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Abstract. X-ray computed tomography as a measurement system faces some difficulties concerning the quality
of the acquired measurements due to energy-dependent interaction of polychromatic radiation with the examined
object at hand. There are many different techniques to reduce the negative influences of these artefact phenom-
ena, which is also the aim of this newly introduced method. The key idea is to create several measurements of
the same object, which only differ in their orientation inside the ray path of the measurement system. These mea-
surements are then processed to selectively correct faulty surface regions. To calculate the needed geometrical
transformations between the different measurements with the goal of a congruent alignment in one coordinate
system, an extension of the iterative closest point (ICP) algorithm is used. To quantitatively classify any sur-
face point regarding its quality value to determine the individual need of correction for each point, the local
quality value (LQV) method is used, which has been developed at the Institute of Manufacturing Metrology.
Different data fusion algorithms are presented whose performances are tested and verified using nominal–actual
comparisons.

1 Introduction

The measurement principle of X-ray computed tomography
(CT) makes it possible to determine the distribution of at-
tenuation coefficients of a measurement volume, which is
achieved by creating and evaluating a set of radiographs.
The inevitable polychromatic character of the X-rays and
the physical interaction of matter with that radiation com-
bined with introduced simplifications of those phenomena
within the reconstruction routine causes image artefacts to
occur within the reconstructed picture of the measurement
object. Various methods have been proposed to prevent those
unwanted phenomena from emerging at different locations
of the measurement chain: pre-filtration is used to change
the polychromatic character of the radiation, locally adaptive
surface determination algorithms try to take account of the
shifting radiation spectrum due to beam hardening. Addition-
ally, there are different techniques to use data fusion of sev-
eral faulty measurements to achieve an exact representation

of the measurement object (Heinzl et al., 2007; Guhathakurta
et al., 2015). Because of the requirements of certain boundary
conditions (dual-energy CT, Heinzl et al., 2007; orthogonal
orientations for different measurements, Guhathakurta et al.,
2015) those methods are not always practicable.

This paper presents a newly developed procedure to cor-
rect artefacts of X-ray computed tomography measurements.
An important aspect of the solution presented is the qualita-
tive classification of single-surface vertices with the help of
the LQV (local quality value) method, which has been de-
veloped at the Institute of Measurement Metrology (Fleßner
and Hausotte, 2016; Fleßner et al., 2015a). Given the nec-
essary expert knowledge, this method is capable of detect-
ing artefacts in measurement data to provide rated surface
points for further evaluation. Depending on the chosen qual-
ity parameter, the resulting quality classification is also well
suited for multi-material problems, because the underlying
transitions can be evaluated for different shape criterions, rel-
ative to other transitions within that measurement. The basic
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principle behind the presented data fusion routine is to pro-
duce several single measurements of a measurement object,
which only differ in terms of the location and direction of
their rotation axis in the cone beam CT system. These mea-
surements subsequently differ regarding the appearance of
artefacts, which allows for selective mathematical combina-
tion of measurements to acquire a final measurement result
with higher precision and validity.

2 Data fusion of surfaces determined by X-ray CT

The following chapter presents the general procedure behind
the idea of fusing the determined surfaces out of several sin-
gle measurements into one data set with improved quality
measures. Subsequently, the main goal is to correct locally
incorrect surface determinations, which are provoked mainly
by beam hardening and cone beam artefacts. Verification of
the data fusion results will be achieved by using and evalu-
ating nominal–actual comparisons. The complete process is
implemented fulfilling the following framework conditions:

– The starting points of the procedure are the triangulated
surfaces resulting from the surface determination pro-
cess.

– The orientations of the different single measurements
respectively to each other are unknown and can take ar-
bitrary values. This leads to high requirements for the
necessary registration procedure.

– Information regarding the local surface quality will be
applied at different process steps by utilizing the LQV
method (Sect. 2.2).

– The registration and fusion process will be implemented
without using a CAD-reference file of the measurement
object. This ensures the usability of the method even
when no representation of a reference is available.

The complete workflow will subsequently be demonstrated
with the help of an example.

2.1 Measurement data

In order to be able to provoke certain artefact appearances in
the measurement data, all data sets were acquired using the
simulation tool aRTist, developed by the Federal Institute for
Materials Research and Testing (BAM) in Berlin, Germany.
The (virtual) CT settings were chosen as follows: 130 kV
tube voltage, 275 µA tube current, 44 µm voxel size, 800 pro-
jections. The foundation of the examinations is a special test
specimen (dimensions approx. 30×20×20 mm3), which has
been developed at the Institute of Manufacturing Metrology
(FMT) (Zierer, 2013). The main material of the measurement
object is chosen as plastic (PVC, density 1.38 g cm−3, Kern,
2017), while additional small objects made out of tungsten
(density 19.25 g cm−3, http://www.chemie.de/, last access:

12 June 2017) have been inserted into the body in order to
provoke heavy beam hardening and photon starvation arte-
facts. The measurement series consists of four single mea-
surements, which differ only in the orientation and position
of their rotation axis in the cone beam X-ray beam path. The
process of surface determination out of the reconstructed vol-
ume data was performed using the software VGStudio Max
3.0.1 (VGS, Volume Graphics GmbH, Germany). Because
of the very high-density differences of tungsten compared to
PVC and the atmosphere, the automatic material definition
setting of VGS leads to segmentation of the tungsten objects
rather than the PVC specimen. In order to achieve a seg-
mentation of the correct material, the “ISO value” (starting
threshold in the VGS segmentation routine) was estimated by
calculating a histogram of the complete volume data, iden-
tifying the “background peak” and “PVC peak” and manu-
ally setting the resulting ISO50 value of both peaks in VGS.
This procedure has proven to be suitable for segmentation
of rather extreme multi-material scenarios. Created surfaces
were then exported as a triangulated surface using the STL
interface to enable further processing. The concept in this pa-
per relies on the premise that every point on the surface will
be measured correctly at least once (see description above),
thus reducing the importance of a correct segmentation in
surface regions corrupted by artefacts.

2.2 Local quality value (LQV)

In order to classify different surface points during process-
ing, a local quality measure was used. The following patented
(Fleßner and Hausotte, 2016) framework has been developed
at the Institute of Manufacturing Metrology (Fleßner et al.,
2015a, b) and is currently subject to ongoing research efforts.
The procedure is characterized by extraction of grey value
profiles in the vicinity of the surface point and evaluation of
those profiles according to certain criteria. Starting from one
single-surface point, a search ray is constructed inside the CT
volume data following the vertex normal vector in both possi-
ble directions for a certain length (approximately ±250 µm).
Along that search-ray volume data, grey values are linearly
interpolated with sub-voxel accuracy, thus constructing the
characteristic grey value profile for each surface vertex. Sub-
sequently each grey value profile consists of 2n+1 sampled
values, with n being the number of steps in each direction of
the surface normal vector (see also Fig. 1). Grey value pro-
files with sufficient quality usually present themselves in the
shape of a sigmoidal function, consequently making it pos-
sible to construct different kinds of quality measures evalu-
ating the local goodness of a certain surface point. The de-
termined quality parameters are then rescaled and normal-
ized during a post-processing routine. Subsequently, a visual
representation of the local surface quality can be achieved
by pairing the determined quality parameters with a suitable
colour map (e.g. red–yellow–green standing for low to high
quality). To reduce the impact of falsely classified surface
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Figure 1. LQV-parameter point reflection: grey value profiles (green and red) are constructed and sampled perpendicular to the determined
surface (VGS, small image bottom right). The position x = 0 (marked with circles and red cross in the small image respectively) represents
a surface data point. Mirroring of the right function branch (x > 0) onto the left one (x < 0) leads to differently sized areas (hatched region)
between both function branches, thus resulting in a good or a bad point reflection parameter value (green curve, red curve respectively).

points, a moderate iterative mean filter (Gauss filter) is ap-
plied.

In order to classify surface points with the LQV method
for the assessment of the introduced measurement series (see
Sect. 2.1), a point symmetry measure (point reflection) is
evaluated for each grey value transition. The idea behind this
procedure is that symmetric transitions with a high maxi-
mum grey value gradient and therefore a high contrast are
expected to be of higher quality, because it makes surface de-
termination at this point very stable and robust. If this transi-
tion has a lower point reflection quality parameter, the transi-
tion is anticipated as being invaluable and thus representing
a local artefact appearance. The procedure is visualized in
Fig. 1. The sampled grey value transition of an underlying
surface point alongside its vertex normal vector results in a
sigmoidal curve (green lines) or a disrupted sigmoidal curve
(caused by artefacts, red lines). To determine the LQV pa-
rameter “point reflection”, one of the function branches (line
with dots) is mirrored (point reflection at x = 0) onto the
other branch (straight line). The size of the remaining area
between the first part of the transition (straight line) and the
mirrored part of the transition (line with crosses) represents
the desired quality parameter (after inverting and scaling). In
the case of the green lined example, the area between the two
function branches is very small, thus resulting in a high LQV,
while the red lined example is rated worse. The regions of the
surface points from this example have been marked in Fig. 2.

Figure 2 shows one measurement of the mentioned mea-
surement series with a certain orientation of the measure-
ment object in the CT-ray beam. In the illustrated figure,
the surface coordinates are depicted in the volume grid co-
ordinate system of the volume data representing the mea-
surement. That means that the rotation of the object within
the cone beam CT was performed around an axis parallel to
the z axis. As previously mentioned, the measurement object

consists of a polymer material with some tungsten deposits
at three different positions. The impact of this very dense
material, which leads to heavy beam hardening artefacts, is
clearly visible as surface regions with an incorrect surface de-
termination. It is also evident that the mentioned artefacts oc-
cur almost perpendicular to the applied rotation axis during
the measurement. This observation is exploited by varying
the orientation of the measurement object during the mea-
surement within a measurement series in order to change the
presence of artefacts in each measurement. Local examina-
tion of the volume data at the regions with heavy artefacts
shows that a reasonable surface determination is not possi-
ble in those regions without pre-processing or introduction
of external knowledge. Figure 2 also shows the capability of
the LQV parameter point reflection, as it is possible to de-
tect the problematic surface regions precisely and robustly.
With help of this stable classification, further processing of
the measurement series is possible.

2.3 Surface registration

Each measurement is represented in its own coordinate sys-
tem, which originates from the related volume grid coordi-
nate systems of each measurement set-up. In order to render
local data fusion based on surface coordinates possible, a reg-
istration process is necessary to transform all measurements
of one series into the same coordinate system. The necessary
transformation is a rigid transformation, which allows for a
degree of freedom of six (three rotations and three transla-
tions). The goal of this step is to transform all measurements
into a common coordinate system, while maintaining a mini-
mum residual error between the registration partners. A com-
monly used algorithm for this kind of problem is the iterative
closest point (ICP) algorithm, proposed almost at the same
time by Besl and McKay (1992) and by Chen and Medioni
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Figure 2. Detection of locally occurring artefacts provoked by wol-
fram insertions with the LQV method (point reflection). The surface
regions belonging to the transitions depicted in Fig. 1 are marked
with black circles.

(1991). Initially, as there is no CAD-reference surface avail-
able for a normal measuring task, a “master surface” has to
be chosen arbitrarily, which represents the reference registra-
tion surface for the other measurements. The basic function
of the ICP algorithm consists of a matching step, in which
corresponding coordinate pairs are determined in such a way
that each surface point of the master surface pi is assigned
the nearest (Euclidian distance) vertex of the fitting partner
qi . The algorithm then iteratively determines the unknown
rotational and transformational directions by minimization
of a certain error function. Equation (1) shows the so-called
“point-to-point” error metric, which minimizes the sum of
the distances e of n corresponding coordinate pairs pi and
qi by determining the ideal rotation matrix R and translation
vector T .

e =
∑n

i=1

∥∥Rpi +T − qi

∥∥2 (Besl and McKay, 1992) (1)

By changing the error function to minimize the sum of per-
pendicular distances of the vertices of one surface to the tan-
gent plane of the corresponding vertices by introducing the
normal vectors ni (Eq. 2), better convergence behaviour can
be achieved for structured surfaces (“point-to-plane”). Al-
though the normal vectors of both fitting surfaces are not ab-
solutely robust, as these are both measurements and therefore
prone to noise, the point-to-plane approach resulted in better
results and is therefore used subsequently.

e =
∑n

i=1

[(
Rpi +T − qi

)
·ni

]2
(Chen and Medioni, 1991) (2)

A challenge when using this registration routine is the oc-
currence of basins of convergence of limited size and depth.
That means that it is possible that the algorithm converges
to only a local rather than a global minimum in the error
space. A suboptimal transformation (mainly the rotational
part) instruction is calculated. This behaviour was solved by
implementing a first step, which determines an optimum pre-
transformation by means of structured sampling. In order
to limit computational expenses to a reasonable level, pre-
transformation is only determined with heavily reduced sur-
face point density.

Overall, the registration problem at hand constitutes a huge
challenge for any registration process due to heavy artefact
occurrences. If the registration is performed without any ad-
ditional information, the result will be insufficient to use for
further fusion algorithms, because the error function will be
evaluated incorrectly. Experiments have shown that a conver-
gence even near to a correct solution is impossible because of
the error introduced by faulty surface regions. To enable the
correct registration of correctly determined surface regions
without the influence of bad regions, a weighting factor is in-
troduced for each corresponding point pair. This factor is set
as the product of the LQVs for each of the mentioned vertex
pairs pi and qi . A rescaling procedure of the LQV parame-
ters to fill the complete value range available (0–1) ensures a
more robust mathematical response for badly classified pairs.
The registration result as shown in Fig. 3 demonstrates a very
good transformation of four single measurements into the
same coordinate system, while the impact of faulty surface
regions has mostly been suppressed.

2.4 Data fusion algorithms and verification set-up

The previously described methods allow for an actual fusion
routine to be introduced. Starting with an overall number of
n surfaces to process, the main idea is to correct each single
measurement by means of the other measurements, result-
ing in n corrected surfaces. This process is performed itera-
tively, meaning that the corrected surfaces will converge to
each other. The overall fusion framework can be described in
the following steps:

1. Choose a “master” surface with index i ∈ {1,2, . . .,n},
which will be the starting point for further processing.

〈begin of iteration〉

2. Define set j = {1,2, . . .,n}r {i}.

3. Choose a single-surface point pu,i,u ∈ {1,2, . . .,umax},
master surface i, with “max” being the last surface point
index.
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Figure 3. Registration result of four different measurements using
LQV weights.

4. Search for a set of nearest neighbours k for pu,i in
surfaces j (Euclidian distance, utilize efficient search
trees).

5. For fusion, determine p′u,i out of set
{
pu,i,k

}
; see be-

low for detailed description of different fusion logics.

6. Repeat 3–5 for each surface point of surface i.

7. Repeat 1–6 for each surface by changing index i.

8. Set pu,i = p′u,i ∀u ∈ {1,2, . . .,pmax}.

〈end of iteration〉

9. Repeat 1–8 until maximum number of iterations
reached (set to 15 for all further evaluations).

In the following, three different fusion logics are introduced,
featuring the different formulas for calculating p′u,i out of the
set
{
pu,k

}
, as mentioned previously in step 5.

The first method (Eq. 3) can be calculated using the arith-
metic mean coordinate of the set

{
pu,k

}
, which is expected

to deliver unsatisfying results. This is the case because bad
surface points are treated the same as good surface points,
resulting in insufficient correction of bad points and faulty
correction of good points.

The second method (Eq. 4) is determined by computing
the linearly weighted mean of set

{
pu,i,k

}
. The weight-

ing factors are represented by the corresponding LQVs
LQV

({
pu,i,k

})
for the set of points

{
pu,i,k

}
to be pro-

cessed. The usage of weighting factors ensures the different
influence of differently qualitatively classified surface points
on the result of p′u,i .

Lastly, the third method (Eq. 5), introduces an additional
condition compared to method two, which states that a cor-
rection will not be performed if the LQV of pu,i surpasses

a certain boundary value (LQVboundary, here 0.99; see also
Fig. 2).

p′u,i =
1
n

∑n

a=1
ra, with r ∈

{
pu,i,k

}
(3)

p′u,i =
1
n

∑n

a=1
LQV (ra) · ra, with r ∈

{
pu,i,k

}
(4)

p′u,i =

{
Eq. (4) for LQV

(
pu,i

)
< LQVboundary

pu,i for LQV
(
pu,i

)
≥ LQVboundary

}
(5)

The quality of the surface fusion routine is verified using cu-
mulative evaluations of nominal–actual comparisons, evalu-
ating the alignment of the measurement and the correction
with the CAD model of the used specimen. Additionally, a
measurement of the specimen was performed, using the ex-
act same settings as for the creation of the measurement data,
but leaving out the artefact causing tungsten insertions. This
reference measurement represents the quality of the maxi-
mum achievable correction in this context. Nominal–actual
comparisons were calculated using VGS.

3 Results

A visual observation of a corrected surface utilizing correc-
tion method three (Eq. 5) is shown in Fig. 4. It is apparent
that faulty surface regions have been corrected up to a cer-
tain extent, but some errors remain. Yellow regions depict an
incorrect surface normal vector, indicating an imperfect tri-
angulation of the surface at hand. The reason for that is that
the fusion algorithm itself only processes point clouds with-
out any consideration of the spatial correspondence of certain
points within a triangulated surface. The visual presentation
in Fig. 4 uses the original triangulation mapping, which may
not be correct any more after the fusion process in certain
regions. A repeated triangulation of the raw point cloud may
solve this problem but could prove to be difficult without im-
plementation of knowledge about the direction of the under-
lying grey value gradient of the volume data. Nevertheless, it
is visible that a selective correction of faulty surface regions
has been achieved.

Figure 4 shows several nominal–actual comparisons of
different processing results of the same measurement. The
three lines representing the results of the different fusion al-
gorithms (colours teal, red and blue) originate from the same
single measurement, ensuring comparability. All observed
deviations are limited to a maximum deviation of 100 µm,
resulting in the sharp cut-off in Fig. 5. The black line repre-
sents the nominal–actual comparison of one arbitrarily cho-
sen measurement (number 1 of 4; see Fig. 3) with the CAD
reference and shows strong deviations indicating the pres-
ence of severe artefacts. The teal line shows the result of a
correction using an unweighted arithmetic mean of the cor-
responding coordinates (Eq. 3), which results in a slight im-
provement of shape fidelity compared to the original mea-
surement. Further improvements (red line) are achieved us-

www.j-sens-sens-syst.net/7/551/2018/ J. Sens. Sens. Syst., 7, 551–557, 2018



556 A. M. Müller and T. Hausotte: Weighted surface data fusion of X-ray computed tomography measurements

Figure 4. Visualization of a corrected surface. Yellow regions in-
dicate faulty triangulation correspondences due to point cloud pro-
cessing.

ing a weighted arithmetic mean algorithm for the calcula-
tion of the corrected coordinates and by implementing LQVs
(Eq. 4). Finally, the best enhancements are provided by im-
plementing the additional condition (blue line), which pre-
vents a correction of surface points classified as good qual-
ity (Eq. 5). These results show that the prevention of a cor-
rection of already very well rated surface points (method
three, Eq. 5 leads to superior results compared to a weighted
mean correction Eq. 4). That means that the LQV parame-
ter used (point reflection) does not behave linearly (what is
expected) and that a very high LQV classification correlates
very strongly with a low measurement deviation. To rank the
results, a supplementary measurement has been introduced
(orange line), featuring the basic geometry of the specimen
made out of PVC like the other measurements, but without
the tungsten insertions. It shows that the provided solution
of using a boundary condition for the correction routine and
implementing LQV parameters can result in a significant im-
provement of the shape fidelity of the corrected measure-
ment.

4 Conclusions

The method presented is able to compensate for locally oc-
curring faulty surface regions due to the influence of beam
hardening artefacts. Part of the solution demonstrated is the
implementation of LQVs for each surface point, which al-
low the classification of surface regions with different qual-
ity measures. Using LQV parameters for data fusion yields
superior results compared to unweighted fusion procedures,
which indirectly shows the performance capabilities of the
LQV method. Furthermore, a correction is possible without
knowledge of a reference surface. In addition, the geometric

Figure 5. Nominal–actual comparison of a selected measurement
(1 of 4, Fig. 3) and its corrections with the CAD reference surface.

orientations of different single measurements of a complete
measurement series do not need to be known beforehand.

In the future, additional improvements regarding fusion re-
sults can be achieved by further development of the LQV
parameters. These parameters are used within the presented
framework at several occasions: registration and weighted fu-
sion. Consequently, LQV classification errors also directly
result in fusion errors, subsequently reducing the quality of
the corrected surfaces. Difficulties appear when large correc-
tion vectors are applied for certain surface regions. The cor-
respondences determined between coordinate pairs pi and qi

of different surfaces are not always truly accurate, because
the nearest-neighbour criterion is not guaranteed to also find
the correct neighbour. This can lead to slightly incorrect co-
ordinate shifts during the fusion process. In addition, local
fluctuations in surface point density can influence the result
of the correction.

Data availability. In this paper, we present a possibility to fuse
CT surface data sets from repeated measurements to reduce the un-
wanted influence of artefacts on the measurement result. The algo-
rithms used for this purpose are described in detail in the paper. Ad-
ditionally, publications cited in the paper describe the LQV method,
as well as the specimen used and the registration routine. Further-
more, the parameters for the generation of the measurement data
are described in detail in the paper as well as the software used to
process the data if necessary.
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