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Abstract. We present DAV3E, a MATLAB toolbox for feature extraction from, and evaluation of, cyclic sensor
data. These kind of data arise from many real-world applications like gas sensors in temperature cycled operation
or condition monitoring of hydraulic machines. DAV3E enables interactive shape-describing feature extraction
from such datasets, which is lacking in current machine learning tools, with subsequent methods to build val-
idated statistical models for the prediction of unknown data. It also provides more sophisticated methods like
model hierarchies, exhaustive parameter search, and automatic data fusion, which can all be accessed in the same
graphical user interface for a streamlined and efficient workflow, or via command line for more advanced users.
New features and visualization methods can be added with minimal MATLAB knowledge through the plug-in
system. We describe ideas and concepts implemented in the software, as well as the currently existing modules,
and demonstrate its capabilities for one synthetic and two real datasets. An executable version of DAV3E can be
found at http://www.lmt.uni-saarland.de/dave (last access: 14 September 2018). The source code is available on
request.

1 Introduction

In recent years, a new paradigm has been developing in sci-
ence, introducing a whole new field of both research and
tools: big data (Chang et al., 2014; Kitchin, 2014). With
enough data and computing power, a wide variety of sys-
tems, previously inaccessible to physical models due to their
complexity, have become available to scientific description
and treatment with the use of statistical models. New chal-
lenges arise for data processing because (semi-)automatic ap-
proaches and smart assistant systems are essential to handle
and evaluate the huge amounts of data.

Many software packages exist for statistical data evalu-
ation or machine learning. A non-exhaustive list includes
commercial and closed-source packages like SPSS Statis-
tics (IBM), Minitab (Minitab Inc.), Statistica (StatSoft), and
RapidMiner (RapidMiner, Inc.), as well as open-source al-
ternatives like Weka (University of Waikato), R (The R
Foundation), and orange (University of Ljubljana). The
PLS_Toolbox (Eigenvector Research, Inc.) is a noteworthy

member of this list by being commercial, but partly open-
source, and the only of the tools known to the authors that is
MATLAB-based. Many of these programs can be extended
by the user with modules written in Python or Java, so, in
general, it is often possible to add missing features and func-
tions oneself. However, mechanical or electronic engineers,
who most often work with sensors and sensor systems, of-
ten do not have any, or little, training in programming and
data science in general. The existing software packages usu-
ally try to be as flexible as possible, which can seem over-
whelming to new users. From personal experience, we know
that many engineers in this field prefer MATLAB over Java
or Python due to its out-of-the-box numerical abilities while
providing a simple and easy-to-learn script language.

However, this observation was not the only reason for
the development of DAV3E (Data Analysis and Verifica-
tion/Visualization/Validation Environment). A problem com-
mon in many statistical software packages, including, to the
best of the authors’ knowledge, the PLS_Toolbox, is the as-
sumption that the data are already available in the form of a
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Figure 1. Flowchart of the steps involved in building a statistical
model from raw data. The validation step is crucial to check the
model’s performance. Any step and its parameters in the process in-
fluence the model performance. However, the exact way is usually
hard to predict, which results in a time-consuming trial-and-error
process to find a model that performs well. Most available software
packages for machine learning or statistical model building usually
start at the feature matrix, thus ignoring the need for feature extrac-
tion from the raw data, which is a crucial step, especially, but not
only, for cyclic sensor signals.

feature matrix (Fig. 1). This assumption does not take into ac-
count that features must often first be generated, or extracted,
from raw data, which is a highly relevant and all too often ne-
glected part of the evaluation process.

A prime example of this issue is the cyclic operation
of sensors. An operation mode called temperature cycled
operation (TCO) has long been known (Eicker, 1977; Lee
and Reedy, 1999) to improve sensitivity and selectivity for
chemical sensors and gas sensors in particular (Bur, 2015;
Reimann and Schütze, 2014). TCO works by collecting data
from the sensor at different operating temperatures. The op-
erating temperature influences the physical and chemical re-
actions on the sensor surface and, thus, the sensor behavior.
The result is an array of sensor responses very similar to an
actual sensor array, which is why this approach is also known
as a virtual multisensor system (Reimann and Schütze, 2014;
Schütze et al., 2004). In this example, one temperature cy-
cle can take several minutes, which is the effective sampling
period of the sensor. However, the sensor must actually be
sampled much faster, usually in the range from Hz to kHz,
during the cycle. The information about the present gas is not
contained so much in one of the resulting several thousand
points in one cycle, but rather in the overall signal shape dur-
ing one cycle. To avoid the curse of dimensionality (Böhm
et al., 2001; Gutierrez-Osuna, 2002; James et al., 2013), it is

therefore necessary to extract information-rich features from
the cyclic sensor signal.

Several other approaches following the same principle ex-
ist, e.g., voltammetry in electronic tongues (Apetrei et al.,
2004), gate bias cycled operation (GBCO) (Bur, 2015) for
gas-sensitive field-effect transistors (GasFETs) (Andersson
et al., 2013), or exploitation of the working cycle of hydraulic
machines for online condition monitoring of those machines
(Helwig et al., 2015).

Several methods have been established for feature extrac-
tion from cyclic signals. TCO-MOX sensor signals are of-
ten processed by a fast Fourier transform (FFT) (Heilig et
al., 1997) or a discrete wavelet transform (DWT) (Cetó et
al., 2014; Ding et al., 2005; Huang et al., 2006; Moreno-
Barón et al., 2006), usually in combination with a suit-
able, i.e., sine wave, temperature cycle. Other approaches in-
clude windowed time slicing (Apetrei et al., 2007; Gutierrez-
Osuna and Nagle, 1999) or principal component analysis
(PCA) (Winquist et al., 1997). A comprehensive review of
these and more methods is given in Sect. II A1 in Marco
and Gutierrez-Galvez (2012). In contrast to these projection
methods, DAV3E specializes in extracting shape-describing
features from a cyclic signal. It has been shown that such
features can outperform FFT and DWT features (Gramm and
Schütze, 2003). They are also very easy to compute, unlike
DWT or other complex decompositions, so they can easily
be implemented in cheap hardware, i.e., microprocessors. Fi-
nally, the feature extraction implementation in DAV3E is a
superset of the above-mentioned methods: if desired, DWT
can still be applied to the whole cycle, but if a physical model
suggests that, e.g., the slope in one specific part of the cy-
cle is a suitable feature (Baur et al., 2015), this slope can
additionally be extracted to improve the model. To the best
of the authors’ knowledge, there is no software which pro-
vides both aspects of statistical data evaluation, i.e., shape-
describing feature extraction and statistical model building.
In particular, a tool for manual, graphical feature extraction
from cycles was not available before. But implementing only
this functionality could easily lead to inefficient workflows
since the user would constantly have to switch between at
least two different software tools.

As a solution to this problem, we have developed DAV3E,
a MATLAB-based, object-oriented framework. It covers the
cycle-based data preprocessing and feature extraction miss-
ing in contemporary data-mining software packages and
sensor-aware functions like correction of time offset and
sample rate without resampling, as well as simple or hi-
erarchical statistical models, both for classification and re-
gression. The graphical user interface (GUI) leads the user
through the process and, thus, is suitable for beginners and
advanced users, which is especially important in fields in
which new people are constantly starting their work on sta-
tistical data evaluation, like universities. For advanced users
who prefer a textual interface or want to perform batch pro-
cessing or other kinds of automation, the functionality is also
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available via the command line. To further aid the user, the
evaluation is supported by static, animated, or interactive vi-
sualizations in every step.

2 Basic concepts and structures

2.1 Workflow

The model-building workflow implemented in DAV3E is
depicted in Fig. 1 and follows the process outlined by
Gutierrez-Osuna for machine olfaction in (Gutierrez-Osuna,
2002). Raw data are the data collected from sensors or lab
equipment. The data are assumed to be of a cyclic nature;
i.e., there is at least one setpoint parameter which repeats a
cyclic pattern over time. Hence, each data stream can also be
seen as a matrix with as many rows as there are cycles in the
whole measurement, and as many columns as there are data
points in one cycle. The typical length of a cycle is in the
order of seconds or minutes, with sampling rates in the order
of Hz or kHz. However, the exact values can vary greatly be-
tween use cases. Note that this approach also covers simple
time series data, if not only a single value but a certain time
window is used for evaluation.

The cyclic approach offers some unique preprocessing
methods for the raw data, e.g., dividing each cycle by its
mean value to mitigate sensor drift (Gramm and Schütze,
2003). At the same time, the information contained in the cy-
cles mean value is then eliminated. Whether drift compensa-
tion or more information is more important for the model per-
formance is often not immediately clear and must be deter-
mined by validating the final model. This is just one of many
parameters influencing the model, and often model valida-
tion and subsequent adjustments to the parameters, i.e., trial
and error, is the only way to improve model performance as
there is no guarantee that a certain data evaluation algorithm
will yield optimum results.

Another special feature of cyclic sensor operation is the
way features are extracted from the raw data. One cycle can
have many thousands of highly correlated data points or fea-
tures. Both the high number (Hastie et al., 2009; James et al.,
2013) as well as the collinearity (Næs and Mevik, 2001) can
cause problems like instabilities in many machine learning
methods, so the dimensionality of the feature space must be
reduced. This reduction is achieved by describing the shape
of the signal with as few parameters as possible while main-
taining most of the information. For example, an area in the
cycle where the signal is nearly flat over thousands of points
is described equally well with just one parameter: the mean
of all of these points. This step typically reduces the number
of features by 90 % or more and results in less correlation
between the features. Which parts in the cycle and which fit
functions are used is often determined manually, so the re-
sult can depend on the experience of the user. In rare cases,
a rough physical model allows for a more targeted extrac-
tion of features from the raw data. In all cases, the result of

this step is a feature matrix with the same number of rows
(observations) as the raw data, but fewer columns (features).
Most machine learning tools assume the data to have this or
an equivalent shape.

Hence, the following steps are the steps involved in ev-
ery multivariate statistical analysis (Gutierrez-Osuna, 2002).
The feature columns can be preprocessed, e.g., standardized,
to remove scaling and achieve more stable numerical results
(van den Berg et al., 2006). The same can be done to the
target vectors, if they are numeric, e.g., to linearize a loga-
rithmic sensor response. Further dimensionality reduction is
often done using unsupervised principal component analysis
(PCA) (Gutierrez-Osuna, 2002; Risvik, 2007) or supervised
linear discriminant analysis (LDA) (Gutierrez-Osuna, 2002).
Both steps are optional, and dimensionality reduction is often
a part of classification or regression (“prediction” in general),
as in the case of support vector machines (SVMs) (Smola and
Schölkopf, 2004) or partial least squares regression (PLSR)
(Abdi, 2010; Geladi and Kowalski, 1986). Other classifiers
available in DAV3E are k nearest neighbors (kNN) (Hastie et
al., 2009), discriminant analysis (DA) (Hastie et al., 2009),
logistic regression (LR) (Hastie et al., 2009), and more. It
is necessary to validate the whole evaluation chain to pre-
vent overfitting, an effect whereby a model fits the training
data very well, but is not able to predict new data correctly
(Hawkins, 2004). Validation can be done with new data when
the correct outcomes are known for each observation. If such
a validation dataset is not available, validation is still pos-
sible, e.g., with k-fold cross-validation (Browne, 2000; Ko-
havi, 1995), which uses one part of the dataset for training
and the other for testing. The eventual performance of the
model is then determined with a test dataset which contains
only data that were never used in training or validating the
model.

2.2 Data structure and fusion

DAV3E saves imported data in a hierarchical structure con-
sisting of measurement, cluster, and sensor objects. A sensor
is the smallest unit and contains the data associated with the
sensor. This can be data from an actual physical sensor, e.g.,
an acceleration or gas sensor, one of many channels of a sci-
entific instrument, e.g., the measured voltage of channel 1
of a multichannel data acquisition system, or a virtual sen-
sor which is computed from other physical sensors, e.g., the
resistance which is computed as the quotient of voltage and
current. Each sensor can be assigned a unique data evalua-
tion chain with different raw data preprocessing and feature
extraction algorithms, which accounts for the fact that data
from different sensors can be very dissimilar.

Sensors are organized in clusters, which contain informa-
tion about time offset (to a reference time) of the data acqui-
sition, sampling rate, and number of data points per cycle.
While this information could well also be saved directly with
each sensor, there are often natural “groups” of sensors in
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real measurements, e.g., three channels from a device that
measures (1) voltage and (2) current over (3) time. Two vir-
tual sensors, “virtual data points” and “virtual time”, are de-
rived from each cluster’s sampling rate and offset informa-
tion. They serve as default abscissa for sensors in this cluster
for plots or during feature extraction. Default values are use-
ful because, quite often, information about time and/or data
points is not provided as a sensor. As virtual sensors are com-
puted dynamically, later changes to time offset or sampling
rate are as easy as changing the specific value, and the time
information is automatically adapted accordingly.

Clusters are contained in measurements. A measurement
always has a defined starting time and date and can thus pro-
vide a time reference for its clusters. It also stores time ranges
during which the environmental conditions influencing the
sensors, i.e., gas concentrations or system failure states, were
constant. This is only useful if not all points in time of the
measurement are of interest for the evaluation, which is, how-
ever, often the case. Experimental systems are often propri-
etary and not integrated with each other. This means that, for
example, the gas sensor data acquisition and the test envi-
ronment, e.g., a gas mixing apparatus (Helwig et al., 2014)
providing defined gas mixtures for the characterization, run
in parallel, but are not necessarily exactly synchronized. It
is thus easier to start both systems and combine their data
afterwards, which will result in undefined states when the
gas mixing apparatus is changing states while the sensor pro-
ceeds with its current cycle. This and potentially a few fol-
lowing cycles are obtained under unknown conditions and
must therefore be excluded from the evaluation. In a mea-
surement, relevant time segments with known environmental
conditions can be selected (or imported) so that only cycles
recorded during these times are considered for further evalu-
ation.

All sensors in the same measurement will add to the num-
ber of features available in the observations in this measure-
ment; i.e., the sensors are fused in parallel. Consequently, the
environmental conditions defined in the measurement are au-
tomatically assumed by newly added sensors without any ac-
tion from the user. Sensors in different measurements, how-
ever, are added in series; i.e., they add to the total number of
observations. Sensors from different measurements are as-
sociated by their name, so data from identical sensors are
automatically combined (Fig. 2).

2.3 Programming concepts and plug-ins

One focus during the development was easy extendibility of
all important aspects of the software. The object-oriented de-
sign helps to keep a clear structure and maintainable code.
Additionally, a plug-in concept was implemented that allows
all users with basic MATLAB knowledge to add new func-
tions. Contrary to other programming languages, MATLAB
knowledge is widespread amongst engineers, who are the
main target users of DAV3E. If necessary, scripts in other
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Figure 2. Illustration of data fusion with five sensors from two dif-
ferent sources (cluster 1/2). If one sensor sends faulty or noisy data
over some time (sensor 2 at t1), DAV3E will automatically ignore
all data during that time in the fused dataset. If a sensor fails (sen-
sor 5 at t2), the user can choose to have more observations, but with-
out that sensor (blue data), or to include all sensors, but with fewer
observations (orange data). If a sensor starts too early (sensor 4 at
t3), its data will be ignored until data from all sensors are available.
Such events can either be annotated by the user or imported directly
from the test setup if the data are available.

languages like R or Python can easily be accessed from
within MATLAB. Currently, the plug-in system covers the
following algorithm types: dimensionality reduction, feature
extraction, feature and response preprocessing, data import
sources, virtual sensor computation, raw data preprocessing,
postprocessing, classifiers, regressors, and validation. A sub-
set of those, i.e., dimensionality reduction, classifiers, and
regressors, provides the addition of custom plots as plug-ins.

For each type of plug-in, a template file defines available
functions with a fixed interface, so all available data can eas-
ily be accessed and the user can concentrate on the correct
implementation of their function instead of programmatic
technicalities.

Depending on the sample rate and duration of the measure-
ment, the sensor dataset can become rather large. Several gi-
gabytes are easily reached, and certain applications in condi-
tion monitoring have already produced data with several tens
of terabytes. Currently, DAV3E’s ability to handle such data
are still limited by the size of system memory (RAM, random
access memory). However, measures have been taken not to
use up more space than necessary.

One important aspect is to omit resampling of the data.
Downsampling can lead to loss of information, while upsam-
pling can lead to significantly increased size in memory, es-
pecially if the dataset contains one or more sensors with very
high sample rates. In the evaluation process, selections must
be made in the data which, ultimately, must refer to the same
point in time for all sensors in a measurement to ensure con-
sistent results for sensors with different offsets, sample rates,
or cycle lengths. Any selection is thus stored as a timestamp.
Given an arbitrary sensor, this timestamp can be used to cal-
culate which point or part of its data should be selected.

2.4 Dependencies

The toolbox is designed to have as few dependencies on other
MATLAB toolboxes as possible. Most dimensionality reduc-
tion, classification, and regression methods rely on their im-
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Figure 3. Main GUI with menu bar (1), toolbar (2), load and save buttons (3), the list of modules (4), the list of selected sensors (5), the
current sensor set (6), the compute button for features (7), and the currently selected module (8, shaded).

plementation in the Statistics and Machine Learning Tool-
box. The LDA projection can be computed by manova1 from
this toolbox. In a newer version of DAV3E currently in de-
velopment, however, we replace most of these functions by
our own implementations. These are based on the MATLAB
implementation, but drop many type checks, etc., resulting
in quicker execution. Checking the input to these low-level
functions is not necessary in this context as errors are already
caught by higher level functions.

The report functionality additionally needs the Report
Generator, and special, but nonessential functions rely on the
Curve Fitting Toolbox (fitting Gauss peaks) and the Econo-
metrics Toolbox (feature correlation plot, corrplot). Espe-
cially the latter could easily be rewritten, if necessary. The
same applies to the function that is used to determine well-
distinguishable colors for new elements which, coming from
FileExchange, makes uses of the Image Processing Toolbox.
This functionality can easily be bypassed if the toolbox is not
available.

DAV3E is compatible with MATLAB R2016b or later.

2.5 Graphical user interface

A graphical user interface (GUI) is the main way the average
user actively interacts with a computer program. It gives a
graphical representation of all options the user currently has
which can lead to a more efficient workflow. Without a GUI,
the user can call functions of the program directly in the com-
mand line, which can be of benefit to more advanced users

when performing complex tasks or some degree of automa-
tion. Both interfaces are available in DAV3E; however, as sta-
tistical methods tend to have many different options to tune
their behavior, it is often easier to see a list of available op-
tions in a GUI instead of memorizing or researching different
parameters. Additionally, research often needs to explore its
datasets looking for distinct features, a task for which static,
animated, or interactive plots, an essential part of the GUI,
are very helpful. For an example of the command line inter-
face, refer to the supplement.

The GUI is based on the GUI Layout Toolbox (Tordoff
and Sampson, 2014), which enables layout-based GUI pro-
gramming in MATLAB. MATLAB GUIs are based on Java
and the JIDE framework (jidesoft). Not all the framework’s
elements and functionality are currently implemented, but
can relatively easily be added directly or retrofitted with the
findjobj function (Altman, 2012). For DAV3E, the standard
MATLAB GUI components have been extended with Prop-
ertyTables, JTrees, and JTables.

The main GUI (Fig. 3) consists of a frame providing a
menu bar (1), toolbar (2), load and save buttons (3), a list of
all loaded modules (4), a table showing the currently active
sensors (5), a drop-down menu to select the current sensor
set (6), and a button to compute features from the current
configuration (7). GUI modules (8) can communicate with
the main GUI via defined interfaces and are otherwise de-
coupled from the main GUI and each other. A module can
be added with a plug-in system similar to the one described
before, and performs one or more specific functions by read-
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ing or manipulating the data in the underlying structure of
measurements, clusters, and sensors.

3 Example datasets

In Sects. 4 and 5, various modules and features of DAV3E are
shown for three example datasets to facilitate easier under-
standing of the descriptions. The datasets were chosen from
different areas to demonstrate why a high versatility of the
toolbox is required.

3.1 Hill-Valley dataset

This dataset is publicly available (Graham and Oppacher,
2018) from the UCI machine learning repository (Lichman,
2013). It consists of a training set with 606 observations, i.e.,
cycles, with 100 data points each, and a test set with the same
dimensions. The data in each cycle show either a hill or a
valley when plotted, and the classification task is to discrim-
inate hill cycles from valley cycles. The dataset is provided
both with and without noise. For this demonstration, only
the noisy variant is used. Before the data are imported into
DAV3E it is first sorted by the class information, which al-
lows easier handling afterwards.

3.2 Gas sensor dataset

In the gas sensor dataset (Bastuck and Fricke, 2018), the
commercial gas sensor GGS1330 by UST (UmweltSen-
sorTechnik GmbH, Germany) was exposed to different con-
centrations of different gases in synthetic air at constant rel-
ative humidity: carbon monoxide, CO (100, 200, 300 ppm),
ammonia, NH3 (75, 150, 225 ppm), nitrogen dioxide, NO2
(10, 20, 30 ppm), and methane, CH4 (500, 1000, 1500 ppm).
It was operated with a triangle-shaped TCO cycle, rising lin-
early from 200 to 400 ◦C in 20 s, and decreasing back to
200 ◦C in another 20 s. Each gas exposure lasted for 15 min
and contained at least 20 complete sensor temperature cycles,
with a total of 190 observations.

3.3 Condition monitoring dataset

The condition monitoring dataset (Helwig et al., 2018) is
taken from Helwig et al. (2015), where more detailed infor-
mation can be found. Several sensors for monitoring pres-
sure, vibration, electrical power, and other variables have
been recorded from a hydraulic machine with a 1 min work-
ing cycle. Some sensors were sampled with 1 Hz, some with
10 Hz, and some with 100 Hz, resulting in approx. 50 000
sensor values per cycle. Faults with different grades of sever-
ity like leaks, valve malfunction, and others in all possible
permutations were then simulated in the system. The aim is
to classify the type of fault and quantify its severity. The total
number of observations is 1260.

4 Modules, features, and plots

4.1 Data import

The first step in the evaluation process is to import exper-
imental data. The button “import sensor” opens a Choose
File dialog in which all data types that DAV3E can handle
can be selected. Import routines are currently implemented
for files with simple structures like CSV or MAT, as well
as for more complex, proprietary formats stored as HDF5
(HDF5 Group, 2016), for instance. The expected format is
always a data matrix in which each row corresponds to one
cycle, i.e., observation. The columns consequently represent
the sampling points, i.e., features. The import plug-in system
provides an easy means of adding data types or even import
from databases.

Importing the first sensor automatically creates a new mea-
surement. When a second sensor is to be imported, it can ei-
ther be added in parallel to an already existing sensor, i.e., in
the same measurement, or to a new measurement, i.e., in se-
ries. Parallel sensors add features, and serial sensors add ob-
servations to the dataset. To keep a good overview, especially
with many sensors, the table can be filtered by measurement,
cluster, sensor, type, and selection, with the list boxes above
the table.

In the import module, virtual sensors can be computed
from real sensors, currently only with predefined (plug-in-
enabled) functions which are determined upon import by
the data type. Each sensor can serve as another sensor’s ab-
scissa. While the default, virtual time, is often useful, there
are cases, i.e., impedance spectroscopy, where another ab-
scissa, i.e., the logarithmic frequency, is commonly used in-
stead of the time.

For the Hill-Valley dataset (Fig. 4), the most sensible ab-
scissa is the sensor “virtual datapoints”. This information
is only implicitly provided in the raw dataset by its matrix
structure, so it makes sense to provide it as an explicit, virtual
sensor for further evaluation. Two measurements are created,
“training” and “testing”, so that the number of observations
in the dataset is increased. Clusters and sensors must then
have identical names in both measurements because DAV3E
will automatically combine data of sensors with the same
name only.

4.2 Preprocessing

First and foremost, the preprocessing module provides a first
look on the data from two different perspectives. The up-
per plot shows “quasistatic” signals generated from points
selected in the bottom plot. Quasistatic refers here to the fact
that by always taking the sensor signal from the same point
in the cycle, the resulting signal behaves like a statically op-
erated sensor with a sampling period of one cycle length.
The bottom plot, in turn, shows distinct cycles (observations)
which are selected in the upper plot. Selectors in both plots
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Figure 4. Data import module with two measurements. All available sensors are listed in the table which can be filtered with the list boxes
above. Properties of the currently selected measurement, cluster, and sensor can be edited in the PropertyTable on the right.

Figure 5. Preprocessing module showing the quasistatic (a) and cyclic (b) view of the preprocessed data, with pale raw data in the background
for comparison.

can be added or deleted and moved either with the mouse
or the keyboard, or by typing the desired position. They are
color-coded so that a clear, visual link between the selector
and the graph is established. An arbitrary number of sets can
be created for the selectors in the cycle plot which generate
the quasistatic signal. These sets can later be chosen for each

sensor separately, which is very useful if sensors with differ-
ent cycle shapes are evaluated in one dataset.

Additionally, an arbitrary number of preprocessing func-
tions can be applied to the raw data in this module. A pre-
processing function is always applied to the output data of
the previous preprocessing function, which can be useful in
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many cases, e.g., adding an offset to data to make it nonneg-
ative before applying the logarithm. In the example in Fig. 5,
only one preprocessing function is applied. It divides each
cycle by its mean value. The original data are always shown
pale in the background for the user to see the impact of the
current preprocessing chain. As before, several preprocess-
ing sets can be created and assigned to sensors separately.
This feature not only allows an optimal treatment of many
different sensors, but also enables the user to quickly change
between preprocessing methods to assess their impact on the
final result.

For the Hill-Valley dataset, it is obvious that the cho-
sen preprocessing highlights differences between the classes.
Valley data (from 1 to 307 in the upper plot, blue in the lower
plot) tend to higher values at the end of the cycle (selected
in the lower plot) than hill data (from 308 to 606 in the up-
per plot, orange in the lower plot). Similar differences can
be seen for the beginning of the cycles, but not for the mid-
dle (not shown). In comparison to the raw data (pale in the
background), this preprocessing step already provides clear
differences between both classes.

4.3 Time correction

Depending on data source and hardware, a sensor signal can
have a wrong offset compared to the start of the measure-
ment, or an incorrect sampling rate. A simple example is
data loaded from a CSV file with nothing but sensor data:
in this case neither offset nor sample rate can be automati-
cally determined and both are set to their defaults (0 s and
1 Hz). Failing to adjust these values can lead to erroneous re-
sults especially in combination with other sensors. The time
correction module plots the quasistatic representation of one
sensor of each cluster in a common graph, so that the user can
immediately check whether the adjusted offset and sampling
rate are correct.

4.4 Select relevant cycles

Especially in characterization measurements, often only few
cycles are of interest, e.g., the cycles during which the sen-
sor was exposed to gas or during which a certain fault was
observed in a machine. While it would of course be possi-
ble to record data only during these times, it is often more
convenient from an automation point of view to acquire data
during the whole period of measurement. This can also be
helpful to identify unexpected events in the data or drift over
time, for instance. Nevertheless, usually only parts of the data
are interesting for the evaluation.

This module enables easy and efficient selection and anno-
tation of cycles of interest. The graph shows the previously
determined quasistatic view for the chosen sensor. Ranges
can be created, deleted, and moved by mouse or keyboard di-
rectly in the plot. Annotation means that independent states
can be assigned to each range, e.g., the concentration of all

test gases during each range, or, for the Hill-Valley data,
whether hills or valleys are represented in this range. These
annotations can later be used to create various target vectors
for the model training.

The position of the ranges is internally stored as a times-
tamp. This allows for the correct cycle numbers to be dy-
namically determined for each sensor independent of its off-
set, sample rate, and cycle length. Thus, no resampling is
necessary, which can be very resource-intensive, especially
for large datasets. If two sensors with different cycle lengths
are combined, resampling on a feature basis is necessary to
equalize the number of observations gained from each sen-
sor. Preliminary work to find the best resampling approach
for this case has been described in Bastuck et al. (2016b).

The selection is very easy for the Hill-Valley data (Fig. 6)
because the data were sorted before the import and there are
no faulty or irrelevant cycles in this dataset.

4.5 Groupings

The grouping module is closely related to the select rele-
vant cycles module as it uses the previously determined cycle
ranges. A grouping is a vector which assigns one and only
one class to each cycle range. This vector can then be ex-
panded to a target vector that assigns a class to each cycle.
The elements of the vector must be numeric if regression
analysis is to be performed, but can be arbitrary strings or
numbers for classification problems. Colors can be assigned
to each group which are displayed in the quasistatic plot at
the top, which can be helpful to discover errors in the group-
ing vector.

Like the range selection before, the grouping vector is triv-
ial for the Hill-Valley dataset (Fig. 7) as for most binary
classification tasks. There are usually many more options
for multi-class problems, e.g., different gases with differ-
ent concentrations, so that one grouping could discriminate
between gases independent of concentration, while another
could quantify the concentration of one gas independent of
all other gases. This is discussed in detail in Sect. 5.

4.6 Feature extraction

The last step before model training is feature extraction from
the cyclic data. This is a type of dimensionality reduction,
considering that the number of features is reduced from, po-
tentially, several thousand data points per cycle (depending
on the sample rate) to a few features, e.g., describing the
general shape. Adjacent points in a cycle are typically highly
correlated, which can be problematic for many methods em-
ployed in machine learning (Næs and Mevik, 2001).

A feature is computed from the cycle with a mathemati-
cal function; features that are implemented are, for example,
mean, slope, minimum and maximum values, and standard
deviation. For every function, an individual set of ranges can
be defined directly in the cyclic sensor signal. Thus, mean-

J. Sens. Sens. Syst., 7, 489–506, 2018 www.j-sens-sens-syst.net/7/489/2018/



M. Bastuck et al.: DAV3E 497

Figure 6. Module to select cycle ranges which pool cycles with the same underlying conditions.

Figure 7. Grouping module which is used to assign classes to the previously selected ranges. An arbitrary number of grouping vectors can
be created which can later be selected as target vectors during model training. The plot shows a graphical representation of the currently
selected grouping to highlight errors and to show the structure of the data at one glance.

ingful ranges can be selected for the respective function, e.g.,
long plateaus for the mean and slopes for the slope function.
The ranges are defined in the bottom plot, which shows a rep-
resentation of several cycles computed as the mean value of
all cycles in a group of the current grouping vector. The top
plot shows a preview of the current feature function applied

to these mean cycles with the same colors as the examples
shown in the lower plot. This kind of plot gives a first im-
pression of the discriminating power of the selected features
by visually comparing the spread between ranges, i.e., colors,
that should be similar or dissimilar, respectively.
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Figure 8. The feature extraction module displays a representation of the average cycle shape for each group in the grouping vector. Different
mathematical functions are available to summarize the points in a selected range in the cycle as one or a few values. A feature preview, here
for the mean in 10 parts of the cycle, computed from the averaged cycles for speed, is shown in the top plot.

For the Hill-Valley dataset (Fig. 8), the cycle is divided
into 10 equal parts for which both the mean and slope are
computed; i.e., the number of features is reduced from 100
to 20. The cyclic plot (bottom) shows a significant difference
between the average cycles for both classes, and the feature
preview (top) confirms that the shape differences are cap-
tured by the mean feature, especially in the outermost parts
as already indicated from the preprocessing; cf. Fig. 6. Dis-
tinct differences between both classes are also observed for
the slope feature (not shown).

4.7 Model

The model module brings all previously defined parts of the
evaluation together. Features can be selected or deselected
from a list of all computed features, e.g., to observe the in-
fluence of one specific feature or feature group on the final
result. The target vector for the training is defined by choos-
ing one of the previously defined groupings. Each group’s
role can be determined separately, so it is possible to use a
few groups for training and predict the others for model val-
idation, or ignore groups entirely. Alternatively or addition-
ally, a certain percentage of randomly chosen observations
out of each group can be held back for testing the validated
model. The model can also equalize the number of observa-
tions in each group by randomly deleting observations from
larger groups. This step can significantly increase the model
performance especially for small groups which would oth-

erwise have only a small or even negligible weight in the
optimization compared to large groups.

After the training data have been defined, the model-
building process follows a “chain” approach very similar to
the preprocessing sequence described before. One or several
preprocessing steps for both features and target vectors can
be applied. Note that these preprocessing functions act on
the individual features and are to be distinguished from the
raw data preprocessing. A typical example of feature prepro-
cessing is rescaling the data for variance-based algorithms
like PCA (van den Berg et al., 2006; Risvik, 2007), or tak-
ing the logarithm of both features and target values to model
a power law, e.g., between gas sensor response and con-
centration (Yamazoe and Shimanoe, 2008), with the linear
PLSR. Afterwards, dimensionality reduction algorithms like
LDA or PCA can be applied, followed by a classifier like
kNN, DA, or LR. The whole model can be validated using
k-fold cross-validation or leave-one-out cross-validation. All
parameters of these algorithms can be adjusted directly in the
GUI, and a click on “train” performs the training and valida-
tion as defined.

The results of the validation are given as classification er-
ror in percent or, for regression analysis, RMSE (root mean
squared error). Additionally, many algorithms provide plots
like histograms, scatter plots, or territorial plots to visualize
the classification performance or areas, respectively, of the
classifier in a 2-D plane. An arbitrary number of independent
models can be created.
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Figure 9. The model module provides the possibility to exclude features or observations from the training data to see their influence on the
model. In this image, the model consists of a 2-D LDA with a linear DA classifier which is validated with 10-fold cross-validation. The data
distribution resulting from the dimensionality reduction is shown, with class information, as a histogram.

For the demonstration with the Hill-Valley dataset, a 1-D
LDA is used as model (Fig. 9). The training data and classi-
fication threshold is shown in Fig. 9. Validation is done us-
ing 10-fold cross-validation (CV) and achieves a classifica-
tion error of 2.5 % with all 20 features. The error increases to
5.4 % when only the 10 mean value features are used. Further
inspection shows that features at the beginning and end of the
cycle are the most important, so an error of 2.7 % is achieved
with only eight features, i.e., means and slopes from the two
outermost parts.

4.8 Model hierarchies

Classification results can often be improved with more than
one model for a certain classification or quantification task
(Darmastuti et al., 2015; Schütze et al., 2004). Each model
can specialize or focus on a certain aspect of the task, e.g.,
classifying the prevalent gas with a first model and then se-
lecting a second, specialized quantification model for this
gas.

This module provides an easy interface to build such hier-
archies from the previously defined models. The sensor set
from which input data are taken can be defined; the data is
subsequently treated according to the options for the training
data given in each model separately. The previous training
of the models can be used directly to predict the new data.
Alternatively, the models can first be trained within the hier-
archical context, in which every model splits the data accord-

ing to the known classes and forwards the respective parts to
the next model.

The hierarchy in Fig. 10 is an example of a gas classi-
fication and quantification task as hierarchical classification
is not applicable to the Hill-Valley dataset. The behavior is
often influenced by humidity, which is why the first model
tries to estimate the level of humidity from the sensor data.
It then forwards the data to a model specialized in gas classi-
fication in either low humidity or high humidity conditions.
If benzene (C6H6) is detected, a third model is invoked, spe-
cialized in benzene quantification under either low or high
humidity conditions.

4.9 Hyperparameter optimization

Finding optimal parameters for the selected model algo-
rithms can be a complex and time-consuming task. These
parameters are also called “hyperparameters” to distinguish
them from the parameters that are computed by, e.g., LDA
for the dimensionality reduction.

The grid search module (Fig. 11) provides an interface in
which a list of values can be given as valid MATLAB ex-
pressions for all available parameters in a model. DAV3E
will then automatically perform an exhaustive search with all
possible combinations of all parameter values, recording the
validated model error for all combinations. After the search,
the best parameter value combination is determined, and the
influence of each parameter visualized.
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Figure 10. The hierarchical model module allows for the combination of previously defined models. They can be trained with the whole
dataset or only with data relevant to the model, which can lead to specialization and better results. The hierarchy is shown as a directed graph
with data flow along the edges and models as nodes.

Figure 11. The grid search module lists all parameters of a particular model and accepts valid MATLAB expressions as their values, so lists
of values can be given for each parameter. The automated grid search evaluates the model for all permutations of parameter values and plots
the model error dependent on parameter values, highlighting the optimum solution.
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Figure 12. (a) Quasistatic and cyclic signal from the UST GGS1330 gas sensor. The cycles shown are in pure air (black), CO (green), and
NH3 (orange), while the quasistatic signals show the sensor reaction at low (blue) and high (red) temperature. (b) Graphical representation
of a grouping for the discrimination of five classes, i.e., four gases and air. (c) Territorial plot of the resulting discrimination with the kNN
classifier. (d) A grid search evaluating the model for different numbers of discriminant functions and k values of the kNN classifier.

For the Hill-Valley dataset, an exhaustive search has been
performed for the parameters of a kNN classifier, i.e., the
number of neighbors k (tested values: 1, 3, 9, 27, 81, 243,
729) and the metric (Euclidean or Mahalanobis distance).
The search shows that k = 1 and k = 729 (which is actually
reduced to 605, the maximum possible number of neighbors
in this dataset) lead to increased error rates. This is under-
standable, as the result is easily negatively influenced by out-
liers for k = 1, and each class has approximately 300 points;
therefore, for k = 605 the larger class will always win, which
leads to many misclassifications. The distance metric’s influ-
ence is almost negligible, with the Euclidean giving the opti-
mal result of 2.8 % at k = 81 for all tested parameter combi-
nations.

5 Example projects

In this section, different features and aspects of DAV3E are
presented for two real datasets from our research activities.
All graphs shown are exported, without post-processing, di-
rectly from DAV3E. The same graphs, with all parameters,
can also be automatically exported to a report document in
Microsoft Word or PDF format.

5.1 Gas sensor dataset

The project described in this section is based on the dataset
from Sect. 3.2. A cyclically driven gas sensor was exposed
to four different gases in each of three different concentra-
tions. Figure 12a shows the plots from the preprocessing
module, i.e., quasistatic and cyclic plot. The black cycle was
subtracted from all cycles, which highlights the differences
in the signal shape arising from exposure to different gases.
Figure 12b is a graphical representation of a grouping that
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Figure 13. Graphical representation of four different grouping vectors to discriminate between the severity of four different faults. Panel
(a) shows three different cooler faults and the resulting cooling efficiency as a signal, and in panel (b), the pressure of the hydraulic accumu-
lator is changed, which can be observed, e.g., in a flow sensor signal. Panel (c) shows several grades of pump leakage, evident in a different
flow sensor. In (d), different grades of valve faults were experimentally simulated, which cannot be observed directly in any one individual
sensor signal.

discriminates between gas types, including air selected at the
beginning, independent of their concentration. Other possible
groupings are concentrations of one of the gases for a quan-
tification task. These groupings can either ignore other gases,
or include them explicitly as zero concentration to achieve
selective quantification of a certain gas. In this dataset, the
ranges can be loaded directly from the configuration file for
the measurement. However, they were then shortened (us-
ing a batch script for range manipulation implemented in
DAV3E) to account for fluidic time constants in the gas mix-
ing system, resulting in approximately 10 cycles per gas ex-
posure.

A total of 11 features are defined: the mean value of the
whole cycle, and the slopes of 10 sections of equal length in
the cycle.

Figure 12c is the territorial plot resulting from a 2-D LDA
and a kNN classifier with Euclidean distance and k = 5. Us-
ing 10-fold CV reveals a classification error of about 2.0 %,
and the resulting confusion matrix identifies three points that
are confused between air (gray) and methane (violet), which
can already be anticipated from the plot. All other gases are
identified perfectly, with distances from the air group that
roughly correlate with the sensor response observed for the
gas in the quasistatic plot. In contrast to all other gases, CO
is a strong reduction agent and exerts more influence on the
surface oxygen coverage during the cycle (Baur et al., 2015;
Schultealbert et al., 2017), which leads to significant changes
in the cycle shape and, thus, a shift in two dimensions instead
of only one. Note that this effect is actually dominant as the
CO shift is along the first discriminant axis.
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Figure 14. Territorial plots of the discrimination of fault severity for (a) a valve and (b) a hydraulic accumulator.
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Figure 15. Graph of a hierarchical model which achieves better ac-
curacy when predicting the hydraulic accumulator fault by training
specialized models for different cooling efficiencies.

In Fig. 12d, the model was evaluated for different num-
bers of discriminant functions and different k’s for the kNN
classifier. It shows that a model with only one discriminant
function (DF) has a large error, which can also be understood
from the territorial plot due to the significantly different ef-
fect of CO. The optimum is at two DFs and k = 1. For in-
creasing k, the error increases only slightly up to 81, which
is the first time that k is greater than the sum of points in
two groups. For higher k, the error increases rapidly. This is
because, for equally sized classes, the correct class cannot
win the decision since it is missing one point (the one under
consideration) and, thus, the nearest wrong class will win.

5.2 Condition monitoring dataset

The project described in this section is based on the dataset
from Sect. 3.3. A hydraulic system with a constant work-

ing cycle is monitored by 17 sensors with different sampling
rates. Simulated faults and their severity are to be classified
and quantified.

Figure 13 is a graphical representation of four different
groupings, which are the grades of severity of four differ-
ent faults, where red denotes severe, and green denotes a
good condition. Panel (a) shows three grades of a cooler
fault with the cooling efficiency signal which is obviously
strongly influenced. As a matter of fact, the cooler efficiency
has a strong influence on all 17 sensor signals and is thus
a strong interfering signal that the model must ignore when
other faults are to be detected. In panel (b), the pressure in
the hydraulic accumulator is changed, which is observed, for
example, in the signal of a flow sensor. A pump leakage is
simulated in panel (c) and can be detected, amongst others,
by a different flow sensor. A faulty valve is not immediately
observable from any individual sensor (panel d).

For this demonstration, one feature, the mean value of the
cycle, is defined per sensor, which results in a total of 17 fea-
tures. The power of statistical models is shown by the fact
that the valve fault, which cannot be seen in any individ-
ual sensor, can be detected almost perfectly when all features
are combined (Fig. 14a; 2-D LDA, DA classifier, 0.9 % error
with 10-fold CV). On the other hand, faults of the hydraulic
accumulator are superimposed by cooler faults, resulting in a
classification error of 35 % (Fig. 14b).

This effect can be mitigated using a hierarchical approach
(Fig. 15), whereby a model first determines the severity of the
cooler fault, and then forwards the data to specially trained
models for detection of the accumulator fault severity at the
determined cooler fault. This reduces the error from 35 % to
4 %, which improves the best result from the original paper
(Helwig et al., 2015) by 6 percent points with three fewer
features.

The severity of a fault and the concentration of a gas, as
well as many other variables, are continuous instead of cat-
egorical. Classification methods were used here to be able
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Figure 16. (a) PLSR model of the valve fault with an RMSE of 2 (dashed lines), where the optimal number of components was determined
with the error/component graph in (b).

to compare the results to the original paper (Helwig et al.,
2015), but in general, regression methods should be used
for quantification of continuous variables instead. PLSR, one
of the implemented regression methods, is demonstrated in
Fig. 16a for quantification of the valve fault severity. The
model was built with 11 components and 80 % of the dataset.
The optimal number of components can be determined with
the plot in Fig. 16b, which shows the RMSEC (RMSE of cal-
ibration, black) for the training data, the RMSECV (RMSE
of cross-validation, red) of a 10-fold cross-validation, and the
RMSEP (RMSE of prediction, blue) for data which have not
been used in training or validation. RMSEC and RMSECV
are both close to 2.0 %, and the RMSEP is slightly higher
with 2.2 %, which indicates that the model is able to predict
previously unknown data reliably. Note that the RMSEs are
given in percent because the target values are given in per-
cent of the original valve functionality; 100 % means perfect
function, whereas 73 % is close to complete failure. Hence,
an RMSE of 2 % still allows an early detection of a decline
of the valve’s performance.

6 Conclusions

We have presented DAV3E, our MATLAB-based toolbox
with GUI for building and evaluating statistical models from
cyclic sensor data. Especially the feature extraction from
cyclic or, more generally, time series sensor data, which
can be time-consuming and hard to formalize, is lacking
in current machine learning software. For a seamless work-
flow, DAV3E is not limited to feature extraction, but also
implements many algorithms for dimensionality reduction,
classification, regression, and validation, which can be ex-
tended through a simple plug-in system. Feature extraction
and many other steps feature interactive plots since data vi-
sualization is becoming more and more important with the
ever-increasing size of datasets. We have demonstrated sev-

eral aspects of the software for three example datasets and
how DAV3E was used to arrive from the raw data of many
sensors to a set of statistical models for, e.g., gas classifica-
tion or fault severity prediction. Many more examples can be
found in our recent publications (Bastuck et al., 2016a, 2017;
Leidinger et al., 2016; Sauerwald et al., 2017).

Several new functions are planned for the future, includ-
ing the fusion of sensors with different cycle lengths, online
prediction, and an improved grid search to test different algo-
rithms instead of only different parameters for one algorithm.

An executable version of DAV3E can be found at http://
www.lmt.uni-saarland.de/dave. The source code is available
on request.

Data availability. The “Hill-Valley Data Set” (Graham and Op-
pacher, 2008) and the dataset “Condition monitoring of hydraulic
systems” (Helwig et al., 2018) are available on the UCI machine
learning repository (Lichman, 2013). The dataset “Temperature-
modulated gas sensor signal” is available in Bastuck and Fricke,
2018.
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