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Abstract. Measurements of temporal and spatial changes to indoor contaminant concentrations are vital to
understanding pollution characteristics. Whilst scientific instruments provide high temporal resolution of indoor
pollutants, their cost and complexity make them unfeasible for large-scale projects. Low-cost monitors offer an
opportunity to collect high-density temporal and spatial data in a broader range of households.

This paper presents a user study to assess the precision, accuracy, and usability of a low-cost indoor air quality
monitor in a residential environment to collect data about the indoor pollution. Temperature, relative humidity,
total volatile organic compounds (tVOC), carbon dioxide (CO2) equivalents, and fine particulate matter (PM2.5)
data were measured with five low-cost (“Foobot”) monitors and were compared with data from other monitors
reported to be scientifically validated.

The study found a significant agreement between the instruments with regard to temperature, relative humidity,
total volatile organic compounds, and fine particulate matter data. Foobot CO2 equivalent was found to provide
misleading CO2 levels as indicators of ventilation. Calibration equations were derived for tVOC, CO2, and
PM2.5 to improve sensors’ accuracy. The data were analysed based on the percentage of time pollutant levels
that exceeded WHO thresholds.

The performance of low-cost monitors to measure total volatile organic compounds and particulate matter
2.5 µm has not been properly addressed. The findings suggest that Foobot is sufficiently accurate for identifying
high pollutant exposures with potential health risks and for providing data at high granularity and good potential
for user or scientific applications due to remote data retrieval. It may also be well suited to remote and larger-scale
studies in quantifying exposure to pollutants.

1 Introduction

Increasingly strict energy efficiency requirements have se-
vere implications for buildings and indoor air quality (IAQ)
(Yu and Kim, 2012). IAQ is crucial for peoples’ health as
we spend between 80 and 90 % of our time inside buildings
(Jones, 1999; Boyd, 2010) depending on the external weather
conditions. Indoor air pollutants include carbon monoxide
(CO), carbon dioxide (CO2), volatile organic compounds
(VOCs), particulate matter (PM2.5 and PM10), and ozone
(O3) among others (Berry et al., 1996; Crump et al., 2002).
Exposure to these can exacerbate existing conditions such

as sensory irritation and other respiratory problems (WHO,
2000, 2010) and even increase the risk of developing can-
cer (Carrer et al., 2008). Residents are usually unaware of
indoor pollution as many pollutants are imperceptible to hu-
mans. For instance, 85 % of tobacco smoke is invisible to
the human eye (Gee et al., 2013). It is necessary to moni-
tor the quality of the indoor air to detect these pollutants and
thus avoid the development of adverse health effects from
inhaling pollutants. Accepted methods for measurements of
indoor pollutants are based on filter-based gravimetric sen-
sors or similar methods for particulate matter monitoring (Air
Quality Expert Group, 2005), and infrared and photoionisa-
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tion gas sensors (Chou, 2000). While accurate and precise,
such technologies are expensive, time-consuming, and of-
ten provide little temporal information. Methods for personal
dust, VOC and CO2 scientific monitors often provide high
temporal resolution but are expensive (> GBP 3500.00) and
therefore result in limited spatial information (White, 2009).
Although analytical instruments often provide high tempo-
ral resolution, they are intended for laboratory use and their
requirement for skilled operators, high purchase and mainte-
nance costs, slow response time, and large size (Chou, 2000)
make them impractical for IAQ studies (Kularatna and Su-
dantha, 2008). Moreover, the accuracy of these instruments
may be considered excessive for large-scale IAQ monitor-
ing, where a principal objective is to investigate the relative
concentration of pollutants and their trends. As the perfor-
mance of low-cost sensors improves, gas sensors that are
compact, robust, and low-cost, with versatile applications,
could be used as alternatives (Lee, 2001) for certain moni-
toring projects and could be used to collect larger datasets.

Technologies such as metal oxide (MOx) semiconductor
sensors (Herberger et al., 2010; Kadosaki et al., 2010; Liu et
al., 2012), light scattering (Tong et al., 2015) and tin oxide
sensors (Watson, 1984; Postolache et al., 2009), open plat-
forms (Ferdoush and Li, 2014; Ali et al., 2016), and wireless
networks (Yu et al., 2013) have been adapted into low-cost
monitors, and even allow remote monitoring (Kahkonen et
al., 1997). New low-cost (< GBP 200) monitoring technolo-
gies may also help building occupants understand the qual-
ity of air indoors. Low-cost IAQ monitors often implement
real-time monitoring and visualisation for smartphones and
tablets to help inform the users (Hasenfratz et al., 2012).
There is, however, limited information regarding the perfor-
mance of low-cost monitors in practice. Nevertheless, many
low-cost IAQ monitors such as Speck, Dylos DC1700 Pro
(Manikonda et al., 2016) and Dylos DC1100Pro (Semple et
al., 2013b) have been tested in laboratory conditions, and the
results show a significant agreement with scientific instru-
ments.

Low-cost IAQ monitor manufacturers often include sen-
sors for temperature, relative humidity, carbon dioxide, par-
ticulate matter, and total volatile organic compounds (tVOC),
as evidenced by the Foobot, Speck, Awair, and Air Men-
tor Pro devices (see Table 1 for manufacturer specifications).
These low-cost IAQ monitors use microprocessors to collect
sensor output, convert the data, and store or transmit data
wirelessly to a remote server. Many of these devices may
use the same or very similar sensors. However, manufactur-
ers use a variety of algorithms to convert the sensor output
to a concentration of each pollutant. This calibration proto-
col can have a marked impact on sensor precision, accuracy,
and bias. For instance, the SHARP GPY1010AU0F, a PM2.5
sensor, was tested in laboratory conditions. It was found to
be accurate; however, the study recommended that an im-
provement of the algorithm could enhance its performance
(Wang et al., 2015). Another study evaluated the same sen-

sor on a monitoring device using a different algorithm; the
results showed better precision and linear response (Sousan
et al., 2017).

The Dylos DC1700 showed a high agreement (R2
= 0.90)

with SidePak AM510 in controlled chamber experiments
(Semple et al., 2013a). It was also tested to quantify
second-hand smoke concentrations in residential settings,
where a good agreement (R2

= 0.86) to SidePak AM510
was observed (Semple et al., 2013b). Therefore, Dylos
DC1700 particulate matter (PM) measurements have exhib-
ited some agreement between fieldwork and laboratory re-
sults. Some limitations of this device include limited data
storage (10 000 data points), lack of remote access capabili-
ties, and lack of multisensory measurements, such as temper-
ature or relative humidity. PM2.5 measurements from Speck
SPK18TH, however, showed discrepancies between the en-
vironmental chamber and field measurements. The device
demonstrated high agreement for determination of cigarette
smoke (R2

= 0.92) and Arizona test dust (R2
= 0.96) un-

der laboratory settings (Manikonda et al., 2016). However,
the performance of Speck SPK18TH was found to be inad-
equate when tested at low concentrations against a scientific
instrument in the field, both indoors (R2

= 0.3) and outdoors
(R2
= 0.1–0.2), showing an overestimation of 200 % for in-

door PM2.5, and 500 % for outdoor compared to the Grimm
1.109 (Zikova et al., 2017). The accuracy of PM2.5 mea-
surements from the Foobot (FBT0002100) device has only
been evaluated in laboratory measurements, which showed
a strong correlation (r = 0.99 with a variation range of 5 to
8 %) with scientific instruments. Yet site-specific calibration
may help to improve the accuracy of such sensors (Sousan et
al., 2017).

The objective of this study is to evaluate the perfor-
mance of the Foobot sensors, especially PM2.5 and tVOC,
in typical residential settings. The linear relationship and
bias for temperature, relative humidity, CO2, tVOC, and
PM2.5 concentrations in a residential environment were as-
sessed and compared to scientifically validated instruments
(GrayWolf TG-502 TVOC, IQ-410, and PC-3016A). To
the best of our knowledge, no study has yet evaluated the
Foobot FBT0002100 sensors in field conditions. This paper
compares the specifications of several low-cost IAQ mon-
itors and explores in detail the components of the Foobot
FBT0002100. Following this, indoor residential measure-
ments from five Foobot FBT0002100 devices are compared
to the GrayWolf instruments, and inter-device variances
among the five Foobot devices are also analysed. Finally,
field calibration equations are proposed to improve the ac-
curacy of the Foobot FBT0002100 relative to the GrayWolf
instruments.
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Table 1. Manufacturer specifications and characteristics for the low-cost consumer monitors.

Air Mentor Pro Awair Dylos Foobot Netatmo Speck 2.0

Model 8096-AP AW6404 DC1100 Pro FBT0002100 NWS01-EU SPK18TH
Cost (GBP) 180.00 169.99 330.00 179.00 139.00 180.00

A
ir

qu
al

ity
pa

ra
m

et
er

s

◦C [−20–80 ◦C] [−40–125 ◦C] – [−40–125 ◦C] [−0–50 ◦C] Yes
±0.1 ◦C ±0.3 ◦C ±0.4 ◦C ±0.3 ◦C

%RH [0–100 %RH] [0–95 %RH] – [0–100 %RH] [0–100 %RH] Yes
±1.0 %RH ±3.0 %RH ±4.0 %RH ±3.0 %RH

CO2 [400–2000 ppm] [0–4000 ppm] – [400–6000 ppm] [0–5000 ppm] –
±1.0 ppm ±75 ppm ±1.0 ppm ±50 ppm or 5 %

tVOC [125–3500 ppb] Yes – [125–1000 ppb] – –
±1.0 ppb ±1.0 ppb

PM2.5 [0–300 µg m−3] [0–500 µg m−3] Yes [0–1300 µg m−3] – [0–640 µg m−3]
±1 µg m−3 (–) ±4 µg m−3 (–)

or± 20 %
PM0.5 – – Yes – – –

Remote storage Yes Yes No Yes Yes Yes
Internal storage Yes Yes Yes No No Yes
Wi-Fi connectivity No Yes No Yes Yes Yes
Remote data retrieval Yes Yes No Yes Yes Yes
Recording frequency 1 min 5 min 1 min 5 min 5 min 5 s–4 min
Dimensions (mm) 106 (H), 90 (H), 177.8 (H), 172 (H), 155 (H), 89 (H),

115 (W), 160 (W), 114.3 (W), 71 (D) 45 (D) 114 (W),
44.5 (L) 50 (L) 76.2 (L) 94 (L)

Weight (g) 498.95 453.59 1133.98 475 372 164.4

2 Low-cost IAQ monitors

A web-based search for low-cost, consumer, air pollutant
monitors (available in the US and European markets) was
performed in early 2016. The most popular low-cost IAQ
monitors are presented in Table 1. The Foobot FBT0002100
device was selected for detailed evaluation based on criteria
as suggested by Chou (2000):

– availability (in the UK),

– capable of being installed in residential locations,

– remote connectivity and storage,

– dustproof and water-resistant,

– easy and minimal maintenance,

– easy to operate (no skilled person required),

– flexibility in data download,

– good responsiveness and quality of technical support,

– use of multisensory systems,

– long-lasting,

– low cost (< UK GBP 200, including equipment and soft-
ware),

– operationally stable,

– remote access to data, and

– rugged and corrosion resistant.

The Foobot was developed by AirBoxLab (Luxembourg) and
measures five different air quality parameters with reference
to maximum recommended values as defined by Foobot:
PM2.5 (25 µg m−3), tVOC (300 ppb), CO2 (1300 ppm), tem-
perature (40 ◦C), and relative humidity (RH, 60 %). The de-
vice mechanism is simple; a microprocessor collects the elec-
trical outputs from the sensors and converts them into data,
which are then transmitted wirelessly to a remote server,
where an algorithm is applied to derive the measured concen-
trations. Data may be lost if the wireless signal is interrupted,
as the Foobot does not have internal data storage. The manu-
facturer hosts a website where the data uploaded can be visu-
alised and downloaded (https://partner.foobot.io/, last access:
14 January 2018), though a monthly subscription is required
for this service. Accessing the data for free is possible. Nev-
ertheless, the user needs to develop his or her software with
an application programming interface (API) provided by Air-
BoxLab, which allows up to 250 daily data requests to the
server. AirBoxLab has developed a calibration algorithm for
its sensors, details of which are not available to the public
(personal communication, Inouk Bourgon, 2016). Figure 1
shows the Foobot and the sensors inside of the device.

Foobot uses the SHARP GP2Y1010AU0F sensor (Sharp
Corporation, Japan) to measure PM2.5 which relies on nat-
ural convection to passively move air to the sensor, mea-
suring particles with an aerodynamic diameter between 0.3
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Figure 1. Foobot FBT0002100 monitor (a) and Foobot Main Board
3.3 (b) showing the SHARP GP2Y1010AU0F (1), the iAQ-CORE-
C (2), and SHT20 (3). (a) from https://foobot.io (last access: 22
November 2017).

and 2.5 µm. The SHARP GP2Y1010AU0F was laboratory-
tested with two similar low-cost sensors, and showed the
highest agreement with the SidePak-measured concentra-
tion (R2

= 0.9831 to 0.9838 in three different tests) and a
higher sensitivity to smaller particles. The researchers sug-
gested that the SHARP GP2Y1010AU0F could be enhanced
by modifying the flow system and amending the algorithm
for particle concentrations (Wang et al., 2015).

The Foobot tVOC sensor AMS iAQ-CORE-C (ams AG,
Austria) measures a wide range of VOCs to predict tVOC
(ppb). It lacks a CO2 sensor; however, an algorithm converts
tVOC concentration as a CO2 equivalent (ppm). It has an
Inter-Integrated Circuit (I 2C) interface allowing the com-
munication with the main chip. This sensor uses a micro-
electro-mechanical system allowing the metal oxide sensor
to measure VOC concentrations continuously at 1 s intervals
(AMS, 2015). Equations convert the signal output from the
sensor to values of tVOC and CO2 equivalents (equations
described at the AMS iAQ-CORE-C manual (AMS, 2015,
pp. 10–11). The AMS iAQ-CORE-C does not report abso-
lute values for any particular gas, but instead indicates the
relative change in levels of reducing gases such as CO and
a wide range of VOCs (Brown, 2017). This sensor has been
used to control environmental monitoring systems (Kim et
al., 2017) and smart health applications (Chan et al., 2017).

The Foobot temperature and relative humidity sensor is
the SENSIRION SHT20 (Sensirion, Switzerland) with an
I 2C interface (see SENSIRION, 2014 for more information).
This sensor has been on the market since May 2009 and has
been widely accepted as a low-cost sensor for temperature
and humidity. Since then, it has been used for smart home
applications (Hernandez et al., 2014), for weather condition
observation systems (An and Kang, 2014), and to control me-

Figure 2. Test layout.

chanical ventilation with heat recovery systems (Matsuoka
and Fisher, 2017).

3 Method

The study was undertaken following the guidelines of the
ASTM D72974-14 Standard Practice for Evaluating Res-
idential Indoor Air Quality (ASTM, 2014). The monitors
were located at an approximate height of 0.90 m over the
top of a drawer. Care was taken to ensure the monitors were
placed away from direct pollutant sources, heat sources (such
as cookers or radiators), and ventilation ducts or openings.
Given the nature of the measurements and the desire to en-
sure that “typical” conditions were achieved, it was not pos-
sible to position the monitors in the centre of the room (see
Fig. 2).

This study tests the accuracy of Foobot FBT0002100 tem-
perature, relative humidity, particulate matter, and tVOC
measurements by comparing the measurements of five
Foobot FBT0002100 devices to measurements from the
GrayWolf TG-502 TVOC, IQ-410, and PC-3016A. Table 2
shows the specification for the GrayWolf instruments. The
monitors were set to measure simultaneously at 5 min inter-
vals for 81 h 25 min (from 28 August 23:50 LT to 1 Septem-
ber 2017 11:25 LT) in an occupied bedroom (floor area
10.5 m2) of a modern flat in Glasgow, UK. The occupancy
levels and activities were recorded by the occupants in a di-
ary and this was used to contextualise the data, to ensure that
typical conditions were represented, but this information was
not used in the statistical analysis.

Statistical analysis

Data from each monitor were exported into Microsoft Ex-
cel for initial data inspection and to IBM SPSS Statistics
for statistical analysis. The 5 min data pairs (n= 4895 for
each measure) across the study were assigned to either a
calibration dataset (n= 2448 for each measure) or a valida-
tion dataset (n= 2449 for each measure). The Kolmogorov–
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Table 2. Manufacturer specifications and characteristics for the GrayWolf instruments.

GrayWolf (VOC) GrayWolf (PM2.5) GrayWolf (CO2)

Model TG-502 TVOC PC-3016A IQ-410
Cost (GBP) 3200.001 2900.001 3200.001

A
ir

qu
al

ity
pa

ra
m

et
er

s

◦C [−10, 70 ◦C],± 0.3 ◦C [−10, 70 ◦C],± 0.3 ◦C [−10, 70 ◦C],± 0.3 ◦C
%RH [0–100 %RH], ±2 %RH, [0–100 %RH], ±2 %RH, [0–100 %RH], ±2 %RH,

< 80 %RH, < 80 %RH, < 80 %RH,
±3 %RH, ±3 %RH, ±3 %RH,
> 80 %RH > 80 %RH > 80 %RH

CO2 No No [0–10 000 ppm],± 50 ppm,± 3 %rdg
tVOC [0.1–10 000.00 ppb] No No

±1.6–2.0 ppb2

PM2.5 No [0–4 000 000 particles ft−3]± 5 % No
PM0.5 No 100 % for particles > 0.45 µm No

Remote storage No No No
Internal storage Yes Yes, when connected to a tablet Yes, when connected to a tablet
Wi-Fi connectivity No No No
Remote data retrieval No No No
Recording frequency 1 min 1 min 1 min
Dimensions (mm) 300 (H), 63.5 (H), 300 (H),

50 (D) 127 (W), 50 (D)
22.3 (L)

Weight (g) 700 1000.00 700

1 Require additional software (∼GBP 1200.00) and a tablet (> GBP 500.00). 2 Isobutylene equivalent.

Smirnov test rejected the hypothesis of normal distribution.
Data were measured at intervals and were found to have
a monotonic relationship. Therefore, Spearman’s rank-order
correlation (rs) was applied to determine the correlation be-
tween the variables from each of the paired devices. This in-
dicates the association from one device to another. The closer
rs is to unity, the more positive and direct is the association
between devices. Correlations from 0.3 to 0.5 are considered
as low positive (weak) correlation, 0.5 to 0.7 are considerate
as a moderate (acceptable) positive correlation, from 0.7 to
0.9 as a high positive (strong) correlation and 0.9 to 1.00 as a
very high positive association (very strong) (Mukaka, 2012).

The uniformity of data from different Foobot FBT0002100
was also determined by a Spearman’s rank-order correlation.
Additionally, to compare the differences between each of the
measurements among the five different Foobot FBT0002100
monitors, the Kruskal–Wallis test, a nonparametric test, was
applied to determine if there were statistically significant dif-
ferences between them.

A regression analysis was performed to improve the ac-
curacy of the Foobot FBT0002100 data relative to the Gray-
Wolf data. Field calibration equations were then produced
from the calibration dataset using the results from the Gray-
Wolf instruments as dependent variables and the Foobot
FBT0002100 as independent variables and tested on the val-
idation dataset. An analysis in SPSS of the linear, quadratic,
and cubic models was performed individually for each pa-
rameter to find the most accurate equation. A Bland–Altman

analysis was then performed on the validation dataset to ex-
amine the correlation and agreement between data generated
by the calibration equation and data obtained by the Gray-
Wolf instruments. The Bland–Altman method calculates the
mean difference between two methods of measurement (the
“bias”), and 95 % limits of agreement from the mean differ-
ence (1.96 SD) (Myles and Cui, 2007). From this process, a
Bland–Altman plot (or difference plot) can be generated as
a graphical method of comparing two measurements of the
same variable.

Measurement of the extent to which data collectors (raters)
assign the same score to the same variable is called interrater
reliability. The interrater reliability of the agreement between
the data generated by the calibration equation and the data
from the GrayWolf instruments was tested using the Cohen’s
κ test to account for the possibility of agreement happening
by chance; the closer that κ is to 1.00 the better agreement it
has.

4 Results

4.1 Inter-sensor analysis of low-cost and scientific IAQ
monitors

The measurements from the five Foobot FBT0002100 mon-
itors were compared to those from the GrayWolf IQ-410,
TG-502 TVOC, and PC-3016A. The results showed that
the temperature measurements were very strongly related
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Figure 3. Temperature levels from 29 August to 1 September 2017 form the Foobot and GrayWolf instruments. (Activity describes the
morning routine: showering, grooming, and changing.)

(rs = 0.833 to 0.926, p < .001). Despite this, analysis of the
temperature data showed that the Foobot FBT0002100 un-
derestimated temperature (mean (M)= 2.59 ◦C, 95 % confi-
dence interval from 2.40 to 2.73 ◦C; Fig. 3). Knowledge of
inter-sensor variability is important for the reliability of sen-
sors in practice. Analysis of the temperature data from the
five Foobot FBT0002100 monitors identified a very signifi-
cant uniformity (rs = 0.833 to 0.926, p < .001) and low vari-
ability (M = 0.16 ◦C, from 0.16 to 0.33 ◦C) between the dif-
ferent temperature sensors.

A very strong relationship (rs = 0.935 to 0.948, p < .001)
was observed for relative humidity measurements from the
five Fooboot FBT0002100 and the GrayWolf monitors. Very
low variability was observed between Foobot and Gray-
Wolf monitors, given that the Foobot FBT0002100 under-
estimated the relative humidity levels by 0.01 %RH (from
−0.78 to 1.08 %RH, Fig. 4). Inter-sensor analysis between
the five Foobot monitors showed a very strong unifor-
mity (rs = 0.985 to 0.991, p < .001) and low variability
(M = 0.52 %RH, from −1.86 to 0.75 %RH) of the relative
humidity sensor.

Analysis of the tVOC measurements from the five Foboot
monitors and the GrayWolf TG-502 TVOC showed a signif-
icant relationship (rs = 0.827 to 0.869, p < .001). A very low
variability between the five Foobot monitors was observed,
but the Foobot underestimated the tVOC levels by 22.12 ppb
(from 12.79 to 28.20 ppb, Table 3, Fig. 5). Inter-sensor anal-
ysis between the five Foobot monitors showed a very strong
uniformity (rs = 0.892 to 0.974, p < .001) and low variabil-

ity (M =−7.05 ppb, from−15.43 to−1.67 ppb) between the
different tVOC sensors.

Analysis of the CO2 (equivalent from tVOC) data from
the Foobot monitors and the GrayWolf IQ-410 showed
that the Foobot CO2 levels differed from those mea-
sured by the GrayWolf instrument. A weak but signif-
icant correlation (rs = 0.397 to 0.525, p < .001) was ob-
served. The Foobot monitors underestimated the CO2 con-
centrations (M = 147.08 ppm, from 99.08 to 155.00 ppm,
Fig. 6), a factor which could lead to problems in assess-
ing ventilation based on CO2 levels. The percentage of
time CO2 > 1000 ppm was considerably different between
the GrayWolf IQ-410 and the five Foobot monitors (Table 4).
Inter-sensor analysis of the five Foobot monitors showed a
very strong uniformity (rs = 0.892 to 0.973, p < .001) and a
low variance (M = 25.54 ppm, from 5.99 to 55.92 ppm) be-
tween the different CO2 measurements.

PM2.5 measurements from the five Foobot monitors
and the GrayWolf PC-3016A were significantly related
(rs = 0.787 to 0.866, p < .001) to each other. Despite this,
analysis of the data showed that the Foobot overestimated
PM2.5 concentrations (M =−1.4826 µg m−3, from −1.4783
to −1.4870 µg m−3, Table 5, Fig. 7). A higher degree
of agreement between the types of devices is addressed
in the following section. Inter-sensor analysis of the five
Foobot monitors showed that there was an acceptable uni-
formity (rs = 0.576–0.843 p < .001) and a low variance
(M =−1.4826 µg m−3 from −0.0068 to 0.0084 µg m−3) be-
tween the different PM2.5 sensors.
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Table 3. Summary statistics for tVOC calibration dataset divided by instruments.

Instrument tVOC mean tVOC min. tVOC max. % time
(ppb) (ppb) (ppb) > 300 ppb

GrayWolf TG-502 TVOC 176.4 143 549 0.82 %
Foobot FBT0002100 A 158.7 125 369 0.41 %
Foobot FBT0002100 B 161.3 125 357 0.41 %
Foobot FBT0002100 C 164 125 350 0.61 %
Foobot FBT0002100 D 165.7 125 376 0.61 %
Foobot FBT0002100 E 174.1 125 413 2.25 %

Figure 4. Relative humidity levels from 29 August to 1 September 2017 form the Foobot and GrayWolf instruments. (Activity describes the
morning routine: showering, grooming, and changing.)

4.2 Relationship between the GrayWolf and Foobot
monitors

4.2.1 Total volatile organic compounds (tVOC)

The results from the tVOC measurements showed that
Foobot FBT0002100 underestimated tVOC concentrations.
Figure 8 shows the relationship between the GrayWolf TG-
502 TVOC and Foobot FBT0002100 tVOC concentrations
from the calibration dataset used to generate a regression
equation. The best fit produces an R2 value of 0.697 and the
equation generated by regression is

tVOC GrayWolf=−1.56e2
+ 4.5(tVOC Foobot)

− 0.02
(
tVOC Foobot2

)
+ 3.57e−5

(
tVOC Foobot3

)
, (1)

where tVOC is the concentration (ppb). Figure 9 shows the
Bland–Altman plot comparing the GrayWolf tVOC measure-

ments with that estimated from the Eq. (1) for the dataset
from the five Foobot validations. It shows the mean between
the GrayWolf and the Foobot tVOC generated measure-
ments (−0.0148 ppb with limits of agreement of −36.7935
to 36.7639 ppb at a 95 % confidence interval). A total of 80
(3.26 %) of the data points were outside of the limit of agree-
ment (51 above the upper limit and 29 below the lower limit).
This range is significantly lower than 300 ppb (the World
Health Organization, WHO, threshold for tVOC; Koisti-
nen et al., 2008). The plot shows that Foobot FBT0002100
underestimated the concentrations at high concentrations
(> 300 ppb). A comparison between the tVOC concentra-
tions from the GrayWolf TG-503 TVOC and the Foobot
tVOC generated showed indoor air quality information that
has a very good agreement. The number of data points on
which the tVOC concentration values exceeded the 300 ppb
is within ±0.71 % as observed in Table 6. The agreement of
the data points from the calibration and validation datasets
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Figure 5. Total volatile organic compound levels from 29 August to 1 September 2017 form the Foobot and GrayWolf instruments. (Activity
describes the morning routine: showering, grooming, and changing.)

Table 4. Summary statistics for CO2 calibration dataset divided by instruments.

Instrument CO2 mean CO2 min. CO2 max. % time
(ppm) (ppm) (ppm) > 1000 ppm

GrayWolf IQ-410 727.2 451 1379 20.53 %
Foobot FBT0002100 A 572.2 450 1337 0.72 %
Foobot FBT0002100 B 581.6 450 1294 0.61 %
Foobot FBT0002100 C 591.5 450 1269 0.82 %
Foobot FBT0002100 D 597.7 450 1361 1.84 %
Foobot FBT0002100 E 628.1 450 1496 3.78 %

were also corroborated. Both showed a very good agree-
ment on the concentrations above 300 ppb: on the calibration
dataset, a κ of 0.75, and on the validation dataset, a κ of 0.85.

4.2.2 Carbon dioxide (CO2)

The results from the CO2 measurements showed a weak cor-
relation as the CO2 concentrations were underestimated. Fig-
ure 10 shows the relationship between the GrayWolf IQ-410
and Foobot FBT0002100 CO2 concentrations from the cali-
bration dataset used to generate the regression equation. The
best fit produces an R2 value of 0.180 and the equation gen-
erated by regression is

CO2 GrayWolf=−1.39e3
+ 7.08(CO2 Foobot)

− 7.15e−3
(

CO2 Foobot2
)

+ 2.29e−6
(

CO2 Foobot3
)
, (2)

where CO2 is the concentration in ppb. Figure 11 shows
the Bland–Altman plot comparing the GrayWolf CO2 mea-
surements with those estimated from the Eq. (2) to the five
Foobot validation datasets. It shows the mean difference be-
tween the GrayWolf and the Foobot CO2 generated mea-
surements (4.1149 with limits of agreement of −457.453 to
465.683 ppm at a 95 % confidence interval). A total of 152
(6.21 %) of the data points were outside of the limits of agree-
ment (152 above the upper limit). This range is almost equal
to the 1000 ppm (the ASHRAE threshold for CO2 ASHRAE,
2007). A comparison between the CO2 concentrations and
the Foobot CO2 generated to produce information about the
ventilation rates showed that there was a poor agreement be-
tween them. The number of data points on which the CO2
concentration values exceed the 1000 ppm was significantly
different from the GrayWolf instruments to those generated
by the Eq. (2) as shown in Table 7. The agreement of the data
points from the calibration and validation datasets was also
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Figure 6. Carbon dioxide levels from 29 August to 1 September 2017 form the Foobot and GrayWolf instruments. (Activity describes the
morning routine: showering, grooming, and changing.)

Table 5. Summary statistics for PM2.5 calibration dataset divided by instruments.

Instrument PM2.5 mean PM2.5 min. PM2.5 max. % time
(µg m−3) (µg m−3) (µg m−3) > 25 µg m−3

GrayWolf PC-3016A 6.8438 3.54 35.78 0.82 %
Foobot FBT0002100 A 8.3273 3.96 35.7 1.43 %
Foobot FBT0002100 B 8.3288 1 44.24 1.43 %
Foobot FBT0002100 C 8.3243 3.18 39.06 1.43 %
Foobot FBT0002100 D 8.3311 3.48 36.14 1.23 %
Foobot FBT0002100 E 8.3224 2.99 42.55 1.33 %

corroborated. Both showed a complete disagreement on the
concentrations above 1000 ppm: on the calibration dataset, a
κ of 0, and on the validation dataset, a κ of 0.

4.2.3 Particulate matter 2.5 µm (PM2.5)

The results from the PM2.5 measurements showed that
Foobot was overestimating particle matter concentrations.
Figure 12 shows the relationship between the GrayWolf PC-
3016A and Foobot FBT0002100 PM2.5 concentrations from
the calibration dataset used to generate the regression equa-
tion. The best fit produces an R2 value of 0.887 and the equa-
tion generated by regression is

PM2.5 GrayWolf= 0.49+ 0.79(PM2.5 Foobot)

+ 3.76e−3
(

PM2.5 Foobot2
)
, (3)

where PM2.5 is the mass concentration (µg m−3). Figure 13
shows the Bland–Altman plot comparing the GrayWolf

PM2.5 measurements with those estimated from Eq. (3) to
the five Foobot validation dataset. It shows the mean dif-
ference between the GrayWolf and the Foobot tVOC gen-
erated measurements (−0.0137 with limits of agreement of
−2.32 to 2.29 µg m−3 at a 95 % confidence interval). A total
of 100 (4.08 %) of the data points were outside of the limit of
agreement (58 above the upper limit and 42 below the lower
limit). This range is significantly lower than 25 µg m−3 (the
WHO threshold for PM2.5; WHO, 2000). A comparison be-
tween the PM2.5 concentrations and the Foobot PM2.5 gen-
erated to produce indoor air quality information showed that
there was a very good agreement between them. The num-
ber of data points on which the PM2.5 concentration values
exceeded the 25 µg m−3 was within ±0.21 % as observed in
Table 8. The agreement of the data points from the calibration
and validation datasets was also corroborated. Both showed a
very good agreement on the concentrations above 25 µg m−3:
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Figure 7. PM2.5 levels from 29 August to 1 September 2017 form the Foobot and GrayWolf instruments. (Activity describes the morning
routine: showering, grooming, and changing.)

Table 6. Summary statistics for the generated tVOC from the validation dataset divided by instruments.

Instrument tVOC mean tVOC min. tVOC max. % time
(ppb) (ppb) (ppb) > 300 ppb

GrayWolf TG-502 TVOC 176.4 143 549 0.82 %
Generated Foobot A 172.97 149.9 456.59 0.31 %
Generated Foobot B 174.09 149.9 416.58 0.41 %
Generated Foobot C 175.6 149.9 394.51 0.41 %
Generated Foobot D 176.88 149.9 483.35 0.61 %
Generated Foobot E 182.53 149.9 658.15 1.53 %

on the calibration dataset, a κ of 0.9, and on the validation
dataset, a κ of 0.85.

5 Discussion

Measurements of temporal and spatial changes of indoor
contaminant concentrations are vital to gain an in-depth un-
derstanding of pollutant characteristics, particularly in dy-
namic, spatially variable environments such as the home.
While scientific instruments can provide high temporal reso-
lution of indoor pollutants such as PM2.5, PM10, and tVOCs,
the cost and complexity of these instruments renders moni-
toring of spatial and temporal changes on a large-scale pro-
hibitively difficult.

This work tries to find a more affordable and suitable in-
strument to provide indoor air quality information, which
may also enable simultaneous monitoring of different rooms
within the same home. However, it might also facilitate more

extensive indoor air quality monitoring projects looking to
characterise pollution and identify potential health risks in
indoor building environments with much larger and more
statistically significant datasets. A previous experiment in a
controlled chamber showed that the monitor could be used to
provide mass concentrations of PM2.5 (Sousan et al., 2017),
but this is the first study to evaluate the accuracy of all mea-
surements (temperature, relative humidity, tVOC, CO2, and
PM2.5) of the Foobot FBT0002100 in real-life residential set-
tings, producing more than 4800 data points.

Calibration equations for the site were calculated as sug-
gested by Sousan et al. (2017). The equations generated
may be influenced by domestic pollution (i.e. pollutants
from paint, cleaning, and personal care products; household
dust, outdoor air, and cooking fumes). The density and fea-
tures of such contaminants will be different depending on
the household. Hence, the response of the instruments like
GrayWolf PC-3016A, TG-502 TVOC, IQ-410, and Foobot
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Table 7. Summary statistics for the generated CO2 from the validation dataset divided by instruments.

Instrument CO2 mean CO2 min. CO2 max. % time
(ppm) (ppm) (ppm) > 1000 ppm

GrayWolf TG-502 TVOC 727.24 451.00 1379.00 20.53 %
Generated Foobot A 715.86 556.80 870.66 0.00 %
Generated Foobot B 720.05 556.80 870.68 0.00 %
Generated Foobot C 725.15 556.80 870.68 0.00 %
Generated Foobot D 725.05 556.80 870.69 0.00 %
Generated Foobot E 729.51 556.80 870.69 0.00 %

Table 8. Summary statistics for the generated PM2.5 from the validation dataset divided by instruments.

Instrument PM2.5 mean PM2.5 min. PM2.5 max. % time
(µg m−3) (µg m−3) (µg m−3) > 25 µg m−3

GrayWolf PC-3016A 5.3604 1.87 34.52 0.82 %
Generated Foobot A 6.8484 3.42 31.18 0.72 %
Generated Foobot B 6.8611 1.22 39.95 0.82 %
Generated Foobot C 6.8479 2.83 34.57 0.72 %
Generated Foobot D 6.8442 3.06 31.62 0.61 %
Generated Foobot E 6.8552 2.7 38.18 0.72 %

Figure 8. Scatter plot of the 5 min tVOC concentration measured
using the Foobot FBT0002100 and the GrayWolf TG-502 TVOC
from the calibration dataset.

FBT0002100 may vary in real-life homes, depending on this
and other factors such as monitor location, temperature, and
humidity. Therefore, to provide the most accurate measure-
ments, an individual calibration equation could be provided
for each Foobot FBT0002100. This, however, may not be
possible in large-scale and remotely deployable projects. A
better alternative for large-scale projects may be to produce
a calibration equation for a large set of monitors for each set-
ting (i.e. bedroom, kitchen, and living room). Then, in order

Figure 9. Bland–Altman plot of the agreement between the Gray-
Wolf TG-502 TVOC and the Foobot-generated tVOC concentra-
tions.

to reduce the bias of inter-Foobot differences, use three mon-
itors within the same space and use the mean from the mon-
itors in each room to provide a more robust measurement.
This alternative provides not only higher accuracy than the
application of a calibration equation, but the redundancy of
the acquired data from several monitors also provides higher
confidence and robustness to the dataset.

The validation results showed that there was a very
good agreement between the GrayWolf PC-3016A/TG-502
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Figure 10. Scatter plot of the 5 min CO2 concentration measured
using the Foobot FBT0002100 and the GrayWolf IQ-410 from the
calibration dataset.

Figure 11. Bland–Altman plot of the agreement between the Gray-
Wolf IQ-410 and the Foobot-generated CO2 concentrations.

TVOC/IQ-410 and the Foobot FBT0002100 with regard to
temperature and humidity, and to tVOC and PM2.5 when the
regression equations were applied. The CO2 concentration
levels were not accurate as the Foobot FBT0002100 instru-
ment does not possess a real CO2 sensor, but instead pro-
vides a CO2 equivalent from the tVOC levels as an indi-
cation. Differences between CO2 levels from the GrayWolf
IQ-410 and the Foobot are clear in Fig. 6. While the Gray-
Wolf IQ-410 uses non-dispersive infrared spectroscopy tech-
nology to determine CO2 concentrations, the Foobot uses
an algorithm to convert tVOC to CO2 equivalents, provid-
ing misleading measurements. The differences in the mea-

Figure 12. Scatter plot of the 5 min PM2.5 concentration measured
using the Foobot FBT0002100 and the GrayWolf PC-3016A from
the calibration dataset.

Figure 13. Bland–Altman plot of the agreement between the Gray-
Wolf PC-3016A and the Foobot-generated PM2.5 concentrations.

surements were expected since CO2 and tVOC are different
chemicals and have different sources and compositions. CO2
concentrations in indoor environments have long been used
as an indicator of ventilation (ASHRAE, 2007). Levels of
CO2 correlate to human activities and occupancy (Porteous,
2011) but are not related to sources of pollution such as off-
gassing from building materials or furniture (Brown et al.,
1994) as it is the case for tVOC. The implementation of the
algorithm to predict CO2 is relatively new, and the theory
behind it debates that tVOC can be correlated proportionally
to CO2 production providing CO2- and tVOC-related events
at the same time (Herberger et al., 2010). In other words,
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Figure 14. The graphics compares the real CO2 measurements vs. CO2 equivalents from tVOC of a previous study. Real CO2 (in blue) and
CO2 equivalent from tVOC (in black) in a meeting room (a) and kitchen (b). Source: Ulmer and Herberger (2012).

the algorithm attempts to relate tVOC to CO2 concentrations
in indoor spaces where no human activity takes place (Ul-
mer and Herberger, 2012). Most of the studies to correlate
CO2 equivalents to tVOC have been carried out in schools,
offices, meeting rooms, and home environments. For exam-
ple, Fig. 14 (Ulmer and Herberger, 2012) compares the CO2
equivalents calculated from tVOC to CO2; the left graphic
shows a strong correlation in a meeting room, whereas the
right graphic show signals that can be attributed to tVOC but
differ from CO2. Implications of this approach may include
misleading CO2 readings that may confuse many new to the
IAQ industry; however, it provides the possibility to add the
sensor output to ventilation standards (Herberger et al., 2010)
and implement it for ventilation systems reducing the en-
ergy consumption compared to time-scheduled ventilation
(Ulmer and Herberger, 2012). However, this approach has
only recently been developed and additional development of
IAQ modules is needed (Ulmer and Herberger, 2012), espe-
cially in residential environments. AirBoxLab opted for the
iAQ-CORE-C sensor to provide tVOC concentrations and
an idea of CO2 instead of real CO2 measurements for two
main reasons. First, they believed that tVOC measurements
are more important to evaluate IAQ as the health impacts of
higher levels of tVOC are usually more severe than those
from CO2; second, the additional cost for the CO2 sensor
may increase the price for the Foobot (personal communica-
tion, Jacques Touillon, 2016).

About 3.2 % of the tVOC measurements and 4.1 % of
PM2.5 were outside of the limits of agreement when an up-
per and lower bound of 1.96 standard deviation (SD) of the
difference was applied. There is, however, a concern as to
whether or not the 1.96 SD limits are appropriate to assess
the impact of pollution on human health (Bland and Altman,
2010). For this reason, the 1.96 SD was transformed into
pollution concentrations to ensure these bounds were either
the same as or lower in range than those thresholds set by
the WHO, which resulted in tighter ranges. The 1.96 SD for

PM2.5 resulted in a range from −2.3245 to 2.2971 µg m−3

(±2.2932 µg m−3 from the mean) and from −36.7935 to
35.9668 ppb for tVOC (±36.5920 ppb from the mean). The
examination of the instruments to produce indoor air qual-
ity information reinforced this conclusion, as the quantitative
information provided by the different instruments demon-
strated high agreement. Variability between the percentage
of time above threshold values determined using data from
the Foobot and the GrayWolf monitors was generally small
and was considered to be unlikely to produce major changes
in indoor air quality assessments.

The findings show that the Foobot FBT0002100 provided
sufficiently accurate results for an evaluation of the IAQ in
occupied dwellings and that the information provided could
identify trends and exposures above thresholds within a small
margin of error. As the Foobot does not make any noise or
emit light, it could be used to perform simultaneous mea-
surements of the indoor environment inside homes, includ-
ing sensitive spaces such as bedrooms. This should min-
imise changes in participants’ behaviour in response to their
awareness of being observed, minimising the Hawthorne ef-
fect (Landsberger and Ithaca, 1958) and the risk of occupants
disconnecting the monitors. Moreover, the cost, size, mobil-
ity, and easy deployment of the Foobot FBT0002100 com-
bined with its accuracy make it a useful tool to evaluate oc-
cupant pollutant exposure in research and large-scale moni-
toring campaigns which could collect high-density temporal
and spatial data on indoor pollutant concentrations in a wide
range of households at local, regional, and national levels.
This information could be used to acquire more comprehen-
sive information on indoor pollutant concentrations to bet-
ter understand temporal and spatial changes and pollutant-
activity relationships in the home.

This study suffers from some identifiable limitations.
Firstly, there was no comparison or control group in an en-
vironmental chamber. Environmental chamber experiments
would include the use of calibration gases and aerosols, al-
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lowing comparison with a wider range of highly accurate in-
struments. However, the purpose of this study was to evaluate
the intended purpose of low-cost consumer monitors in field
conditions, as an experiment in a controlled environment has
been published already. Secondly, it was assumed that Gray-
Wolf PC-3016A/TG-502 TVOC/IQ-410 provided accurate
temperature, humidity, CO2, CO, VOCs, and PM2.5 concen-
trations. While the devices were tested and calibrated by the
manufacturer a month before this study, this still represents
a potential error. Thirdly, we assumed that the monitors were
left in place throughout sampling. We asked the participants
not to handle the devices, but the light and noise produced
by the GrayWolf instruments might cause occupants to re-
locate it; however, there was no evidence that the monitors
were relocated.

Further work will examine the variability of Foobot de-
vices and explore the influence of temperature and humidity
on their response to air pollutants, especially to PM2.5. Other
research may study the use of low-cost monitoring devices
as IAQ educational tools for home users, looking at the be-
havioural changes towards IAQ.

6 Conclusions

Recently there has been an increase in interest in understand-
ing the effects of indoor air pollution on human health. Tradi-
tional analytical instruments are impractical, costly, and of-
ten their accuracy is much higher than needed to assess in-
door pollution levels. Several low-cost consumer monitors
provide information about the quality of indoor air. There-
fore, it is considered useful to assess their accuracy in en-
vironmental chamber and field experiments to evaluate their
utility and accuracy. The Foobot FBT0002100 offers a rela-
tively low-cost and straightforward solution to deliver house-
holds’ air quality information that may be used to gather
large-scale household IAQ data and also to motivate occu-
pants to reduce the potential harm of indoor pollution. It also
has the potential to examine the impact of increased occu-
pant awareness of IAQ on ventilation and pollution-related
behaviours.

The Foobot FBT0002100 was found to have a signif-
icant agreement with the GrayWolf instruments, for tem-
perature (rs = 0.832–0.871), relative humidity (rs = 0.935–
0.948), tVOC (rs = 0.827–0.869), and PM2.5 (rs = 0.787–
0.866) data. The temperature was found to be underestimated
by 2.59 ◦C. The calibration equations produced for tVOC
(R2
= 0.697) and PM2.5 (R2

= 0.887) reduced variability be-
tween the monitors and improved their accuracy when com-
pared to the GrayWolf instruments. Foobot’s lack of a spe-
cific CO2 sensor estimated misleading concentrations. How-
ever, results showed that this does not impact the accuracy
of the other sensors. Therefore, Foobot can be used for stud-
ies where ventilation is not an indispensable metric for the
research, but it can be complemented by another CO2 sensor.

The findings suggest that low-cost monitors, such as the
Foobot FBT0002100, have the potential to identify high pol-
lutant exposures and to provide high-density, reliable, tempo-
ral data at high granularity. Its characteristics, such as remote
data retrieval as well as its accuracy, make Foobot a useful
tool to evaluate occupant pollutant exposure at a large-scale
and longer timescales in occupied dwellings, compared to
current approaches. However, as discussed, the use of several
units within the same space and with a calibration equation
may improve the overall performance of the monitor.
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