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Abstract. A customized sequential quadratic program (SQP) method for the solution of minimax-type fitting
applications in coordinate metrology is presented. This area increasingly requires highly efficient and accurate
algorithms, as modern three-dimensional geometry measurement systems provide large and computationally
intensive data sets for fitting calculations. In order to meet these aspects, approaches for an optimization and
parallelization of the SQP method are provided. The implementation is verified with medium (500 thousand
points) and large (up to 13 million points) test data sets. A relative accuracy of the results in the range of
1× 10−14 is observed. With four-CPU parallelization, the associated calculation time has been less than 5 s.

1 Introduction

Three-dimensional coordinate metrology is an essential el-
ement of modern economic production. The application of
coordinate measuring machines (CMMs) offers an efficient
way to inspect geometrical properties of workpieces. The
manufactured workpieces are measured in a first step. Then,
through the mathematical fitting of ideal geometrical ele-
ments to the measured features, an evaluation of workpiece
deviations from the nominal shape in a technical drawing is
possible. The information generated on the deviations is used
to classify workpieces as, for example, scrap parts and to ad-
just the manufacturing parameters in order to reduce the per-
centage of non-permissible parts in the production process.

Optical and computer tomography (CT) measurement
systems have gained increasing importance for three-
dimensional coordinate metrology in recent years. The rapid
development of new applications and measurement capabili-
ties poses a great challenge for developers of CMM software
as well as for metrological institutes to provide traceability
for different measurands. Fitting software has to keep up with
an increasing amount of measurement data and simultane-
ously the accuracy of calculation results needs to meet high
requirements. Under these conditions, PTB (Physikalisch-
Technische Bundesanstalt) together with the German CCM

manufacturer Werth Messtechnik GmbH have developed a
sequential quadratic program (SQP) for the calculation of
Chebyshev and hole-pattern fitting applications with differ-
ent geometrical elements. Through very simple modifica-
tions and computational parallelization, this method is ca-
pable of highly accurate and efficient calculations with large
data sets as necessary for optical and CT measurements of
workpieces in manufacturing.

The fitting algorithm in this work is subject to applica-
tions with different types of minimax calculations. These
are Chebyshev, minimum-circumscribed and maximum-
inscribed geometrical elements (commonly all denoted by
Chebyshev fitting) as well as hole-pattern fitting of structures
with multiple geometrical elements. Modern algorithms rely
on a combination of methods for calculating an initial course
fit with a subsequent refinement by a decent direction-based
solver. Linear methods are used to calculate decent directions
as well as approximations of the fitting model gradients. The
following algorithm presents a decent direction method. Its
implementation is based on the general SQP and the active-
set quadratic program (QP) for decent direction calculation
from Geiger and Kanzow (2002). In comparison to the afore-
mentioned linear approaches it calculates with exact model
gradients. This requires more calculation time than the ap-
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proximation. However, a significant higher accuracy of fit-
ting results can be achieved. Furthermore, the QP decent
directions provide quadratic or at least super linear conver-
gence speed of the method, which is an advantage compared
to a linear approach.

The input for the Chebyshev and hole-pattern fitting is a
point data set:

P = {P1, . . .,Pm} ,

where Pi =
(
Pix, Piy,Piz

)T
∈ R3 (i = 1, . . .m) are Cartesian

coordinates of points on the surface of a real workpiece. The
ideal geometrical element for the fit is defined by a number
of parameters:

a = (a1, . . .,an−1)T
∈ Rn−1.

These give either the geometrical element parameters in the
case of Chebyshev applications, or transformation parame-
ters in the case of hole-pattern fitting. In general, the param-
eter values are overestimated as the amount of measurement
points m is much larger than the number n− 1 of unknown
parameters. Hence, the fit considers the orthogonal distances,

fi(a),

between the points Pi ∈ P and the ideal geometry with pa-
rameters a. The model for the calculation of the geometrical
parameters is then the minimax program

mina∈Rn−1maxi=1,...,mfi(a). (1)

The objective is to find parameter values for a that mini-
mize the maximum orthogonal distance between all points
and the geometrical element. For the development of SQP
methods, program (1) is equivalently transformed into an or-
dinary non-linear constrained form.

minv∈Rnf (v) (2)
subject to gi (v)≤ 0 (i = 1, . . .,m)
hj (v)= 0 (j = 1, . . .,q)

Here, v :=
(
aT, s

)T
∈ Rn denotes the extended parameter

vector. The new parameter s is an upper bound for the maxi-
mum over all fi(a) in program (1). By introducing f (v) := s
as an objective and the set of inequality constraints gi (v) :=
fi (a)− s, it equivalently replaces the minimization of the
maximum term. The equality constraints hj (v) complete the
model and implement additional conditions related to the
definition of the parameter vector a.

Section 2 gives the SQP core algorithm. It subsequently
requires the application of a solver for quadratic programs.
An optimized quadratic program solver for the fitting ap-
plications of interest is given in Sect. 3. For specific non-
regular solutions of program (2), a second-order criterion for
a solution is presented in Sect. 4. The numerical precision of

calculations by the customized SQP method is then investi-
gated in Sect. 5 using the example of flange ring inspections
(Hutzschenreuter et al., 2017) that require different types of
minimax fits to be calculated. Finally, the effect of the par-
tial parallelization of the algorithm and the resulting runtime
improvements are investigated in Sect. 6.

2 The SQP method

For the application of an SQP method, the Lagrangian of
program (2) is considered. For the Lagrange multipliers λ=
(λ1, . . .,λm)T

∈ Rm and µ=
(
µ1, . . .,µq

)T
∈ Rq , it is

L (v,λ,µ) := f (v)+
∑m

i=1
λigi (v)+

∑q

j=1
µjhj (v) .

Under the assumption of a regularity constraint qualification
(e.g. the linear inequality constraint qualification; Geiger and
Kanzow, 2002), a local minimum of (2) and its Lagrangian
have multipliers for which the Karush–Kuhn–Tucker (KKT)
condition

∇vL (v,λ,µ)= 0 (3)
hj (v)= 0 (j = 1, . . .,q)
gi (v)≤ 0, λi ≥ 0, λigi (v)= 0 (i = 1, . . .,m)

is satisfied. The SQP method is derived from this nec-
essary condition by applying a Lagrange–Newton method
to ∇vL (v,λ,µ)= v, hj (v)= 0 (j = 1, . . .,q) and gi (v)≤
0 (i = 1, . . .,m).

Algorithm 1 (globalized SQP method)

(S0) Set initial values for v0, λ0, µ0, α > 0, β ∈ (0,1), σ ∈
(0,1) and H0 = In ∈ Rn×n, k = 0.
(S1) If

(
vk, λk, µk

)
satisfy KKT condition (3), stop.

(S2) Calculate a decent direction1v ∈ Rn and
(
λk+1, µk+1)

from the quadratic program

min1v∇vf
(
vk
)T
1v+

1
2
1vTHk1v subject to (4)

gi

(
vk
)
+∇vgi

(
vk
)T
1v ≤ 0 (i = 1, . . .,m)

hj

(
vk
)
+∇vhj

(
vk
)T
1v = 0 (j = 1, . . .,q) .

If ‖1v‖ = 0, stop with solution
(
vk, λk+1, µk+1) .

(S3) Calculate a step width tk ≥ 0 (tk = β l, l = 0,1,2, . . .)
that satisfies

P1

(
vk + tk1v,α

)
≤ P1

(
vk,α

)
− tkσP

′

1

(
vk,1v,α

)
. (5)

(S4) Update vk+1
= vk + tk1v, BFGS update of

Hk+1,k = k+ 1 and go to step (S1).
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In Algorithm 1, the matrix Hk is a positive semi-definite
approximation of the Lagrange function’s Hessian. It guaran-
tees that the quadratic program (4) in step (S2) has a solution.
Its update is made with the Broyden–Fletcher–Goldfarb–
Shanno method (BFGS, Geiger and Kanzow, 2002).

The initial values for the parameter vector shall be a fea-
sible point of the minimization program. Such a point satis-
fies the constraints gi

(
v0)
≤ 0 (i = 1, . . .,m) and hj

(
v0)
=

0 (j = 1, . . .,q). The initial Lagrange multiplier values are
selected as zero values. In each iteration of the algorithm,
the update of the Lagrange multipliers is calculated by solv-
ing the QP in step (S2). Thereby, λk+1 and µk+1 are the La-
grange multipliers associated with program (4). Details on
their definition are presented in the following section.

In step (S3) formula (5), the Armijo-type step width is cal-
culated from the exact l1-barrier-penalty function.

P1 (v,α) := f (v)+α
{∑m

i=1
max {0,gi (v)}

+

∑q

j=1

∣∣hj (v)
∣∣}

The term P ′1(vk,1v,α) is its directional derivative in vk to-
wards 1v. Step (S3) is a commonly used globalization tech-
nique for enabling the super-linear convergence up to the
quadratic convergence of the SQP method towards a solution
of the KKT system (3). Parameter α controls the influence
of invalid constraints on the step width; β is the basis for the
Armijo steps and σ adds some additional damping.

3 Customized active-set QP method

Solving the QPs (4) in step (S2) of the SQP method is
the most time-consuming part when considering fitting large
data sets. The applied algorithm is an active-set method,
which overcomes the efficiency problem by introducing sim-
ple modifications. A minimum of program (4) defines the ac-
tive set of inequality constraints that are equal to zero.

A :=
{
i ∈ {1, . . .,m} |gi (v)+∇vgi(v)T1v = 0

}
Through gA ∈ R|A|, a vector is introduced whose compo-
nents are gi

(
vk
)

with i ∈ A. The matrix GA ∈ R|A|×n has
the rows ∇vgT

i (vk) for all i ∈ A. Finally, h denotes a vector
whose components are all hj (vk) and H is the matrix with
the columns ∇vhT

j (vk) (j = 0, . . .,q). The KKT condition for
a local solution of program (4) introduces the Lagrange mul-
tipliers λA ∈ R|A| for all the active constraints and µ ∈ Rq
for the equality constraints.

With these preliminary definitions for linearly independent
∇vg

T
i

(
vk
)

(i ∈ A) and ∇vhT
j (vk) (j = 0, . . .,q), the KKT

condition for QP (4) is Hk GT
A HT

GA 0 0
H 0 0

 1v

λA
µ

=
 −∇vf (vk)−gA

−h

 (6)

gi

(
vk
)
+∇vgi

(
vk
)T
1v < 0 (i 6∈ A)

λi ≥ 0 (i ∈ A) , λi = 0 (i 6∈ A)

The following algorithm uses approximations Al of A and
the KKT condition (6) to calculate a solution of program (4).
It uses iteratively calculated approximations of 1v with the
index l = 0,1,2, . . . that are

1vl :=

((
1al

)T
,1sl

)T

=

(
1al1, . . .,1a

l
n−1,1s

l
)T
.

Algorithm 2 (customized active-set method for QP)

(S0) For l = 0, calculate initial values 1v0, A0, λA0 and µ
by solving(

In HT

H 0

)(
1v∗

µ0

)
=

(
0
−h

)
(7)

1a0
=
(
1v∗1 , . . .,1v

∗

n−1
)T

1s0
= max
i=1,...,m

{
gi

(
vk
)
+∇vgi

(
vk
)T
1v∗

}
1v0
=

(
1a0,1s0

)T

A0 =

{
i|gi

(
vk
)
+∇vgi

(
vk
)T
1v0
= 0

}
λi � 1 (i ∈ A0),
λi = 0 (i 6∈ A0)

and

µ= µ0.

(S1) If
(
1vl,λAl ,µ

)
satisfies KKT condition (6), stop.

(S2) Calculate an update direction d by solving the linear
system Hk GT

Al
HT

GAl 0 0
H 0 0

 d

λAl
µ

 (8)

=

 −∇vf (vk)−Hk1v
l

0
0


(S3) If ‖d‖ = 0

(S3.1) If λi ≥ 0 for all i ∈ Al , stop with the solution(
1vl,λAl ,µ

)
from (8).

(S3.2) Otherwise create Al+1 from Al by removing the
index with the smallest λi < 0 value and set 1vl+1

=

1vl .
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(S4) If ‖d‖ 6= 0

(S4.1) If gi
(
vk
)
+∇vgi

(
vk
)T(1vl + d)≤

0 (i = 1, . . .,m), set 1vl+1
=1vl + d and Al+1 = Al .

(S4.2) Otherwise calculate

Ki :=
gi(vk)−∇vgi(vk)T1vl

∇vgi (vk)T d
(i = 1, . . .,m),

t =mini 6∈Al
{
Ki

∣∣∣∇vgi(vk)T1vl > 0
}

and set 1vl+1
=1vl + td,Al+1 = Al ∪ {j} .

(S5) Set l = l+ 1 and go to step (S1).

The initialization step (S0) is a specific customization of
the method that speeds up the calculations significantly. Both
vector 1a0 and 1s0 are derived from the solution 1v∗ of
the linear equation system (7). These values satisfy the con-
straints of QP (4). It is only applicable for the minimax fitting
models (1) and respectively for its transformation (2).

For large data sets, the degeneration of the linear equation
system (8) may occur. Then some of the active constraint
columns become linearly dependent and a unique solution of
the update direction d is not available. Through a heuristic
approach, the system matrix in Eq. (8) is extended by the
regularization term −ρ3

(
gAl

)
, which is a diagonal matrix

with the components of gAl weighted with 0< ρ� 1. The
equation system that is solved instead of Eq. (8) is as follows. Hk GT

Al
HT

GAl −ρ3
(
gAl

)
0

H 0 0

 d

λAl
µ

 (9)

=

 −∇vf (vk)−Hk1v
l

0
0


If in subsequent iterations of Algorithm 2 (8) is degener-
ated, the calculation is stopped and a non-optimal solution
for 1v =1vl is returned to the SQP method.

Furthermore, a maximum for the iteration index l should
be set to guarantee the finite termination of the method. If
the maximum index is reached, a non-optimal solution is also
returned to the SQP.

Note that a solution
(
1vl,λAl ,µ

)
from Algorithm 2 pro-

vides the Lagrange multipliers for the next SQP iteration
µk+1

= µ, λk+1
i = 0 (i 6∈ Al), and λk+1

i is the corresponding
value from λAl for all i ∈ Al .

4 Second-order sufficiency condition

The aim of applying a second-order sufficiency condition is
to verify that a solution of the SQP algorithms is a valid min-
imum of the fitting program (2). For this purpose, the follow-
ing theorem form (1) is utilized.

Figure 1. Nominal flange model and measured (extracted) features.

Theorem (second-order sufficiency condition)

Let (v,λ,µ) be a solution of (2) that satisfies KKT condition
(3). If

zT
∇vvL (v,λ,µ)z> 0 (10)

holds for all z ∈ Rn,z 6= 0 with

∇vgi(v)Tz= 0 for all i ∈ A with λi > 0

∇vgi(v)Tz ≤ 0 for all i ∈ A with λi = 0

and

∇vhj (v)Tz= 0 for all j = 1, . . .,q

then the solution is a strict minimum of the fitting application.

Computationally, condition (10) can be treated by a
quadratic program and by minimizing zT

∇vvL (v,λ,µ)z.
The application of Algorithm 2 is valid. In the implementa-
tion, the Hessian is approximated by central difference quo-
tients. The active set A and the Lagrange multipliers λ,µ
used in the theorem above are those from the last QP itera-
tion in Algorithm 1.

Condition (10) implies that the Hessian matrix
∇vvL (v,λ,µ) of the Lagrangian is positive definite on
the orthogonal complement of the affine subspace in Rn,
which is spanned by the gradients of active constraints with
positive Lagrange multiplier values and the gradients of the
equality constraints. Its application is necessary for special
data sets where active constraints have λi = 0 or where the
number of linearly independent active constraint gradients
and equality constraint gradients is less than n.

5 Test calculations

The performance of the software is evaluated for hole-pattern
fitting with multiple geometrical elements which are located
inside flange rings. This is a typical application for the in-
spection of workpieces by means of the geometrical product
specification (GPS) standard ISO 2692 (2007) using a CMM.

The position and size of the five clearance holes of the
flange in Fig. 1 are inspected by fitting a virtual counter-
part consisting of five pins with an ideal geometrical shape
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Figure 2. Extracted flange.

into the holes. The alignment of the virtual counterpart to the
holes is constrained by the datum elements A (Chebyshev
plane) and B (minimum-circumscribed cylinder). A CMM
measures points on the inner surface of all clearance holes
and on the surfaces A and B. The data are denoted as the
extracted workpiece and outlined in Fig. 2.

The extracted geometry of plane A is outlined by large
round dots. These give the measurement points P P1 , . . .,P

P
mp

.
Points PC1 , . . .,P

C
mC

are the extracted cylinder surface B
which is marked by rectangular dots in Fig. 2. Finally, the
small round dots outline the geometry measured in the holes.
These have the point sets P k1 , . . .,P

k
mk

, where k is a unique
index for each hole.

In the first calculation step, datum plane A is fitted to the
extracted flange. The fitting model is

min maxi=1,...,mP
∣∣fi (CP ,−→n )∣∣ (11)

subject to
∥∥−→n ∥∥= 1, (G−CP )T−→v = 0 ∀−→v ⊥−→n .

The amount of points for the plane is mP . The geometri-
cal parameters are the point CP on the plane and its normal
vector−→n ; fi(CP ,

−→
n ) is the orthogonal distance between the

point P Pi and the plane associated withCP ,
−→
n . Furthermore,

the geometrical parameters have two constraints. The length
of the normal vector must be one. The point on the plane is
defined as the orthogonal projection of the extracted plane
centroid G= 1/mP

(∑mP
i=1P

P
i

)
on the associated plane. In

the SQP method, it is implemented by constructing two non-
parallel vectors −→v 1,

−→
v 2 that are orthogonal to −→n and by

considering the equality constraints (G−CP )T−→v 1 = 0 and
(G−CP )T−→v 2 = 0.

In the second calculation step, the minimum-
circumscribed cylinder is fitted to the extracted outer
surface B. The axis direction of the associated cylinder is
constrained to be parallel to the plane normal vector that was
calculated before. Then the fitting model is

min maxi=1,...,mCfi(CC) (12)

subject to (CP −CC)T−→n = 0.

The geometrical parameters CC for the fit are the coordinates
of a point on the cylinder axis. Here, fi(CC) gives the or-

Figure 3. Associated Chebyshev plane (element with dashed edges)
and minimum-circumscribed cylinder (element with dash-dotted
edges) for the flange.

Figure 4. Hole-pattern fit of the flange. In the actual alignment, the
gauge overlaps with the extracted workpiece which is outlined by
the black dots intersecting with the circular gauge elements.

thogonal distance between the cylinder axis and the point PCi
on the extracted surface B. Furthermore, the position of the
cylinder axis is constrained to be an element of the associated
plane A.

Figure 3 shows an outline of the associated plane
and cylinder. The point CC and normal vector −→n are
used to specify a Cartesian workpiece coordinate system
(xW ,yW ,zW ). The direction of the z axis is defined by −→n .
All the Cartesian axes intersect in CC .

In the last calculation step, the hole-pattern fit of the clear-
ance holes is calculated. Figure 4 shows the fitting of the
gauge and the extracted geometry in parallel projection onto
the x–y plane of the workpiece coordinate system.

The virtual counterpart for the fit represents five cylin-
ders that are the solid circular elements in Fig. 4. Their axes
are parallel to the z axis of the Cartesian coordinate system
(xG,yG,zG), which is denoted as a gauge coordinate system.
This coordinate system is aligned with the workpiece coor-
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dinate system in the centre point CC and with zG parallel to
zW . At fitting, the whole gauge coordinate system and the
counterpart elements are rotated around the z axis by the an-
gle ϕ. If there is one position where all cylinder elements fit
into the extracted holes and no point overlaps with the inside
of the cylinders, the flange ring is within its tolerance for the
maximum permissible shape deviations. The minimax pro-
gram for the calculation of such an angle is

min max k=1,...5
i=1,...,mk

fki (ϕ) . (13)

Here k is an index that uniquely identifies each clearance hole
and its associated element of the counterpart. Number mk
gives the amount of measurement points for each hole. The
orthogonal distance fki (ϕ) between the outer surface of the
cylinder with the index k and the point P ki is positive if the
point is inside the cylinder (overlapping). Otherwise the dis-
tance has a negative value. All cylinder elements and hence
the virtual counterpart fit into the clearance holes at the same
time if

s :=max k=1,...5
i=1,...,mk

fki (ϕ)≤ 0 (14)

at a solution of program (13).
In order to investigate the precision of the customized

SQP method for the calculations (11), (12) and (13) of the
flange ring inspection, test data sets DS1, . . . , DS6 were
created by an inverse data generator. It relies on the state-
of-the-art methods in Anthony et al. (1993), Forbes and
Minh (2012) and Hutzschenreuter et al. (2015). Each data
set refers to a nominal flange with ten clearance holes of ra-
dius 5 mm, an outer ring radius of 120 mm and a height of
20 mm. A reference solution of the flange fit is input for the
data generator. It is given by the gauge coordinate system
CR, x

R
Gy

R
Gz

R
G and the maximum distance sR for the solution

of program (12). The generator then computes positions of
measurement points that give a test data set for which the
reference parameters represent the unambiguous global min-
imum of fitting. The points differ from the nominal shape of
the flange by a random uniform form deviation. All points
are equally distributed along rectangular surficial grids on
the nominal flange surface. It simulates the dense probing
from optical or likewise CT-sensor-based measurements. The
gauge coordinate system CR, x

R
Gy

R
Gz

R
G and sC from the cal-

culation with the SQP method is compared to the reference
coordinate system according to Fig. 5.

The deviations between both coordinate systems are cal-
culated by

ds :=

∣∣∣sR − sC∣∣∣
dC := ‖CR −CC‖

α :=

∥∥∥xRG× xCG∥∥∥
β :=

∥∥∥yRG× yCG∥∥∥

Figure 5. Principle of the comparison between reference and cal-
culated gauge coordinate systems.

Figure 6. Deviation of the calculated flange fit to the reference so-
lution.

γ :=

∥∥∥zRG× zCG.∥∥∥
Calculations for the six data sets were made with an absolute
convergence tolerance for the SQP steps of 1× 10−14. The
algorithm is implemented in C++ (full compiler optimiza-
tion, Microsoft Visual Studio, 2013), double precision float-
ing point number format (IEEE 754, 2008). Figure 6 presents
the deviations of the computed fit to the reference solution.

For all data sets, the SQP method converged to a solu-
tion of the flange ring fitting. The maximum distance devi-
ation ds and the gauge coordinate system position deviation
dC are between 1× 10−13 and 1× 10−15 mm, which corre-
sponds to the convergence tolerance. Similarly, the deviation
of all coordinate system axes is of the size 1× 10−16 rad.
This deviation is in the size of the relative machine preci-
sion of real number representation in floating point arith-
metic (IEEE 754, 2008). In conclusion, the SQP method was
able to calculate highly numerically precise solutions for the
flange ring fitting examples.

Details on each test data set and SQP method parameters
are summarized in the Appendices A and B. For all calcu-
lations the tolerance ε = 1× 10−14 was used to stop itera-
tions when the decent direction converges with ‖1v‖ ≤ ε.
The convergence of the QP method has to be tested with a
tolerance threshold smaller or equal to ε, or else the SQP
method may not converge to a solution. Additional bounds
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for the maximum of SQP iterations and QP iterations are
set to ensure the finite termination of the algorithm. For the
flange these are 100 SQP iterations. The number of QP it-
erations is, in comparison, set to a maximum of 10 for the
Chebyshev plane and hole-pattern fit as well as 20 for the
MC cylinder. If the QP method does not converge to a so-
lution within the given number of iterations, then the SQP
method continues with a non-optimal decent direction which
has no significant influence on the overall convergence of the
algorithm. The step-width control parameters are set to α = 1
for all fitting applications. It allows large decent steps which
violate boundary constraints. All violations are corrected by
the initial value selection of each subsequent QP method call.
This approach bypasses slow convergence properties like the
Maratos effect (Geiger and Kanzow, 2002). In addition, the
step scaling parameter was set to β ≥ 0.7 and the maximum
number of Armijo steps is 2, which forces large steps in each
SQP iteration.

Further verification of the customized SQP method was
made by using the public test for Chebyshev geometrical el-
ements of PTB (Hutzschenreuter et al., 2015). Calculations
were made for 50 different geometrical element data sets.
The elements covered by the test are a two-dimensional cir-
cle, two-dimensional straight line, plane sphere and cylinder.
In comparison to the previously used flange ring data sets the
Chebyshev test data sets also simulate the effect of system-
atic form deviations such as harmonic deviations and con-
vexity as well as full and partitial features. In these cases it
is more likely that an insufficient implementation of an fit-
ting algorithm will end up in an local minimum which is
not the required fitting solution. For all elements in the test,
the initial values for the Chebyshev fitting were calculated
by Gaussian fitting. Conveniently, the implementation of the
Gaussian fitting is possible with the SQP method. Only the
convergence speed towards a solution is very slow for this
non-minimax-type fitting. With these preliminaries the pub-
lic Chebyshev element test was passed for all 50 test data sets
with an maximum permissible error of 0.1 µm for position
and size parameters, 0.01 µm for form deviation and 0.1 µrad
for the orientation of the geometrical element parameters.

Finally, the following additional test calculations point out
the effect of outliers in the given measurement data sets and
the influence of different selections of initial values for the
SQP method.

Outliers denote perturbations in the measurement data of
the extracted geometry that can occur when dirt particles
such as dust stick to the workpiece surface at the measure-
ment. A reliable evaluation of the geometrical measurands
requires removal of these outlier points form the data before
applying Chebyshev and hole-pattern fitting as they have a
considerable influence on the solution of fitting program (1).
The situation is outlined for the flange data set DS1. Mea-
surement point P P1 of the datum plane is shifted step-wise by
setting P P1 = P

P
1 +a·

−→
n with a = 0, 0.1, 0.2, . . .,1. Thereby,

the normal n is the direction given by the reference plane fit

Figure 7. Deviation between the calculated flange fit and the ref-
erence solution for a simulated outlier point in the extracted plane
data set.

of the test data set. The resulting deviation between reference
flange fit and the fit with the SQP method is shown in Fig. 7.

The deviation of the fitting solution is strongly correlated
with the shift of P P1 . For a ≥ 0.3 mm the deviation of the
fitting parameter s of the hole-pattern fit becomes larger than
0.01 mm. In this case the solution of the SQP method changes
from the virtual gauge fitting into all holes to an overlapping.
The workpiece would be identified as out of its tolerance only
because of the presence of one outlier.

The choice of an initial solution v0 affects the calculation
time of the SQP method and whether the algorithm converges
to the global fitting minimum or to some inadequate local
solution. For the Chebyshev plane fit in program (11) it is
sufficient to select the gravity centre point of the given mea-
surement data as initial position. An initial normal can be
drawn from a list of candidate direction vectors as the nor-
mal direction that provides the smallest form deviation with
the initial centre point. Similarly the initial approximation for
the MC cylinder in program (12) can be the fitting result of
the Chebyshev plane. For the hole-pattern fit a more sophis-
ticated method is required to determine an initial rotation ϕ0

of the virtual gauge. An example is the Gaussian centre-point
fit presented in Hutzschenreuter et al. (2017). It provides fast
convergence for the flange fit examples. The effect of choos-
ing different initial values for the hole-pattern fit is shown in
Fig. 8.

The initial ankle ϕ0
=−0.034 rad is varied by setting

ϕ (d)= ϕ0
+ d π45 with d =−1+ i · 0.2 (i = 0, . . .,10). In the

upper half of the figure the asynchronous behaviour of the
calculation time can be seen. Here, t is the total calculation
time, tA is the time for assembling distance values and their
gradients, tQP is the time for solving the customized active
set method, tL1 is the time for the line search and tKKT
gives the time for checking the Karush–Kuhn–Tucker con-
dition for an optimal solution. The area for the best conver-
gence of the SQP method towards the global minimum is
observed for −0.2≤ d ≤ 0.6. For d =−0.6 and d = 0.8 the
amount of QP iterations increases significantly and results
in a calculation time about twice as long as for the previous
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Figure 8. Effect of a variation of the initial value for the flange hole-pattern fit on the calculated SQP solution and its performance with DS1.

cases. For d =−1, −0.8, −0.4 and d = 1 the SQP method
converges to different local solutions that give a wrong fit-
ting result. These calculations have up to 50 SQP iterations
and more than 350 QP iterations. Moreover, all calculations
show that the QP method has the greatest share of the total
calculation time. In the best case with d = 0, the SQP method
requires only four iterations to converge to the global mini-
mum with relative precision, as shown in Fig. 6. The amount
of QP iterations is 10. In the worst case – with a correct so-
lution – 28 SQP iterations and 214 QP iterations have been
counted at d = 0.8. Especially for data sets with uneven size
ratios such as long cylinder elements or partitial features, the
area for fast convergence of the SQP method becomes more
narrow than in the test examples DS1–DS6.

6 Parallelization

The efficiency of the calculation is improved by the partial
parallelization of the Algorithms 1 and 2. What is suitable
for parallelization is the computation of orthogonal distance
values and their gradients as well as expensive vector opera-
tions that frequently have to be made within the QP active-set
method. Due to the iterative structure of the SQP method and
the QP active-set method, the basic part of the algorithms re-
mains serial. Hence, it is expected that the speedup will not
be proportional to the amount of available threads for parallel
calculation (e.g. available CPU cores).

The times in Fig. 9 were measured for calculations of the
flange ring fit to data sets DS1, . . . , DS6 of the previous
section at a workstation with an Intel(R) W3550 CPU and
absolute convergence tolerance 1× 10−14. For all data sets,
the speedup for four threads is approximately between fac-
tor 3 and factor 4 compared to the serial computation with
1 thread. The fit for the small and medium-sized data sets
DS1, . . . , DS4 (up to 6 million points) is less than 1 s for four
thread calculations. The speedup decreases with an increas-
ing amount of threads.

Figure 9. Calculation times for flange ring fitting with different
amounts of parallel threads.

7 Conclusions

Minimax-type fitting applications in coordinate metrology
such as Chebyshev, minimum-circumscribed, maximum-
inscribed and hole-pattern fitting can be transformed into a
convenient general non-linear constrained form. For this for-
mulation of the applications, a very efficient solver was de-
veloped from a basic SQP method by means of simple mod-
ifications. For flange ring fitting test data sets, the software
was able to compute highly numerically precise solutions
with a relative deviation of 1× 10−14 of the numerical values
from the reference solutions. In addition, a verification with
TraCIM Chebyshev element test data sets was made.

The parallelization of the algorithms showed a significant
speedup of the calculation time even for a small amount of
parallel threads used. It allows the fitting with a huge amount
of data (13 million points in the test data sets) in less than
5 s on a four-core CPU that is increasingly becoming the
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standard even for office computers. Subsequently, the perfor-
mance capacity of modern multicore workstation CPUs (8,
16 and more cores) can almost fully be exploited for further
reduction of the calculation time.

In further metrological applications, the SQP method is
suitable for the simulation of numerical uncertainties of ge-
ometrical element and fitting calculation results by Monte
Carlo methods (JCGM, 2008). Moreover, due to its accu-
racy, it can be used for the validation of data sets from in-
dustrial test services – for example the TraCIM validation
service (PTB, 2015).

Finally, one aim is to provide the software to users of
CMM as part of the WinWerth evaluation software of-
fered by the multi-sensor CCM manufacturer Werth (Werth
Messtechnik GmbH, 2017). An implementation is provided
for different three-dimensional hole-pattern fitting applica-
tions such as the calculation for the flange ring. Further
details are given in the PTB hole-pattern fitting guideline
(Hutzschenreuter et al., 2017).

Data availability. The authors’ original test data are available at
PTBs public repository (Hutzschenreuter, 2017). It comprises sev-
eral ASCII formatted files for each test case in Sects. 5 and 6.
Supplemental plot data from Figs. 6 and 7 are also located within
this repository. The public Chebyshev test data sets are available at
PTB’s TraCIM service website (PTB, 2015).
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Appendix A: Test data set properties

The rotation angles Rx , Ry and Rz in Table A2 refer to a
rotation of the gauge (virtual counterpart of hole-pattern fit)
around the coordinate system axes. Each rotation is clock-
wise. First the gauge is rotated around the z axis. A rotation
around the y axis and finally around the x axis follow.

Table A1. Amount of measurement points per test data set.

Calculation DS1 DS2 DS3 DS4 DS5 DS6

MZ plane 70 104 140 642 281 460 563 620 1 128 094 2 257 450
MC cylinder 69 960 139 922 279 994 559 860 1 119 987 2 239 784
Hole pattern 259 840 519 470 1 038 280 2 079 990 4 158 260 8 316 880
Total 399 904 800 034 1 599 734 3 203 470 6 4063 41 12 814 114

Table A2. Reference solutions for hole-pattern fit of test data sets.

Parameter DS1 DS2 DS3 DS4 DS5 DS6

Cx [mm] +10.00
Cy [mm] −20.00
Cr [mm] +42.00
Rx [rad] 0.500 0.510 0.490 0.490 0.490 0.520
Ry [rad] −0.130 −0.120 −0.120 −0.120 −0.130 −0.140
Rz [rad] 0.034 0.044 0.044 0.044 0.024 0.024
s [mm] −0.012

Appendix B: SQP solver parameters

Table B1. SQP method parameters for test calculations.

SQP parameter MZ plane MC cylinder Hole-pattern fit

Max. iterations SQP 40 40 100
Max. iterations QP 10 20 10
Max. iterations L1 1 1 2
Tolerance SQP 1× 10−14 5× 10−14 1× 10−14

Tolerance QP 1× 10−14 1× 10−14 1× 10−14

Alpha 1 1 1
Beta 0.94 0.7 0.7
Gamma 0.9 0.9 0.9

Appendix C: Nomenclature

‖v‖ Euclidian norm of vector v
In Unit matrix of dimension n
∇v Gradient operator for variables v
(·)T Transposed vector or matrix
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