1Tsw(t)), (9)

where RsRef is the stator winding resistance in the reference
ambient temperature. αs is the temperature coefficient of the
stator winding, with the value of 0.004041 1 K−1 for the cop-
per.

The state-space equations of the system can be acquired by
calculating the losses Psw,Prc,Psc defined in Eqs. (4)–(5),
and importing them into Eqs. (1)–(3). By summarizing the
previous equations, the system can be rewritten as a fourth-
order linear continuous time-variant system in the state-space
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model form:

x′(t)= Ax(t)+Bu(t), (10)
z(t)= Cx(t)+Du(t), (11)

where

x = [Tsw,Trc,Tsc,Tc]
T, (12)

z= Tc, (13)

u= [Psw,Prc,Psc,0]T, (14)
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 , (16)

C= 1, (17)
D= 0. (18)

In the state equations, x(t) is the state vector, u(t) is the
control vector, A is the system transition matrix which is a
constant matrix, and B is the input matrix which is also a
constant matrix. In the measurement equation, C is the out-
put matrix which is a constant in this system, and D is the
feedthrough matrix which is zero here. The coolant air tem-
perature Tc is considered a constant parameter due to the
slow variation with time.

2.2 The target platform

The platform is the Preon32 wireless sensor node produced
by Virtenio GmbH. It contains a 32-bit ARM Cortex-M3
micro-controller with 256 kB flash memory for program-
ming and 64 kB RAM memory for data. A 2.4 GHz wireless
transceiver which is compliant with the IEEE 802.15.4 stan-
dard can for example be used for ZigBee or 6LoWPAN com-
munication. Two 12-bit analog-to-digital converters (ADCs)
with a maximum sampling rate of 1 M samples/s are pro-
vided by the platform (Preon32, 2016). The clock for time
keeping is generated from a low-power watch crystal and has
a resolution of 2−14 s= 61.035 µs and a width of 32 bit. The
ADC of the Preon32 has a resolution of 12 bit and an input
range of 0 . . . 3.3 V. Its sampling period is derived from the
CPU clock and can be set with a resolution of 1 µs (Funck
and Guehmann, 2017).

The whole software package is comprised as follows:
Contiki, ARM CMSIS Library, Preon32 platform, Preon32
firmware and the MDT Smart Transducer Library (MSTL).
Figure 2 shows the components of the WSN software. On
the top layer of the Contiki MSTL, which is implemented by
Jürgen Funck from the Chair of Electronic Measurement and

Figure 2. The architecture of the WSN software.

Diagnostic Technology (MDT) of the Technical University
of Berlin. It provides the management of the data acquisition
for a variety of sensors and actuators of the wireless sensor
nodes. It is inspired by the IEEE1451 family of standards for
smart transducers.

2.3 Structure and topology of the system

Based on the proposed KF algorithm, four types of signals
are acquired as the inputs of the algorithm. Three Preon32
nodes are implemented as the WTIMs to acquire coolant air
temperature, rotor speed, effective current and voltage. Data
acquisition, data preprocessing and data transmission are per-
formed by these WTIMs. Another node is implemented as
the NCAP to receive the data from different WTIMs and to
process the KF algorithm for temperature estimation. The
structure of the temperature estimation system on WSN is
shown in Fig. 3.

2.4 The hardware

Preon32 provides multiple I/O interfaces for connection to
external peripheral digital I/O pins which could be used for
the acquisition of rotor speed. Analog signals such as the
coolant air temperature, the three-phase currents and voltages
can be captured with the integrated ADC with a resolution of
12 bits and a possible sampling rate of up to 1 million sam-
ples per second. The conditioning boards were designed for
connecting the sensors with Preon32 sensor nodes and con-
ditioning the analog signal.

2.4.1 The conditioning board for three-phase currents
and voltages

Six sensors based on the Hall effect for the three-phase cur-
rents and voltages are first mounted on a data acquisition
board in the paper by Funck and Nowoisky (2011). An anti-
aliasing filter is implemented to restrict the bandwidth of a
signal to approximately satisfy the sampling theorem over
the band of interest before signal acquisition. In order to scale
the output voltages to the range of ±3.3 V, a conditioning
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Figure 3. Structure of the wireless sensor system.

Figure 4. Conditioning board of currents and voltages without
housing.

board connecting to Preon32 was developed in a masters the-
sis (Hopp, 2013). They are shown in Figs. 4 and 5.

2.4.2 The conditioning board for coolant air temperature

The coolant air temperature is one of the inputs which should
be measured and transmitted wirelessly by a Preon32 sen-

Figure 5. Conditioning board currents and voltages with housing.

sor node. Pt-1000 and a commercial conditioning board are
used for the temperature acquisition. The output voltage of
the conditioning board provided together with the sensor can
be calibrated to the range of ±3.3 V.
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Figure 6. Conditioning board for the rotary encoder.

Figure 7. Hardware of the rotor speed acquisition.

2.4.3 The conditioning board for rotor speed

In order to acquire the speed of the rotor, a rotary encoder
“ROD 426 B-6000” from HEIDENHAIN GmbH is used. A
conditioning circuit board shown in Fig. 6 is designed by an-
other project. The construction of the rotor speed acquisition
system is shown in Fig. 7. A Preon32 sensor node is inserted
on the board which is powered by 12 V and connected with
the rotary encoder via a serial port.

3 Implementation of the data acquisition system in
distributed WTIMs

The data acquisition system (DAQ) is implemented in
WTIMs based on the MSTL which provides a universal in-
terface to a variety of transducers. The implementation also
follows the IEEE1451 family of standards in many places.
The startTrigger or startStream commands are broadcasted
from the NCAP to trigger the WTIMs simultaneously (IEE,
2007b). When WTIMs receive the command, data will be
acquired periodically.

3.1 Analog sensor data acquisition

Hall sensors are mounted on the conditioning board with
low-pass filters to process analog three-phase currents and
voltages (Hopp, 2013). The Hamming window method is
used for the FIR low-pass filter design, with the cut-
off frequency of 120 Hz. The sampling rate is 2000 Hz.
The instantaneous values of currents and voltages are ac-
quired in a block once a second. The size of the block is
50 samples block−1. The effective values are used for loss
calculation based on Eqs. (4)–(7). The average value of the
coolant air temperature Tc is calculated once a second from
the sampled and filtered signals. The frequency of the out-
put values is decimated to 10 Hz. The values of the slope and
intercept of the transformation equation of the sensors are
stored in the TEDS (Transducer Electronic Data Sheet, IEE,
2007a), making it possible to transfer the values to SI units
before transmission.

The measurement chain of the effective current and volt-
age is taken as an example to illustrate the measurement pro-
cess, which is shown in Fig. 8. Firstly, three-phase analog
currents and voltages are filtered by an anti-aliasing filter
with the cut-off frequency of 100 Hz. Then analog signals
are acquired and converted to digital signals with a sam-
pling rate of 2000 Hz. A low-pass FIR filter is used to fil-
ter digital signals and to pass them for the RMS calculation.
The effective value is calculated every 50 samples. In this
way, the bandwidth is reduced such that it can be represented
by 40 samples s−1. Another decimator is used to further re-
duce the signal bandwidth such that it can be represented by
10 samples s−1. The power consumption would be largely re-
duced due to the lower transmission frequency.

As data are acquired, filtered and transmitted continuously,
the calculation time for each step must be considered. Buffers
for data storage are allocated using MEMB memory block
allocators, which is described in the documents (Allocation,
2016). On the other hand, the computation time of the fil-
ter must be shorter than the acquisition time for one filtered
block. The detailed signal processing time division is shown
in Fig. 9.

The total acquisition and conversion time for one block
(sampling time1t is 500 µs with 8 channels and 16 repetition
counts, a total of 128 samples block−1) is tsampling+ tacquire =
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Figure 8. Measurement chain of the effective current and voltage.
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Figure 9. Detailed processing time division of analog signals.

9200 µs. The total filtering and sending time is tfilter+ tsend =

4890 µs. As a result, the time of data acquisition is longer
than the time of data processing, and the analog data acqui-
sition system can process and transmit the data periodically
from WTIM to the NCAP.

3.2 Digital sensor data acquisition

A rotary encoder (ROD 426B-6000) is mounted to the end of
the machine shaft and connected to a conditioning board. A
WTIM node is used to transfer the number of the pulse into
the real rotor speed using etimer of Contiki. The acquisition
of the generated pulses is shown in Fig. 10.

The rotation speed can be defined in Eq. (19), where τ is
the time between two neighboring pulses, NLine counts is the
number of encoder lines per revolution, and tsample is the time
period in one session, which is 12◦ for the encoder.

Speed=
60

τNLine counts
(19)

3.3 Implementation of the processes in WTIMs

The general structure of the implemented WTIM is shown in
Fig. 11. The IEEE1451.5 process is used to manage the ra-
dio module and to handle the communication of the WSN.
The IEEE1451.0 process is used to manage the TEDS infor-
mation and sample data of the sensors. It is a generic acquisi-
tion system for both rotation sensor and analog sensor, which

t

Δt

tsampl e 

Nl ine counts = 6000

Figure 10. The acquisition of the generated pulses.
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Figure 11. The structure of the implemented WTIMs.

is implemented in all the WTIMs. Which type of process to
be used is determined by the sensor type in the command
from the NCAP. The values acquired and processed by the
acquisition system are sent back to the IEEE1451.0 process
periodically as soon as the WTIM receives startTrigger or
startStream commands. The values are stored in the package
and sent back to the NCAP wirelessly via the IEEE1451.5
process.

4 Implementation of the Kalman filter algorithm in
the NCAP

This section discusses the implementation of the KF algo-
rithm based on the IEEE1451 standard in the NCAP. The
minimum implementation of the IEEE1451 standard has
been integrated into both the WTIM and the NCAP. Sensors
and actuators which are connected to the WTIM can be man-
aged by wireless commands from the NCAP.
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Figure 12. The integration of the KF into the Contiki system stack
of the NCAP.

4.1 The Kalman filter algorithm

The Kalman filter is a set of mathematical equations that pro-
vides an efficient computational (recursive) means to esti-
mate the state of a process, in a way that minimizes the mean
of the squared error (Welch and Bishop, 1995). In general,
both the process noise and the measurement noise should
be taken into account in the system model and measurement
model.

xk = Axk−1+Buk−1+wk−1 (20)
zk =Hxk + vk (21)

It is necessary to assume that the process wk and the mea-
surement noise vk are independent of each other, a random
white Gaussian noise with zero mean. Their variance can be
described by the covariance matrix Q and R, respectively.
The Kalman filter estimates a process by using a feedback
control: the filter estimates the process state at some time
and then obtains feedback in the form of (noisy) measure-
ments (Welch and Bishop, 1995). As such, the equations of
the Kalman filter can be divided into two groups: prediction
equations and correction equations.

The prediction stage of the Kalman filter

The equations of the prediction stage shown in Eqs. (22)
and (23) are responsible for projecting forward (in time) the
current state and error covariance estimates to obtain a pri-
ori estimates for the next time step. Equation (22) is used for
updating the state vector from previous sampling time k− 1
to current time k. Equation (23) is the state of the updating
error covariance matrix.

x̂−k = Ax̂k−1+Buk−1 (22)

P̂−k = APk−1AT +Q (23)

The discretization of the model

The model above is a continuous time system which cannot
be processed by computer. Euler’s approximation is used to

messages
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kf_data_gen ()

run_kf (){

  matrix_init()

  kf_filter_predict()

  kf_filter_update()

  kf_filter_state()

}

kf_process 

start

struct kf_filter {}

struct kf_data {}

Tsw

shell_process

Tsw, Trc, Tsc

Psw, Prc, Psc, Tc

X, P

Figure 13. The workflow of the KF algorithm process.

Table 1. The data range and the resolution of the variables.

Variable/1000 Max Min Resolution

Input 0.2303 −0.0006 6 × 10−6

Output 0.4995 −0.1884 5 × 10−5

discretize the model, so that the sampled data can be used in
the KF algorithm. According to the definition of the deriva-
tive, Eq. (20) can be rewritten as

x(k)= Adx(k− 1)+Bdu(k− 1) (24)

where Ad = E+ τA and Bd = τB, E is a 4 × 4 unit matrix,
Cd is equal to C, and τ is the sampling time.

Ad =


1− Rswτ

Csw
0 Rswτ

Csw
0

0 1− Rrcτ
Crc

Rrcτ
Crc

0
Rswτ
Csc

Rrcτ
Csc

1− (Rsw+Rrc+Rsc)τ
Csc

Rscτ
Csc

0 0 0 1

 (25)

Bd =


τ
Csw

0 0 0
0 τ

Crc
0 0

0 0 τ
Csc

0
0 0 0 0

 (26)

The correction stage of the KF

The equations of the correction stage are responsible for the
feedback – i.e., for incorporating a new measurement into a
priori estimation to obtain an improved a posteriori estima-
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tion (Welch and Bishop, 1995).

Kk = P
−

k H
T
k (HkP−k H

T
k +R)−1, (27)

x̂k = x̂
−

k +Kk(zk −Hx̂
−

k ), (28)
Pk+1 = (I −KkHk)P−k , (29)

where Kk is the Kalman gain and Hk is the measurement
matrix.

In our application, the KF algorithm is integrated into the
NCAP to estimate the temperatures of stator windings, the
rotor cage and the stator core of an induction machine. The
Preon32 sensor node is resource restricted with respect to
low costs, low power consumption and small memory size. In
order to be implemented in the NCAP, the algorithm should
be simple and efficient. The integration of the KF layer into
the Contiki system stack is shown in Fig. 12.

6LoWPAN is defined encapsulation and header compres-
sion mechanisms that allow IPv6 packets to be sent to and
received from IEEE802.15.4 links, whose full name is IPv6
over Low power Wireless Personal Area Networks (Shelby
and Bormann, 2010). It is an adaptation layer of the Ipv6
protocol for WSN. The 6LoWPAN protocol has been im-
plemented together with the IEEE802.15.4 Mac layer and
IEEE802.15.4 PHY layer by Contiki OS. And the Trans-
port layer is responsible for data transmission from an ap-
plication layer between the client and server sides. In the
application, IEEE1451.0 and IEEE1451.5 standards are im-
plemented which are compatible with the stack. The KF al-
gorithm is connected to the transport layer and application
layer based on the API of the IEEE1451 standard. The effi-
ciency of the messages is largely improved and the overhead
of the IP address is reduced by using the header compression
in the User Datagram Protocol (UDP). Users can manage the
WTIM by sending the commands to the NCAP via the In-
ternet, and the NCAP will send commands to WTIM for the
information. All the API and commands are defined in the
standard (IEE, 2007a, b).

14.3 %

KF algorithm
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7.6 kB

Firmware

9.2 kB
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23.4 kB

MSTL

4.7 kB

Device

0.4 kB

Others

3.4 kB

Figure 15. The usage of RAM on the NCAP (total memory: 64 kB).

KF algorithm
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Contiki

31.5 kB

Firmware

16.1 kB

Unused

173.8 kB

MSTL

7.9 kB

Device

5.4 kB

Others

16.4 kB

Figure 16. The usage of flash memory on the NCAP (total memory:
256 kB).

4.2 KF algorithm implementation in the NCAP using
fixed-point arithmetic

The KF algorithm is first implemented in MATLAB. It
proved both in simulation and offline experiments on the test
bench that the temperatures can be accurately estimated. In
order to be implemented on the resource-restricted sensor
node, the same KF algorithm is implemented in the C pro-
gramming language using floating-point arithmetic on the
Eclipse IDE platform. The workflow of the KF-Algorithm
process is shown in Fig. 13, which can be summarized as
follows: when kf_process starts, the system will retrieve
and decode the messages from the messages_buffer where
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different messages from different WTIMs are stored. The
function kf_data_gen() is then called to calculate the losses
Psw,Prc,Psc from the rotor speed and the preprocessed cur-
rents and voltages, and to generate the inputs with Tc. The
inputs are stored in the structure kf_data and passed to the
run_kf() function where the main Kalman filter process is
performed. The DSP (Digital signal processing) library is
used for the fixed-point matrix calculation. The state vector
X and error covariance matrix P are stored in the structure
kf_filter and sent back to the next recursion. The estimated
temperatures Tsw, Trc, Tsc are sent out for storage and display.
Tsw is sent back to calculate the losses of the stator winding
so that the resistance rising due to temperature can be com-
pensated.

Compared to the implementation in MATLAB and Eclipse
in the C language, implementation on the Preon32 sensor
node using Contiki OS faces several challenges.

Firstly, the methods to allocate and free memory space are
different between the standard C library and Contiki OS. The
standard C library allocates heap memory using the malloc()
function. However, the Contiki platform specifies a small
area of its memory space for the heap because of the re-
source restriction (Hopp, 2013). If the malloc() function is
used for memory allocation, the heap could easily overflow.
The MEMB memory block allocator is used to allocate a
block of static memory to construct kf_data, which contains
Psw,Prc,Psc,Tc as the inputs for the algorithm. The struc-
ture kf_filter holds all the variables and matrixes which are
used during the prediction stage and update stage of the KF
algorithm.

The second challenge is that the Preon32 does not have a
floating-point unit. It is clear that the floating-point imple-
mentation cannot run online. As a result, fixed-point arith-
metic is used for the implementation. In order to transfer the
existing KF algorithm from floating-point to fixed-point rep-
resentation, the proper Q format (Qm.n) defined in the docu-
ment (Rein, 2008) has to be considered. Both the range and
the resolution of the data are the key factors for choosing the
type of Q format. The system can avoid computation over-
flow by the saturation modes provided by CPUs, or by de-
signing the arithmetic operations. The number of overflow
checks is minimized by the division of the variables by 1000,
which scaled all the variables and auxiliaries to [−1,1−2n].
By checking the computation in MATLAB step by step, the
minimum value of a number is 6× 10−6, which is larger than
the Q1.31 format resolution. The data range and the resolu-
tion of variables are listed below in Table 1.

Thus the Q1.31 format is used for the arithmetic with a res-
olution of 2−31 and a range of [−1,0.999999999534]. This
means that one bit is used to designate the integer portion of
the number, and the remaining 31 bits are used to designate
the two’s complement fractional part of the number (Rein,
2008).

The third challenge is the estimation time for every step.
The ARM Cortex-M3 processor provides the CMSIS DSP

Table 2. Comparison of TDMA and CSMA.

CSMA TDMA

Synchronization – Crucial
Dynamic Good Poor
Radio channel utilization ratio High Low
Transmission collision Low Latency

NCAP

IEEE1451.0

NCAP

KF algorithm

NCAP

app

NCAP

IEEE1451.5
WTIM

TIMDiscovery

WTIM_IDs

S  tart_KF

WriteMsg

6LoWPAN

notifyRsp

KF algorithm

Estimated

temperatures

DAQ

6LoWPAN

Error_code
WriteMsg:return Request

Response

notifyRsp:return

readRsp

readRsp:return

Figure 17. The sequence on the NCAP side.

library, which contains matrix functions in fixed point (CM-
SIS, 2016). These functions are optimized for checking the
overflow and improving the calculation. By using these ma-
trix functions in fixed-point arithmetic, the KF estimation
time for every step (1 s step−1) is only 600 µs. As a result, on-
line temperature estimation can be performed quite fluently.

4.3 The implementation of processes in the NCAP

Contiki OS is an event-driven system which is managed by
protothreads. In order to operate different WTIMs, to man-
age the message transmission and to process the KF algo-
rithm, several functional processes are implemented in the
NCAP. The structure of the implemented processes is shown
in Fig. 14.

The Serial-Shell process is implemented for connecting
the WSN to an arbitrary network. A PC connected to the
NCAP works as a server of the network. Users can man-
age the WSN by using a web-based application or an App
on a smartphone. The TIMDiscovery process is used first for
discovering WTIMs before every command from the appli-
cation process. The KF-Start process is used for configuring
and initiating. The IEEE1451.5 process is implemented to
manage the radio module and handle the data wireless trans-
mission. The IEEE1451.0 process represents the interlayer
between the IEEE1451.5 process and the KF-Start process.
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WTIM

IEEE1451.5

WTIM

IEEE1451.0
NCAP WTIM

DAQ

Request notifyMsg

Start stream

Data streaming

Response

6LoWPAN

6LoWPAN

WriteRsp

notifyMsg:return

readMsg

readMsg:return

WriteRsp:return

Figure 18. The sequence on the WTIM side.

Table 3. Error and NRMSE of the estimated temperatures under S1.

Parameters Maximum error NRMSE

Stator winding 2.3 ◦C 3.2 %
Rotor cage 3.5 ◦C 2.08 %
Stator core 2 ◦C 2.71 %

The buffer for storing data from different WTIMs is allocated
in this process. The received Irms,Vrms,ωr,Tc will be passed
to the KF-Algo process for the temperature estimation and
the results will be sent out through the Serial-Shell process.

4.4 Memory usage and calculation time

In the implementation of the KF algorithm in the NCAP, all
the memory blocks are allocated statically so that fragmen-
tation can be avoided (Haumer et al., 2012). By using this
way, it is easy to analyze the memory usage of both RAM
and Flash. The usage of RAM on the NCAP sensor node
is shown in Fig. 15. The buffers of the KF algorithm take
up about 24 % of the total memory space. The basic system,
which consists of the Contiki OS, the firmware provided by
Virtenio, and other parts from the standard C library, con-
sumes about 32 %. The MSTL takes up 7.4 %. About 37 %
of the space is unused.

The usage of the flash memory for programming on the
NCAP is shown in Fig. 16. Only about 5 % of the memory is
used for the KF algorithm and the MSTL. The system takes
up most of the used memory. The rest of about 62 % of the
total memory is not used.

The system gets the data from different buffers to generate
the input, which costs 120 µs, and the computation time of
the KF algorithm for one step is about 600 µs. The total time
of data generation and KF computation is much shorter than
the calculation interval 1 s.

Table 4. Error and NRMSE of the estimated temperatures under S6.

Parameters Maximum error NRMSE

Stator winding 3.5 ◦C 2.69 %
Rotor cage 3.5 ◦C 2.45 %
Stator core 1.5 ◦C 1.36 %

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [s]S
ta

to
r 

w
in

gd
in

g 
[°

C
]

 

 

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

Time [s]

R
ot

or
 c

ag
e 

[°
C

]

 

 

Measurement
Estimation

0 1000 2000 3000 4000 5000 6000 7000
0

50

Time [s]S
ta

to
r 

co
re

 [°
C

]

 

 

Measurement
Estimation

Figure 19. Comparison of measured and estimated temperatures
under S1.

5 The communication of the WSN system

In the WSN system, the IEEE1451.5 standard defines the
communication interfaces between the NCAP and WTIMs.
The 6LoWPAN communication protocol is implemented in
the network layer and UDP is used at the transport layer to
comply with this specification in the standard.

5.1 Channel access method – the WSN system

Three WTIMs continuously transmit data streaming to the
NCAP. Radio channel collision, which is caused by two of
the nodes sending data at the same time, is a great concern in
the implementation. Carrier-sense multiple access (CSMA)
and time-division multiple access (TDMA) are implemented
in the MAC layer as the channel access methods, which can
be selected according to different requirements of the appli-
cation. The mechanism and the implementation of these two
methods are out of the scope of this paper. Both CSMA and
TDMA can be applied in this system through the experiment.
Table 2 shows the comparison of these two channel access
methods (Cionca et al., 2008).

CSMA prevents collisions by repeatedly detecting the
channel and waiting for it to become available. So when a
large number of nodes are operated in WSN with CSMA,
the channel utilization is normally lower than with TDMA.
When data from three different WTIMs are transmitted to the
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Figure 20. Comparison of measured and estimated temperatures
under S6.

NCAP, collisions would happen or packages would be lost.
Either of these events can influence the estimation results or
block the process of the algorithm.

TDMA is an alternative mechanism to coordinate each
node which is divided into time frames and each time frame
is further divided into a fixed number of time slots. By us-
ing TDMA, data transmissions operate in a completely pre-
dictable way, which can largely reduce the collisions and al-
most prevent the packages from missing. Fewer collisions
and more stable transmission have higher priority when de-
termining channel access method. As a result, TDMA is used
for this WSN system.

5.2 The sequence of the WSN system

The sequence on the NCAP side is shown in Fig. 17. The
TIMDiscovery command is first used to discover the avail-
able WTIMs in the network. After calling the start_KF func-
tion, the message is passed from the IEEE1451.0 layer to
the IEEE1451.5 layer and then broadcasted to the WTIMs.
Acquired data from different WTIMs are sent back to the
NCAP and stored in a queue in different buffers which are
identified by the WTIM_ID. The data from different buffers
will be fetched by a data generation function according to
the timestamps. Preprocessed data with the same or nearest
timestamps will be passed and processed by the KF algo-
rithm processed by the KF. Finally, the temperatures are es-
timated.

The sequence on the WTIM side is shown in Fig. 18. The
message is notified and decoded by the IEEE1451.0 process.
The data acquisition system can be triggered by the start-
Stream command for continuous data acquisition. The DAQ
is out of the scope of the IEEE1451 standard. The filtered

and processed data are converted to the value in SI units and
are sent back to the NCAP for the KF algorithm.

6 Experiments

The structure of the test bench is shown in Fig. A1. Two
experiments are performed on the test bench (Siemens ma-
chine: 1 LA5107-4AA20) using the WSN temperature es-
timation system. Wireless sensor nodes TIM2, TIM3 and
TIM4 are used to acquire rotor speed, coolant air temper-
ature, three-phase currents and voltages. The KF algorithm
is implemented in the wireless sensor node as the NCAP
to estimate the temperatures. The sampling time is 1 s. The
sampling period is about 2 h, after which the temperatures of
the estimated parts stay stable. The ambient temperature is
26 ◦C. The maximum errors and the normalized root-mean-
square error (NRMSR) eNRMS defined in Eq. (30) are sum-
marized in Table 3. The maximal deviation is 3.5 ◦C and the
maximum NRMSR is 3.2 %. The comparisons of the esti-
mated and measured temperatures under the continuous full-
load test S1 condition are shown in Fig. 19.

eNRMS =

√√√√ 1
N

N∑
i=0

(
ymea(i)− yest(i)

max(ymea)−min(ymea)

)2

(30)

The other experiment under intermittent-load S6 (6 min no
load followed by 4 min full load) is also performed on the test
bench. The estimated and measured temperatures are shown
in Fig. 20 and the maximum errors and NRMSE are listed in
Table 4. The temperatures are estimated accurately under S6
with a maximum error of 3.5 ◦C, with the accuracy of 97 %.
The difference may be due to the installation of PT1000 on
the rotor cage, which influences the flux density and gen-
erates excessive losses (about 55 w) compared to a healthy
machine (Bangura and Demerdash, 2000).

7 Conclusions

This paper describes the implementation of the temperature
estimation system of induction machines on a WSN. The
fourth-order KF with fixed-point arithmetic is implemented
in the NCAP. Three WTIMs are implemented as the data ac-
quisition systems. Compared to the floating-point implemen-
tation, the fixed point had the same estimation accuracy at
only about one-fifth of the computation time. The KF algo-
rithm is independent of the control strategy and the running
conditions. That means no matter what the rotor speed is,
and what the mechanical load is, as long as there are cur-
rents through the stator winding, the temperature can be es-
timated correctly. The experiments prove that the KF imple-
mentation is suitable for real-time temperature estimation on
a resource-limited wireless sensor node. If wireless transmis-
sion has collapsed or packages are missing, the system can be
rebooted for temperature estimation.
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Data availability. The underlying research data are stored in an
internal system. All measurement data are not publicly available
and can be accessed from the authors upon request.
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Appendix A
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Figure A1. The structure of the test bench.
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