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Abstract. Granular and columnar nickel–carbon composites may exhibit large strain sensitivity, which makes
them an interesting sensor material. Based on experimental results and morphological characterization of the
material, we develop a model of the electron transport in the film and use it to explain its piezoresistive effect.
First we describe a model for the electron transport from particle to particle. The model is then applied in Monte
Carlo simulations of the resistance and strain properties of the disordered films that give a first explanation of
film properties. The simulations give insights into the origin of the transverse sensitivity and show the influence
of various parameters such as particle separation and geometric disorder. An important influence towards larger
strain sensitivity is local strain enhancement due to different elastic moduli of metal particles and carbon matrix.

1 Introduction

In our associated paper, part 1 (Schultes et al., 2018), exper-
imental results and film morphology of metal–carbon films
were presented. We continue by presenting a model and sim-
ulation results for nickel–carbon (Ni:a–C:H) thin films. The
properties of such films are discussed, especially the en-
hanced longitudinal and transverse gauge factors. The model
links film morphology, electron transport, and mechanical
strain. Results of numerical Monte Carlo simulations of the
gauge factors of the films are presented to show different pa-
rameter influences.

Nickel–carbon films offer high stability and large gauge
factors (k) with a tunable temperature coefficient of resis-
tivity (TCR). A gauge factor maximum was found for metal
concentrations of 55±5 at. %. The highest gauge factors were
about 30. Not only did the films have large gauge factors
when strained longitudinally to the resistance path but also
with transverse strain as well. The transverse sensitivity is
about 0.5 of the longitudinal one.

The morphology was analyzed by means of transmission
electron microscopy (TEM). The films consist of colum-
nar nickel particles encapsulated in several atomic layers of

graphite-like carbon. A schematic diagram of the columnar
structure is shown in Fig. 1.

To understand the strain sensing properties of the granu-
lar film, we first consider the charge-transport mechanism.
Due to the heterogeneous conductivity, i.e., highly conduc-
tive metal particles and relatively poorly conductive barriers
of carbon, electrons will tunnel between metal particles. The
nature of the piezoresistive effect in granular metals is the
following: strain affects electron tunneling distances, leading
to changes in conductivity and thus results in strain sensitiv-
ity (Huth, 2010).

This effect occurs in several composite materials with
local regions of different conductivity, e.g., in diamond-
like carbon (Tibrewala et al., 2007b; conductive regions
of sp2 bonds surrounded by insulating regions of sp3

bonds) and in metal-composite films, which exhibit enhanced
gauge factors when separated metal particles are embed-
ded in an insulating matrix material, i.e., granular metals
(Hill et al., 1982; Schwalb et al., 2010).

Although all of the materials mentioned above have been
investigated in terms of their strain sensitivity in the lon-
gitudinal direction, only in some cases has this been ex-
tended to the transverse sensitivity (Schubert et al., 1987;
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Figure 1. Simplified representation of a columnar nickel–carbon
film on a substrate.

Tibrewala et al., 2007a; Jiang et al., 2015). We present an
analysis for the longitudinal and transverse gauge factors for
columnar nickel–carbon films.

2 Modeling

We set out to find a model for the thin film that allows us
to explain the enhanced longitudinal and transverse gauge
factors and some parameters they depend on. First, mecha-
nisms of electron transport are investigated. Then, we pro-
pose a model for the geometric structure of the material.
For this, we represent the columnar geometry (Fig. 1) as
an essentially two-dimensional structure, i.e., an arrange-
ment of circles. Finally, electron transport and geometry
are combined to perform calculations regarding the electro-
mechanical properties of the material.

2.1 Conductivity in granular metal films

Literature on granular metals describes their electrical con-
ductivity for several domains depending on temperature and
electrical coupling (field strength) (Beloborodov et al., 2007;
Huth, 2010). For room temperature and above with rela-
tively low voltages (a voltage 1V between particles so that
e ·1V � kB · T ), conductivity is expected to follow a ther-
mally activated electron tunneling behavior of Arrhenius
form Huth (2010)

σ (T )= σ0 · e
−
1M
kBT , (1)

with the Mott gap 1M = f (s,EC) that depends on particle
separation s and Coulomb energy EC = e

2/(2 ·C) (funda-
mental charge e, capacitance C). The Coulomb energy is

d

s
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Figure 2. Resistor model from one particle to the next.

the charging energy required to remove an electron from one
metallic particle and transfer it to another. Spherical nanopar-
ticles of a few nanometers in size have a small capacitance
and an EC comparable to the thermal energy kBT at tem-
peratures of 300 K, thus it has to be considered. The large
columnar particles in the Ni:a–C:H films presented here have
a much greater capacitance, so the influence ofEC can be ne-
glected.

For a simplified approach at a given temperature, the
conductive mechanism can be described by the Arrhenius-
form tunneling conductivity (Canali et al., 1980; Jiang et al.,
2015). The relative change of resistance, 1R/R0, depends
on the change in particle separation, 1s, in the form of

1R

R0
= eβ·1s − 1, (2)

with the attenuation length β.
For a simple model approach, we consider a granular

metal–matrix system with a matrix material that has an
isotropic resistivity. The metallic intra-particle resistance is
lower than the matrix resistance by several orders of magni-
tude, as evidenced by the much higher resistivity of metal–
carbon samples compared to purely metallic thin films. Thus,
the conductance across the sample can be viewed as electron
transport from one metal particle to the next through an in-
terjacent area of carbon.

Percolated films with a large metal content will behave like
metallic films. They have gauge factors of k ≈ 2 due to the
geometric effect of strain. Our work focuses on the piezore-
sistive effect in the films, therefore the case of metallic films
is not covered in the model.

The effective conductance between two neighboring parti-
cles is the sum of the conductance through the matrix mate-
rial and the electron tunneling conductance between the par-
ticles. Both conductivities depend on the particle separation
distance s. The matrix material conductivity is linear in s, the
tunneling conductance is exponential in s.

In terms of an electrical resistance network, the tunneling
resistance Rt is in parallel with the matrix material resistance
Rm, with both of these in series with the resistance Rp of the
metal particle itself, as schematically shown in Fig. 2. These
combined resistances form the basic element of the resistance
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Figure 3. Hexagonal cluster networks in different orientations ϕ.

network, the particle-to-particle resistance

R =
Rt ·Rm

Rt+Rm
+Rp, (3)

which includes the linear matrix material resistance

Rm(s)= a · s, (4)

with the coefficient a of the linear matrix material resistance,
and the exponential tunneling resistance

Rt(s)= b · ec·s, (5)

with the pre-exponential coefficient b and the attenuation
length c of the tunneling resistance.

The particle resistance Rp is approximated by consider-
ing a path of metallic conduction through the diameter of
a columnar particle. With the two parallel mechanisms for
inter-particle resistance and a value for intra-particle resis-
tance, we can describe the effective resistance between two
particles with the resistance law

R(s)=
s · a · b · ec·s

a · s+ b · ec·s
+Rp. (6)

The resistance calculation accounts for the strain influ-
ence on the particle separation. Our model does not cover the
gauge factor of a significantly percolated film with its metal-
lic conduction – as the resistance will be constant in this case
and kL and kT will approach zero.

Finally, the gauge factor can be derived from the resistance
law R(s) of Eq. (6). Its general equation is

k(s)=
1R

Rε
=
1R

1s

s

R
. (7)

By considering the relation

1R

1s

∣∣∣∣
1s→0

=
dR
ds
=
a · b · ec·s

(
a · c · s2

+ b · ec·s
)

(a · s+ b · ec·s)2 , (8)

we find that

k(s)=
s · a · b · ec·s

(
a · c · s2

+ b · ec·s
)

(a · s+ b · ec·s)2
(
s·a·b·ec·s

a·s+b·ec·s
+Rp

) , (9)

which is the gauge factor of a single particle-to-particle el-
ement for small strain of a given separation distance s. The
resistance law (Eq. 6) and gauge factor (Eq. 9) are plotted vs.
s in Fig. 5.

2.2 Resistance network as a global model

To consider not only the electrical properties described previ-
ously but also the heterogeneous mechanical properties of the
metal–carbon composite material and the geometric disorder
of particles in the film, a global model built from a network
of particles will be derived. We assume that a large num-
ber of columnar metal particles with some given diameter
is arranged in a certain pattern (see Fig. 1). Each particle has
a fixed number of next neighbors and corresponding particle-
to-particle resistances. In full, this constitutes a large resistor
network in which each particle is a node. To calculate the
electrical material properties, the effective resistance through
this particle array is calculated.

Using the TEM images we can find a mean separating
distance s between columns and observe some slight devi-
ations from it. The columns themselves vary in diameter;
their number of next neighbors is typically 6± 1. For our
model, we choose a geometrically similar representation for
this structure: a hexagonal grid of circular columns whose di-
ameters follow a normal distribution around a certain mean
value. This leads to a system equivalent to the one observed,
where columns have six neighbors surrounding them, with
slightly varying separating distances. This structure is mod-
eled as a geometrically two-dimensional system.

The direction of the particle-to-next-neighbor paths does
not follow any particular order and is assumed to be equally
distributed for all directions for any sufficiently large area of
the thin film.

A regular hexagonal grid includes preferred directions for
electron transport, which might exist locally in the actual thin
film, but are not found on a large scale. To account for this,
we introduce the angle ϕ by which the grid can be rotated
(see Fig. 3). For the simulation, we solve the system for var-
ious angles in the interval ϕ ∈ [0,30◦] to numerically inte-
grate the resistances and gauge factors over all possible ori-
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(b)(a)

Figure 4. TEM image and model representation of the disordered film. (a) Top-view TEM image, (b) geometric model with four subsections
of different random orientation (in each quarter of the image) and normally distributed diameters.
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Figure 5. Analytical results for a single particle-to-particle junc-
tion. (a) Total resistance R and its individual components: exponen-
tial tunneling resistance Rt, linear matrix material resistance Rm,
and the small and constant metal particle resistance Rp. (b) Result-
ing longitudinal gauge factor kL.

entations. This model corresponds to a thin film made up of
local areas of different orientations as shown in Fig. 4.

The circular column model is an approximation of the real
material. If the model geometry is chosen with particle sepa-
ration distances equal to the actual material, larger void areas
appear compared to the slightly irregularly-formed columns
of the real sample. This does not affect the simulation results
as far as gauge factors are concerned, but introduces an off-
set of the metal content: for the same separation distances,
the model film will have a lower metal content than the real
material.

When a strain is applied to the network, a softer matrix ma-
terial will result in locally enhanced strain (Grimaldi et al.,
2001). To account for this effect, the calculation of local
strain considers the elastic moduli Ep and Em of the metal
particles and the matrix material, respectively.

3 Numerical simulation

We now have a model that contains a representation of
the film’s geometrical structure, its mechanical response to
strain, and the particle-to-particle electrical conduction. It
allows us to find results for the longitudinal and transverse
gauge factor for columnar metal-in-insulator films for differ-
ent particle diameters and separation distances.

The numerical model is set up according to the following
steps:

1. Randomly generate normal (or log-normal) distribution
of column diameters di for a given mean diameter dmean
and a standard deviation (SD) of σd .

2. Generate coordinates xi and yi (i = 1. . .n) for a given
number of columnar particles n on a hexagonal grid
so that a desired volume fraction f = Vparticles/Vtotal is
achieved in a volume ax · ay · az.

3. For each column, find the six nearest columns.

4. Add virtual nodes that represent the electrodes at x = 0
and x = ax (both extending from y = 0 to y = ay ; see
Fig. 3).

5. Resistance evaluation. Perform the following calcula-
tions for (i) an unstrained system and (ii) all strained
systems of interest, e.g. longitudinal strain εL and trans-
verse strain εT:

a. Calculate the inter-particle resistance Rij (j =
1. . .m) between each particle i and its six nearest
neighbors according to formula (3).

b. Build a system of linear equations for this resistor
network.

c. Calculate the total resistivity using the Gauss–
Jordan algorithm.

d. Repeat for different strains.
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6. Calculate gauge factors kL and kT using the resistances
and strain.

By simply modifying the coordinate-generating algorithm
in step 1, different models for the particle distribution (two-
or three-dimensional) can be implemented. All other steps
can be carried out unchanged.

The numerical calculation is implemented in Python 2.7
using the Spyder development environment, the SciPy library
and the Parallel Python package. With a large number of
columns, the n×nGauss–Jordan matrix to be solved is rather
large; so for performance reasons, it is advisable to make use
of sparse matrices.

In order to evaluate the resistance and gauge factor of the
randomly distributed metal particles, the steps laid out above
are repeated nr times. Different node coordinates and diam-
eters are randomly generated each time using an appropri-
ate pseudo-random number generator, the Mersenne Twister
(Matsumoto and Nishimura, 1998; as built into Python 2.7).
This approach of repeated random numerical experiments
constitutes a Monte Carlo simulation.

The gauge factor values found in these random experi-
ments have a rather large variance. The idea of the Monte
Carlo simulation is that this uncertainty can be reduced by
many repetitions and subsequent averaging of the value.
Thus, we can simply take the mean value of each of the gauge
factors kL,j and kT,j (j = 1. . .nr). After that, the careful anal-
ysis of the error of this mean – the so-called Monte Carlo
error – is crucial. For this, we follow a suggestion given by
Koehler et al. (2009) and utilize a bootstrapping algorithm
which, in short, samples the set of kL and kT values many
times, calculates the mean of each sample, and compares
these mean values. Using this procedure, a reliable uncer-
tainty estimate (for a given confidence interval, e.g. 95 %) of
the simulation result is found.

3.1 Choice of simulation parameters

Several model parameters for the simulations are chosen
based on physical reasoning; remaining parameters that are
unknown or uncertain are found by parameter fitting.

3.1.1 Geometric parameters

The mean diameter d of the columns can be extracted from
TEM images and is set to 15 nm. In the first simulations, the
diameter is kept constant for all values of metal content. Later
a diameter increasing with metal content is considered.

3.1.2 Conduction parameters

For the electrical parameters, the particle resistance is found
by assuming that on average, electrons travel through the di-
ameter of the column and traverse a small part of the column
vertically before the next inter-column transport occurs. With
a path length of l = 30nm, we find Rp = ρ ·l/A= ρ ·l

4
πD2 =

10� with ρ = 6.2× 10−8�cm for nickel. The linear resis-
tance coefficient of the matrix material, a = 1×103�nm−1,
is chosen based on the approximate resistivity in the c direc-
tion of graphitic layers of 1× 10−3�cm (Matsubara et al.,
1990).

For the tunneling mechanism, the exponential coefficient
c is related to the tunneling decay length ξ by c = 2/ξ and
expected to be in the range of 2 to 20 nm−1 depending on the
metal’s work function and the electron affinity of the matrix
material (Grimaldi, 2014).

Parameters b and c (within the range given before) are
used as fit parameters for the simulation of the longitudinal
gauge factor kL. An additional parameter that primarily af-
fects the ratio kT/kL is the deviation of the particle diameter,
σd , which in our model determines the disorder in the particle
separation distances.

3.1.3 Elastic moduli and strain

The strain applied to the thin film is a global value. Locally,
on the scale of the metal columns and separation walls, we
expect the strain to be inhomogeneous because of their differ-
ent elastic moduli. In literature, there is a common value for
bulk nickel: ENi = 200GPa (Smithells, 2013). For carbon-
based thin films, a wide range of values is possible (Het-
zner, 2014). Our deposition conditions at moderate temper-
atures do not favor sp3 hybridization and from the structural
analysis shown above we know that the carbon in our film
is layered in a graphite-like structure. Due to the sputtering
conditions, the carbon layers likely contain some hydrogen.
Therefore, a typical elastic modulus for sp2-rich amorphous
carbon containing hydrogen is used: Ea-C:H = 80GPa (Het-
zner, 2014). The resulting parameter that is relevant for the
simulation is the ratioEm/ENi = 0.4. Since the precise value
is unknown, the simulations will include some investigation
of this parameter’s effect.

For the calculation, the film is subjected to uniaxial strain.
This is equivalent to straining the film by bending a sample
onto a constant radius as described in part 1 (Schultes et al.,
2018). In this case, off-axis strain is negligible and the pois-
son ratios of substrate or film do not need to be considered.

The globally applied strain used for calculations is typ-
ically ε = 0.002, larger than in most experiments, but not
affecting the simulation results significantly. This increased
strain reduces numerical errors.

The strained system for our calculations is then derived
by changing the individual separation distances sij depend-
ing on the ratio of elastic moduli Em/ENi and the column
diameters di and dj .

3.1.4 Numerical parameters and evaluation

After comparing results with an increasing number of parti-
cles (n) in the simulation, n= 1× 104 is set, which is a suf-
ficient value to eliminate finite-size effects.
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The number of repetitions nr is dynamically adjusted dur-
ing each calculation until the relative error is below a given
limit. Typically, we set the maximum error to 1 %, which re-
quired nr in the range of 100. This error is sufficiently small;
so to reduce visual clutter, the following plots do not show
error bars.

4 Simulation results and discussion

Simulations are carried out as described earlier. As expected,
the total resistance of particle networks is increased when the
system is subjected to a longitudinal strain εL > 0 because all
inter-particle resistances whose paths have a component in
the x direction are increased. With a transverse strain εT >

0, total resistance increases by a smaller amount. For each
network, initial resistance and strained resistances are used
to calculate the gauge factors, which are then averaged over
several randomly generated networks.

First, we demonstrate the resistance law and its character-
istics by plotting gauge factors vs. mean particle separation
for different distributions; then the effect of elastic moduli of
the materials and the influence of particle diameters will be
shown in simulation results of gauge factors vs. metal con-
tent.

4.1 Resistance law

Strain changes separation distances between particles and
thus affects resistances between particles. From the resis-
tance law R(s) given in Eq. (6) we found the corresponding
gauge factor k(s), Eq. (9).

4.1.1 Analytical functions for resistance and longitudinal
gauge factor

In Fig. 5, these analytical functions are plotted. In the top
panel, the individual contributions, tunnel resistance Rt, ma-
trix material resistance Rm, metal particle resistance Rp, and
the resulting total resistance R as described in Eq. (6) are
shown. The bottom panel displays the gauge factor.

Looking at the gauge factor dependence on the mean par-
ticle separation s we can see that the region of elevated kL
is quite narrow, whereas for smaller and larger s the gauge
factor is small:

– With small s < 1.8nm, the exponential resistance Rt(s)
is very small so that the linear matrix material resistance
Rm that is parallel to it does not have any effect. The
total resistance R, however, is governed by the larger,
constant particle resistance Rp that is in series to the
other two and no elevated gauge factor is found.

– Only in the medium region around 2.3 nm is Rt small
enough to be predominant over Rm and yet larger than
Rp so that an enhanced gauge factor results.
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Figure 6. Longitudinal and transverse gauge factors as a function
of mean particle separation, shown for different standard deviations
(SD) of σ . With increasing deviation, the maximum of kL is reduced
to smaller values and shifted to higher mean separation values, the
relative transverse sensitivity increases and the curves widen.

– Large s > 3nm are in the region in which Rt is compar-
atively large due to the large separation distance. The
linear Rm that is parallel to Rt dominates the behavior
and its lower gauge factor prevails.

4.1.2 Numerical results and transverse sensitivity

In addition to the analytical function, the simulation allows
us to analyze the transverse gauge factor kT as well. We will
use the simulations to investigate the effect of disorder in par-
ticle distance s by a given SD σd of column diameter d.

– The σd = 0 plot of Fig. 6 corresponds to the analyti-
cal resistance law itself since there is no random dis-
tribution of separation distances; the difference in max-
imum gauge factor is due to strain enhancement (see
Fig. 9), which is a mechanical effect that is not con-
sidered within the analytical resistance function. In the
simulation, the maximum gauge factors are kL = 36 and
kT = 12. The curves have a relatively sharp maximum
of kL and kT at 2.3 nm. The transverse sensitivity is
about 0.33 for most values of s, except for the region of
s < 1.7nm, where the gauge factors are much smaller
than 1.

– In the σd = 0.5nm plot a small SD of diameter and sep-
aration distance is introduced. As a result, the maximum
of kL is reduced to 20 and shifted to slightly larger s.
The maximum of kT is almost the same as in the first
plot, so the SD results in a larger transverse sensitivity
ratio of up to kT/kL = 0.55.

– The σd = 1nm plot with its even larger SD further re-
duces the maximum gauge factor to kL = 13 and shifts
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Figure 7. Directions of local current flow in a hexagonal particle
arrangement. For a global current in the x direction, particle-to-
particle currents have an x and y component, leading to transverse
sensitivity.
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the curves to larger s. The transverse sensitivity reaches
a maximum of 0.63.

The changes in the k(s) curve shape occur because – as
can be seen in the resistance law – there is an optimum dis-
tance s. For the σd = 0 plot and the right value of metal
content, this optimum s and thus the maximum possible kL
are achieved. In the films with a certain geometrical disor-
der, there is no fixed s, but a normal distribution of s val-
ues. All individual smaller and larger s will contribute to
a reduction of kL, therefore, for a larger σd , the maximum
kL becomes smaller. While the maximum is reduced, the re-
gion of increased gauge factors is widened with growing σd .
The reason can be seen when we consider the data points at
s = 3nm with σd = 0 and all distances s in the film are far
from the optimum of the resistance law and the gauge factor
is only 2. With σd = 1nm, the mean value of s is the same;
however, due to the underlying distribution, half of the dis-
tances are larger and half are smaller than that. All smaller
distances in the distribution correspond to inter-particle links
with a higher gauge factor so that the gauge factor is effec-

εglobal=0

εlocal=2.5

εglobal=0.1

Figure 9. Mechanical strain enhancement for incompressible metal
particles, i.e., Em/Ep = 0 (exaggerated example).

tively increased compared to the perfectly ordered film for
this value of s.

The results show that even for a hexagonal grid without
any disorder in diameter (σd = 0), a transverse sensitivity of
kT/kL ≈ 0.33 occurs. This is due to the fact that in our im-
plementation (as in the actual thin film) the system has no
preferred directions in its particle-to-particle paths and usu-
ally no straight paths all the way through the film in the x di-
rection. Conduction paths naturally follow various detours
in the y direction, as can be seen in Fig. 7. When the film is
strained transverse to the current direction, these components
of the conduction paths result in a resistance change, which
we describe as the transverse gauge factor kT.

With a growing disorder due to varying diameters, the
transverse sensitivity is enhanced, because detours within the
possible conduction paths are becoming increasingly favor-
able. Since straight paths are more and more likely to contain
some increased separating distances, detours along shorter
separating distances become more viable.

It becomes apparent that a transverse sensitivity ratio of
kT/kL = 1/3 is the lower limit for a film of two-dimensional
hexagonal (and possibly for non-ordered) packing. All disor-
der in particle distances further increases the transverse sen-
sitivity. At the same time, disorder widens the comparably
sharp peaks: with disorder, a larger range of metal content
has an increased kL, albeit with a smaller maximum value.

4.2 Influence of elastic moduli

The influence of elastic moduli of matrix (Em) and metal par-
ticles (Ep) is shown in Fig. 8. Changes in elastic moduli do
not shift the curves with increasing metal content χ – the
maximum remains in the presented case at 0.64. With an in-
creasing elastic modulus of the matrix material, gauge factors
are suppressed equally so that the transverse sensitivity ratio
kT/kL remains constant. The maximum possible gauge fac-
tors are strongly affected: max(kL) is reduced from 94 to 12
when comparing Em/Ep = 0 to Em/Ep = 1.

The underlying effect is a mechanical and geometrical
one: for Em/Ep = 0, all deformation has to be absorbed by
the matrix sections between particles, while the metal parti-
cles themselves are not strained at all; this leads to a local
strain enhancement to values well above the globally applied
strain, as schematically shown in Fig. 9. With equal moduli,
Em/Ep = 1, strain is homogeneous: the strain between par-

www.j-sens-sens-syst.net/7/69/2018/ J. Sens. Sens. Syst., 7, 69–78, 2018



76 S. Schwebke et al.: Granular metal–carbon nanocomposites as piezoresistive sensor films – Part 2

0

10

20

k
kL
kT

0.3 0.4 0.5 0.6 0.7 0.8
Metal content χ (atomic fraction)

0.0

0.5

1.0

k T/k
L

Constant diameter

(a)

0

10

20

k

kL
kT

0.3 0.4 0.5 0.6 0.7 0.8
Metal content χ (atomic fraction)

0.0

0.5

1.0

k T/k
L

Increasing diameter

(b)

Figure 10. Gauge factors kL and kT over metal fraction for (a) constant and (b) increasing column diameter. With increasing diameters, the
area of elevated gauge factors stretches across a wider range of metal content.

ticles is equal to the global strain (no strain enhancement).
Depending on the material combination, withEm/Ep > 1 the
opposite effect, i.e., a local strain reduction, could occur as
well and further reduce the possible gauge factors.

4.3 Column diameter influence

The column diameter of about 15 nm described before was
found for one particular nickel–carbon film. For the samples
with lower or higher metal content, the column diameter is
unknown. Because of the uncertainties in the precise struc-
ture and geometry of the films, we present some typical sim-
ulation results for different assumptions regarding the depen-
dence of particle size on metal content. They can be evalu-
ated quantitatively regarding the longitudinal and transverse
gauge factors, but only qualitatively in their dependence on
particle separation, diameter, and metal content.

4.3.1 Example 1: constant diameter

If we assume a constant column diameter for all values
of metal content χ , the separating distance s is reduced
with growing metal content and we find the characteristic
k(χ ) curve shown in Fig. 10a. With b = 1× 10−9�, c =
11nm−1, and Em/Ep = 80 GPa/200 GPa= 0.4, the simula-
tion exhibits characteristics evidenced by experiments: with
growing metal content, kL shows a rapid increase around
50 at. % metal, a maximum in the [50–60] at. % interval and
a slightly slower decrease until about 75 at. %. The trans-
verse sensitivity is highest when kL reaches its maximum.
The experimental value of kT/kL ≈ 0.5 is reproduced with
σd = σs = 0.35nm.

4.3.2 Example 2: diameter increasing with metal content

Results by El Mel et al. (2012) and Zohar-Hauber (2012)
indicate that the size of metal particles in sputter-deposited

nickel–carbon films depends on the metal content nonlin-
early. With higher metal content, larger particles grow. Based
on our results, we assume that the particle size for the rele-
vant metal fractions of about 50 to 70 at. % varies between 10
and 20 nm. With these given points, we use an exponential
function as a simple model for the variable column diameter:

d(χ )= c1 · e
c2·χ , c1 = 1.76nm, c2 = 3.47. (10)

In Fig. 10b, the simulation parameters are identical, but
the diameter changes with metal content. The assumption of
varying diameter is based on results from literature. In re-
sults, the k(χ ) curve has a less sharp peak and is stretched
along a wider range of χ values. The underlying k(s) resis-
tance law is still the same but due to the change in diameter
d(x), the change of s with metal content χ is modified; for
a small metal fraction, the diameter is small; for an increas-
ing metal fraction, diameters increase as well. This results
in a slower change of particle separation s, so favorable val-
ues of s – and consequently increased gauge factors – stretch
across a wider range of metal fractions.

Compared to the constant-diameter example, this result
better reflects our experiments (Schultes et al., 2018; Fig. 6)
because a gauge factor maximum is found at about 60 at. %
metal. At higher metal content, the gauge factor drops rela-
tively quickly; towards lower metal content, the decrease is
slower. The simulation shows a transverse sensitivity ratio
kT/kL that still has a maximum of 0.5 at the maximum gauge
factor kL and is lower for lower gauge factors, but its peak is
stretched as well.

Still, the gauge factors obtained experimentally for low
metal content (χ < 0.4) are not reproduced by the model.
This is likely due to the gauge factor of the carbon matrix
itself (without metal), which is not represented in our model.
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5 Conclusions and outlook

An experimentally found characteristic of our nickel–carbon
films is a gauge factor maximum vs. metal content with a rel-
atively wide range of elevated gauge factors. At the same
time, a substantial transverse sensitivity ratio in the range
of 0.5 is seen. These general properties are reproduced by
simulations of the strain sensitivity for a relative SD of tun-
neling distances of about 10 %.

The base value of the transverse sensitivity ratio for a film
in a two-dimensional, perfectly hexagonal particle arrange-
ment is kT/kL = 1/3. Any disorder in particle separation dis-
tances increases this ratio. Different arrangements, such as
a rectangular grid of particles could reduce transverse sen-
sitivity, but seem experimentally unlikely for our sputtering
process. Our films exhibit unordered close packing with sep-
aration walls of similar thickness between metal columns and
no preferred directions.

The model highlights the possible gauge factor enhance-
ment caused by mechanical properties of the matrix material:
with a relatively low elastic modulus of matrix vs. metal par-
ticles, significant local strain enhancement will occur. This
amplified change in separation distance will result in a larger
gauge factor kL, while kT will grow proportionally and the
transverse sensitivity ratio remains the same.

As has been found experimentally before, the model shows
that the particle separation distances should be carefully
tuned by choice of metal content to achieve the optimum
of possible gauge factors. The simulated kL(x) curve is in
qualitative agreement with experiments, however, quantita-
tive comparison is difficult because the detailed structure
(column diameters, separation distances, and their distribu-
tions) requires extensive characterization to determine. An
extremely detailed sample characterization for a series of
samples would be required, because changes in a single sput-
tering parameter, i.e., ethylene gas flow, will alter a number
of film parameters. For a more detailed model evaluation, this
highlights the need to perform further experiments including
not only gauge factor measurements of films with different
metal content but also a comprehensive structural and geo-
metrical analysis of the same films.
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