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Abstract. Fluorescence spectroscopy is a highly sensitive and non-invasive technique for the identification of
characteristic process states and for the online monitoring of substrate and product concentrations. Neverthe-
less, fluorescence sensors are mainly used in academic studies and are not well implemented for monitoring
of industrial production processes. In this work, we present a newly developed robust online fluorescence sen-
sor that facilitates the analysis of fluorescence measurements. The set-up of the sensor was miniaturised and
realised without any moveable part to be robust enough for application in technical environments. It was con-
structed to measure only the three most important biologic fluorophores (tryptophan, NADH and FAD/FMN),
resulting in a significant data reduction compared to conventional a 2-D fluorescence spectrometer. The sensor
performance was evaluated by calibration curves and selectivity tests. The measuring ranges were determined
as 0.5–50 µmolL−1 for NADH and 0.0025–7.5 µmolL−1 for BSA and riboflavin. Online monitoring of batch
cultivations of wild-type Escherichia coli K1 in a 10 L bioreactor scale were performed. The data sets were
analysed using principal component analysis and partial least square regression. The recorded fluorescence data
were successfully used to predict the biomass of an independent cultivation (RMSEP 4.6 %).

1 Introduction

To meet the high regulatory and quality requirements of the
Food and Drug Administration (FDA) for the production of
pharmaceuticals, pharmaceutical and biotechnological com-
panies are encouraged to implement innovative tools to bet-
ter understand their processes and to ensure batch-to-batch
reproducibility. Therefore real-time online measurements of
bioprocesses are becoming increasingly important (Marose,
1999; Faassen and Hitzmann, 2015; Claßen et al., 2017;
Stärk et al., 2002).

Due to the complexity of biological processes, online mea-
surement of important process variables such as substrate
and product concentration without any time delay is a chal-
lenge. Therefore, vibrational spectroscopy which covers in-
frared and Raman spectroscopy is often applied for process
monitoring (Clavaud et al., 2013; Roggo et al., 2007; Oh
et al., 2013; Claßen et al., 2017; Landgrebe et al., 2010).
However, compared to fluorescence spectroscopy both meth-

ods are less sensitive. Fluorescence spectroscopy has been
used for 30 years as a highly sensitive and non-invasive
technique for online monitoring of bioprocesses (Harrison
and Chance, 1970). Historically, the first fluorescence probes
were based on a single fixed wavelength combination to de-
tect the fluorescence of one biogenic fluorophore, such as
aromatic amino acids or co-enzymes (Harrison and Chance,
1970; Scheper et al., 1987). Today, modern 2-D-fluorescence
sensors are able to sequentially screen a large number of ex-
citation and emission wavelengths and to detect multiple flu-
orophores simultaneously. Here, the wavelength selection is
usually accomplished by monochromators based on grating
technology (Surribas et al., 2006; Gahlawat and Srivastava,
2013). In a few other sensors the selection is based on filter
systems, e.g. the Bioview® (Delta Light & Optics), which
contains two individually controlled filter wheels with 16
slots on the excitation as well as emission side (Boehl et al.,
2003; Assawajaruwan et al., 2017a; Lindemann et al., 1999).
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However, the resulting data set is large and only a few wave-
length combinations include relevant information. Therefore
chemometric methods such as principle component analysis
(PCA), partial least squares (PLS) regression or neural net-
works (NNs) are necessary for data reduction and analysis
(Faassen and Hitzmann, 2015; Assawajaruwan et al., 2017b;
Won and Yoon-Keun, 2006). These allow us to identify char-
acteristic process states and to predict a lot of different impor-
tant process variables, e.g. biomass (Hisiger and Jolicoeur,
2005; Surribas et al., 2006; Eliasson Lantz et al., 2006; As-
sawajaruwan et al., 2017b; Jain et al., 2011).

Although fluorescence spectroscopy represents a very sen-
sitive method, fluorescence sensors are mainly used in aca-
demic environments and rarely in industrial processes. In
this work, we present a newly developed functional model
of an online fluorescence sensor. To facilitate the application
in technical environments, it was constructed robustly with-
out any moveable parts. Furthermore, the set-up of the sensor
was reduced to detect only specific wavelength combinations
of important biogenic fluorophores (tryptophan, NADH and
FAD/FMN) associated with several microbial metabolisms
(Assawajaruwan et al., 2017a; Gahlawat and Srivastava,
2013; Claßen et al., 2017). The furthermore miniaturised set-
up of the sensor results in a significant data reduction and
in lower costs for sensor components compared to commer-
cially available 2-D sensors. In this study, calibration curves
and mixtures of relevant biogenic fluorophores are measured
with the developed sensor to proof the measurement range
and selectivity. Furthermore, batch cultivations of E. coli K1
wild type were monitored, and resulting data were used for
the estimation of biomass.

2 Material and methods

2.1 Fluorescence sensor

The functional model of the presented sensor is based on
monochromatic high-power light emission diodes (LEDs)
and photodiodes combined with specific bandpass filters
(Fig. 1). Additionally, a scattered light (s. l.) measurement
was implemented. To improve robustness, the sensor was
furthermore constructed without any moveable parts. Thus,
a fluorescence probe with eight fibre bundles was designed
to ensure an effective channelling of excitation and emission
light. For high-quality detection a lock-in amplifier was used
to extract signal from noise. While all photodiodes were mea-
suring at the same time, the LEDs were executed in rotation
for 1 s (100 ms on, 100 ms off, five cycles).

The probe of the sensor was installed in the bioreactor
through an Ingold port using an autoclavable adapter (Fig. S1
in the Supplement). The sapphire optical window of the
adapter was constructed at a 45◦ angle to reduce scattered
light interference. The adapter has a defined measuring zone
of 20 mm, which is constantly flown through by the culture

Figure 1. Experimental set-up of the sensor. Excitation: 1a: 278 nm
LED (Laser Components GmbH, Munich) and 365, 450 and 850 nm
LED (Roithner Lasertechnik GmbH, Vienna), 1b: photodiodes for
each LED as reference and 1c: bandpass filter with a central wave-
length (CWL) of 365 or 450 nm (Edmund Optics GmbH, Karlsruhe;
FWHM 10 nm). Light transport: 2a: adapter for the Ingold port, 2b:
fibre probe with eight fibre bundles. Detection: 3a: bandpass filters
with a CWL of 340/448/525 nm (FWHM: 29/25/18 nm) or a cover
for scattered light; 3b: photodiodes (Advanced Photonix, Inc.).

broth. During the cultivations the fluorescence signal was
measured in a sample interval of 60 s.

2.2 Calibration curves of BSA, riboflavin and NADH

The functional model was used to observe the linear cor-
relation between the fluorescence intensity and the concen-
tration of biogenic fluorophores. BSA (Sigma-Aldrich, St.
Louis, USA), riboflavin (Sigma-Aldrich, St. Louis, USA)
and NADH (Carl Roth GmbH & Co. KG) were prepared for
various concentrations from 1×10−8 to 7.5×10−6 mol L−1.
All measurements were performed in triplicates in a PBS
buffer (pH 7.5) to provide an estimation of the standard error.

2.3 Selectivity test

After demonstration of specificity, the selectivity of the sen-
sor has to be shown by quantitative detection of the important
variables next to each other. Therefore a set of 19 solutions
with linear independent concentration levels were generated
and measured with the new sensor. These experiments were
designed using classical design of experiments, where dif-
ferent levels of the factors were analysed in different linear
independent combinations several times.

To build reliable quantitative PLS models, a minimum of
five concentration levels have to be considered. For three
variables there are 35 combinations of concentrations possi-
ble. Out of these 243 combinations 5 combinations are taken
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randomly where each variable was represented in five differ-
ent concentration levels. The explained variance of the third
principal component of a PCA of that 5× 3 matrix has to
be as high as possible for linear independent concentration
combinations.

A brute force algorithm was used to build up three blocks
of such linear independent concentration levels. By this each
variable was set on each concentration level 3-fold with dif-
ferent concentrations of the secondary components. These 15
combinations were completed by four centre point experi-
ments with an equal concentration distribution on a mean
level for each variable. To determine the overall measure-
ment error these central experiments are distributed over the
whole experimental plan separating the linear independent
blocks.

All solutions (see Table S1) were prepared independently
and measured with an identical set-up and under equal ex-
perimental conditions. If reliable PLS models can be built
on these spectral data, the sensor is selective and the evalu-
ated variables can be measured quantitatively independently
of the concentrations of the other variables.

2.4 Bacterial strain and cultivation conditions

The strain used in this study was an Escherichia coli
B2032/82 serotype K1. It is an original clinical wild-
type isolate (Rode et al., 2008) and is used for polysialic
acid production (Vries et al., 2017). The starter culture
was prepared by inoculating a glycerol stock into 100 mL
lysogeny broth (LB) medium and subsequently incubat-
ing at 37 ◦C, 150 rpm for 7 h. The culture was diluted
(1/1000) in 500 mL of defined medium (pH 7.5), which con-
sists of 0.15 g L−1 MgSO4

q7H2O, 1 mg L−1 FeSO4
q7H2O,

CuSO4
q7H2O, 9.3 g L−1 K2HPO4, 2.03 g L−1 KH2PO4,

10 g L−1 (NH4)2SO4, 1.2 g L−1 NaCl, 1.1 g L−1 K2SO4,
13 mg L−1 CaCl2 and 22 g L−1 glucose. The preculture was
grown for a further 10 h at 37 ◦C, 150 rpm and was used to
inoculate a bioreactor to give an initial OD600 of 0.2 rel. AU.
Five cultivations were carried out in a 10 L bioreactor (Bio-
stat C, B. Braun Biotech, Melsungen, Germany) and one cul-
tivation was performed in a 30 L bioreactor (Biostat Cplus,
Sartorius AG, Göttingen, Germany). Except for one culti-
vation anti-foam was added before inoculation to the work-
ing volume of 7.5 L or 30 L defined medium. The pH value
was maintained at pH 7.5 by adding 25 % (v/v) NH4OH or
1 M HCl. All cultivations were operated at constant tempera-
ture (37 ◦C), stirrer speed (1000 rpm) and an aeration rate of
1 vvm air.

2.5 Offline sampling and cell dry weight determination

The growth of E. coli K1 was determined offline by mea-
suring the cell dry weight (CDW). Every hour samples
were withdrawn during the cultivation. After centrifugation
(13 000 rpm for 5 min) the supernatant was removed and the

Figure 2. Calibration curves of BSA (Ex280 / Em340), riboflavin
(Ex450 / Em525) and NADH (Ex365 / Em448).

biomass was dried for 24 h at 80 ◦C and weighted gravimet-
rically.

2.6 Chemometric analysis and modelling

To evaluate the sensor selectivity, a partial least square re-
gression (PLS) by Unscrambler X® software (Camo, Nor-
way) was calculated for each fluorophore. PLS regressions
were performed by mean centering data followed by a full
cross-validation using the Nonlinear Iterative Partial Least
Squares (NIPALS) algorithm. The fluorescence data of each
cultivation were used to apply a principle component analy-
sis (PCA). No preprocessing like media subtraction, smooth-
ing and normalization was performed. Five of six cultivations
were used for a PLS model of biomass. The excluded culti-
vation was used for an independent prediction of biomass.

3 Results and discussion

3.1 Sensitivity and selectivity

Fluorescence signals in different bioprocesses differ largely.
Therefore a wide linear measurement range is desir-
able. Calibration curves of the three biogenic fluorophores
BSA, NADH and riboflavin were measured with the
functional model to prove sensitivity in the range of
10−9–10−3 mol L−1 (Fig. 2). The standard curves of BSA
(Ex280 / Em340) and riboflavin (Ex450 / Em525) show a
similar linear correlation between the fluorescence intensity
and the concentration from 0.0025 to 7.5 µmolL−1. At an
equal molar concentration the NADH (Ex365 / Em448) flu-
orescence intensity is lower than the BSA or the riboflavin
intensity. Thus the linear measurement range of NADH is
from 0.5 to 50 µmolL−1. In general, the standard curves of
the three fluorophores show a wide linear measurement range
by 3 orders of magnitude.
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Figure 3. Selectivity test of the sensor based on different mixtures of three fluorophores (BSA, NADH and riboflavin). PLS models of
(a) BSA, (b) riboflavin and (c) NADH. (d) Regression coefficients of the three PLS models.

When using sensors to monitor bioprocesses, it is impor-
tant to obtain a proper selectivity for the analytes of interest
to enable quantification and control. To analyse the selec-
tivity regarding all three fluorophores a statistical design of
experiments was carried out. In a mixture of BSA, riboflavin
and NADH the concentration of each compound was varied
and the fluorescence signal was measured. Centre point ex-
periments were performed four times to provide a measure
of process stability and inherent variability. A variation of
less than 2 % proved constant process conditions and repro-
ducibility of measurement.

For each fluorophore a PLS model was created (Fig. 3) and
validated by using the full cross-validation method. In Fig. 3d
the weight regression coefficients of all three PLS models are
illustrated. In each case, the expected wavelength combina-
tion for excitation and emission (BSA: Ex280 / Em340, ri-
boflavin: Ex450 / Em525, NADH: Ex365 / Em448) has the
major influence on the respective PLS regression model. An-
other important wavelength combination is the combination
Ex280 / Em448, showing effects on the BSA- and NADH-
PLS models. This could be due to a cascade effect, where
emitted BSA fluorescence light is used for the excitation of

NADH. According to Guo et al. (2009), a quenching effect
of riboflavin on the fluorescence intensity of BSA is also ob-
served (Ex280 / Em525). Thus, the real BSA fluorescence
should be higher than the observed fluorescence. The PLS
model for NADH was based on three principal components
(PCs), whereas one or two were used for the PLS modelling
of riboflavin and BSA. Results of all three calibration mod-
els show high coefficients of determination (R2

≥ 0.99) and
low root mean square errors (RMSEs). These results show
that the sensor is highly capable of detecting all three fluo-
rophores separately and next to each other in a wide concen-
tration range.

3.2 Reproducibility

Reproducibility expresses the precision between measure-
ment results obtained at different experimental series and is
beneficial for an analytical method. Therefore, six batch cul-
tivations of E. coli K1 were performed over 10 h in bioreac-
tor scale and the fluorescence data were recorded. Smooth-
ing of fluorescence data by using average values (Grote et
al., 2014) or a Savitzky–Golay filter (Savitzky and Golay,
1964) is a common method to reduce the influence of noise.
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Figure 4. PCA on the fluorescence data showing the process tra-
jectory and batch-to-batch variability of six E. coli K1 cultivations.
The arrow marks the anti-foam addition in cultivation 5.

With the new functional model, no additional smoothing and
normalization were necessary. The fluorescence data of all
six cultivations were explored by using PCA (see Fig. 4).
PCA is a common tool for data reduction and data analysis
(Faassen and Hitzmann, 2015). It helps to detect batch-to-
batch variability and to identify abnormal fermentation runs.
The score plot in Fig. 4 shows that the first PC axis explains
94 % variance and the second PC 2 % of the total variance
of the raw data. All six cultivations have a similar process
trajectory even when an upscale from 7.5 to 30 L was per-
formed (cultivation six). As the sensor did not change sig-
nificantly its response to the process, reproducibility of the
sensor is given. However, changing the composition of the
process mixture showed inter-batch variability as seen with
the fourth and fifth cultivations. Due to an increased cell
growth (data not shown), the fourth cultivation reached the
turning point earlier. At the beginning of the fifth cultivation
no anti-foam was added, resulting in variations observed in
the fermentation process. The loadings of PC-1 and PC-2 are
presented in Fig. S2a. The s. l. has a high positive effect on
both PCs and the course of the graph at the beginning of the
fifth cultivation is different compared to the other cultivation
(Fig. S2b). After the addition of anti-foam the cultivation was
similar to the others.

3.3 Prediction of biomass

A main goal of the sensor is a wide-range application to
monitor metabolic changes in prokaryotic and eukaryotic
cells and to detect diverse substrate and product concentra-
tions in a cell culture medium. In a first attempt, the sen-
sor performance was analysed to predict the biomass pro-
duction. Therefore biomass production in six cultivations of
E. coli K1 was determined by offline measurements. For
chemometric evaluation of the fluorescence data a CDW-PLS
model (Fig. 5a) was calculated using only five of six per-
formed cultivations (without second cultivation, Fig. 4). A

full cross-validation method was applied. The PLS model
based on two principal components had a coefficient of
determination of R2

= 0.95. The regression plot shows a
slope of 0.95 and reveals predictive capabilities within the
range of 0.15–9.1 g L−1 CDW. From the regression coeffi-
cient plot (Fig. 5b) it was observed that the PLS model is
mainly based on FAD / FMN fluorescence (Ex365 / Em525
and Ex450 / Em525) and scattered light at 850 nm. The in-
fluence of protein (Ex280 / Em340) and NADH fluorescence
(Ex365 / Em448) is less important for the monitoring of
biomass of E. coli cultivations in defined media. Previous
publications showed that NADH is often correlated well
with cell concentration (Marose, 1999; Hisiger and Jolicoeur,
2005), but it also was discussed whether other fluorophores
such as riboflavin are more reliable for estimating biomass
since they are less sensitive to difference stresses than NADH
(Hisiger and Jolicoeur, 2005) and can be used for metabolic
state studies (Gahlawat and Srivastava, 2013). In our case it
seems that in the early log phase the NADH is correlated
with biomass, but during the exponential growth phase the
NADH fluorescence increases rather linearly (Fig. 5c). The
recorded online fluorescence data of the excluded cultiva-
tion are illustrated in Fig. 5c. According to FAD/FMN flu-
orescence and scattered light curves cells enter the exponen-
tial growth phase at 2–3 h of the cultivation and reach the
stationary phase after 7 h. Based on the CDW-PLS model,
biomass production was predicted for the independent culti-
vation (Fig. 5d). The RMSE of prediction (RMSEP) repre-
sents 4.6 % of the calibration range and is very similar to the
RMSEP (5 %) of a batch cultivation of E. coli observed with
the Bioview® (Jain et al., 2011). The low RMSEP indicates a
good fit with a good agreement of predicted values of CDW
and offline measured values during the cultivation.

4 Conclusion

Fluorescence spectroscopy represents a very sensitive
method, but fluorescence sensors are mainly used in aca-
demic environments and rarely in industrial processes. In
this work, we present a newly developed functional model of
an online fluorescence sensor. The robust sensor was minia-
turised and constructed without any movable parts to mea-
sure only the three important biologic fluorophores (trypto-
phan, NADH and FAD/FMN), resulting in a significant data
reduction. The results of the calibration curves and of the se-
lectivity test revealed that the sensor has a large measurement
range and is selective for protein, NADH and riboflavin flu-
orescence. Cultivation monitoring of six batch cultivations
of E. coli led to reproducible data. No preprocessing like
smoothing or normalization was necessary for chemometric
modelling and the information content of the fluorescence
data was used for an accurate prediction of the biomass. For
applications such as monitoring metabolic changes or ad-
ditional substrate and product concentration, further exper-
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Figure 5. Biomass prediction of an E. coli K1 cultivation via a fluorescence sensor. (a) PLS regression model of CDW. (b) Regression
coefficients of the PLS model. (c) Fluorescence data of the fermentation. (d) Predicted biomass and offline measured biomass.

iments with different bacteria and eukaryotic cells have to be
investigated.
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