
J. Sens. Sens. Syst., 8, 133–147, 2019
https://doi.org/10.5194/jsss-8-133-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

  

Multi-parameter sensing using thickness shear
mode (TSM) resonators – a feasibility analysis

Manfred Weihnacht
innoXacs, Dippoldiswalde, Germany

Correspondence: Manfred Weihnacht (innoxacs@online.de)

Received: 22 January 2019 – Revised: 7 March 2019 – Accepted: 8 March 2019 – Published: 3 April 2019

Abstract. Multi-parameter sensing is examined for thickness shear mode (TSM) resonators that are in mechan-
ical contact with thin films and half-spaces on both sides. An expression for the frequency-dependent electrical
admittance of such a system is derived which delivers insight into the set of material and geometry parameters
accessible by measurement. Further analysis addresses to the problem of accuracy of extracted parameters at a
given uncertainty of experiment. Crucial quantities are the sensitivities of measurement quantities with respect
to the searched parameters determined as the first derivatives by using tentative material and geometry param-
eters. These sensitivities form a Jacobian matrix which is used for the exemplary study of a system consisting
of a TSM resonator of AT-cut quartz coated by a copper layer and a glycerol half-space on top. Resonant and
anti-resonant frequencies and bandwidths up to the 16th overtone are evaluated in order to extract the full set
of six material–geometry parameters of this system as accurately as possible. One further outcome is that the
number of employed measurement values can be extremely reduced when making use of the knowledge of the
Jacobian matrix calculated before.

1 Introduction

For many years thickness shear mode (TSM) resonators such
as the quartz crystal microbalance (QCM) measuring sys-
tems are in use for direct recording of mechanically varying
situations on a small geometric scale. The essential part of
such devices is a piezoelectric plate with electrodes on both
sides, enabling the excitation of thickness shear mode vibra-
tions by applying an alternating current (a.c.) voltage. The
configuration implies the occurrence of resonant behavior,
i.e., a small frequency range with strongly increased oscilla-
tion amplitude at a given applied voltage amplitude. The peak
frequency (resonant frequency) is shifted under the influence
of changed boundary conditions at the plate surface, such as
the case at the deposition of a thin layer or at an impact of an
adjacent fluidic (gaseous and liquid) medium on one or both
plate surfaces. Just these plausible exemplary situations have
been crucial for the first relevant publications on this matter
by Sauerbrey (1959) and King Jr. (1964).

The considered configuration of a TSM resonator also in-
cludes the appearance of higher harmonics. Thus, the exam-
ination of different harmonic resonant frequencies can en-

large the sensing issues of the device (Johannsmann, 2001;
Q-Sense E4 Operator Manual, 2010). To an increasing de-
gree, biological configurations are also explored (Li et al.,
2005; Eisele et al., 2012; Schönwälder et al., 2014) which are
lossy as a rule. For a long time, the widths of resonance peaks
have also been used for the mechanical evaluation of a lossy
material system under study (Rodahl and Kasemo, 1996; Jo-
hannsmann et al., 2009; Oberfrank et al., 2016). A common
parameter to describe that bandwidth is the so-called full
width at half-maximum (FWHM), given as the difference of
frequencies belonging to one-half of the squared maximum
of admittance amplitude. Due to the existence of so-called
anti-resonant frequencies for piezoelectric plates, i.e., the fre-
quency of minimum admittance amplitude, the bandwidths
are influenced not only by the mechanical properties but also
by the piezoelectric strength of a TSM plate. We define the
FWHM of anti-resonance as the difference of frequencies be-
longing to one-half of the squared maximum of impedance
amplitude.

Obviously, a considerable number of measuring data can
be taken from TSM resonator experiments which are worth
being examined as a function of mechanical properties of the
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134 M. Weihnacht: Multi-parameter sensing using TSM resonators

surroundings of a TSM plate. The approach to monitor more
than one changing material parameter has been made by sev-
eral authors (see, for example, Martin et al., 1991; Lucklum
et al., 1999; Johannsmann, 2008), but the aim of this work is
to treat the problem in a more general manner.

We extend the procedure of sensing properties to many
parameters and search for suitable combinations of experi-
ments in order to achieve accurate results as much as pos-
sible. The ability for the design of an optimal experimen-
tal strategy is the final goal of our study. The theoretical
treatment of that problem is based on non-approximated re-
lations between the experimental quantities, i.e., admittance
and impedance vs. frequency, and the material parameters
(Weihnacht et al., 2007; Bruenig et al., 2008). With this, the
popular way of performing that process in terms of equiva-
lent circuits, as introduced by Butterworth (1915) and Van
Dyke (1926) for the first time, will be avoided. Having the
mentioned relations, all derivatives of significant frequencies
(resonant, anti-resonant frequencies, and FWHM frequen-
cies) with respect to the searched material parameters can be
calculated. This will be done on the basis of a set of material
parameters assumed to be reasonable. The mentioned deriva-
tives have the character of sensitivities and form a Jacobian
matrix.

The determination of uncertainties of extractable parame-
ters from TSM resonator measurements are found in the lit-
erature only in exceptional cases (Lucklum et al., 1998). A
thorough treatment of that problem for the complex situation
of multi-parameter sensing is the content of the final part of
this study. It will be carried out in a quite similar manner by
using Jacobian matrices as was calculated for surface acous-
tic waves (SAW) in literature (Kovacs et al., 1988; Weihnacht
et al., 2017).

The general aim of the present study is consistent with
accentuation formulated in current literature (see, for exam-
ple, Rupitsch, 2019): “simulation-based material characteri-
zation” is “of great interest to science and industry”.

2 Electromechanical behavior of TSM resonators

In view of the complexity of the addressed task, we start
with the electromechanical basics of TSM resonators. The
configuration of the material system under study is shown in
Fig. 1. It consists of a piezoelectric single crystal plate, such
as quartz, with electrodes, stacks of layers, and half-spaces
on the bottom and on top. According to the TSM concept it
is one-dimensional in the direction normal to the interfaces.
The application of an a.c. voltage at the electrodes creates
frequency-dependent oscillations in the system.

2.1 Christoffel equation for bulk acoustic wave (BAW)
propagation in piezoelectric media

The sensing behavior of TSM resonators is based on the cor-
rect mathematical description of the dynamic behavior of the

Figure 1. One-dimensional material configuration consisting of a
piezoelectric plate, such as quartz, with electrodes, stacks of layers,
and half-spaces on both sides.

material system of Fig. 1. The one-dimensionality results in
a treatment which comprises the propagation of bulk acous-
tic waves (BAWs) in the direction normal to the surfaces for
each part of the material system and the fulfillment of bound-
ary conditions at all interfaces and surfaces. The electrome-
chanical material properties of quartz plate, layers, and of
fluidic half-space result in specific BAW parameters in each
case. BAW parameters are the phase velocity which can have
an imaginary part in lossy materials, besides the particle dis-
placements and the electric potential of wave.

For simplicity we assume isotropic symmetry for the lay-
ers and for the half-spaces. We use one more simplification:
due to the coverage of quartz plate by electrodes on both
sides, the electric potential is constant outside the plate. So
we focus the discussion on the more complicated BAW be-
havior in the quartz plate for now. According to the point
group symmetry 32, quartz has six independent elastic stiff-
ness constants (cijkl), two piezoelectric coefficients (eikl),
and two dielectric constants (εij ). All these parameters are
contained in the following equations which determine the
electromechanical behavior of a piezoelectric plate in elec-
trostatic approximation. ρ denotes the mass density, ui the
particle displacement in the i direction, xi the spatial coor-
dinate of a rectangular system, Tij the stress tensor, Skl the
strain tensor, Di the electric displacement, and Ek the elec-
tric field. We make use of Einstein’s summation convention
in all the following expressions.

Equation of motion:

ρ
∂2ui

∂t2
=
∂Tij
∂xj

. (1)

Absence of charges:

∂Di

∂xi
= 0. (2)

J. Sens. Sens. Syst., 8, 133–147, 2019 www.j-sens-sens-syst.net/8/133/2019/



M. Weihnacht: Multi-parameter sensing using TSM resonators 135

Figure 2. Two preferential orientations of quartz crystals for TSM
applications: AT and SC cuts represent directions with small first-
and second-order temperature coefficients of frequency constant
(TCF). Besides this, the SC cut is stress-insensitive. The initial (x,
y, and z) axes form the physical coordinate system, used here for
subsequent rotations about z axis and thereby changed y axis. The
x axis after both rotations denotes the BAW propagation direction
normal for the plate surfaces.

Constitutive equations:

Tij = cijklSkl − ekijEk, (3)
Di = eiklSkl + εijε0Ej , (4)

Skl =
1
2

(
∂uk

∂xl
+
∂ul

∂xk

)
. (5)

Because of the one-dimensionality, only the dependence on
the coordinate x1 exists. Therefore, from now on, the index of
x1 will be omitted. Thus, Eqs. (1), (2), and (5) can be reduced
to

ρ
∂2ui

∂t2
=
∂Ti1
∂x

, (1a)

∂D1

∂x
= 0, (2a)

Skl =
1
2

(
∂uk

∂x
+
∂ul

∂x

)
. (5a)

If the x axis as the BAW propagation direction (see Fig. 1) is
varied by rotations (αβ) as defined in Fig. 2, then all material
parameters will be transformed using a matrix Aij :

Aij =

 cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ

 cosα sinα 0
−sinα cosα 0

0 0 1

 . (6)

For example, the stiffness tensor turns from cijkl to cmnop by

cmnop = AmiAnjAokAplcijkl . (7)

Now, the details of the BAW propagation in the rotated x di-
rection are considered. Using a plane wave propagating in

x direction with particle displacements ui and phase velocity
v at an angular frequency ω of the form

ui ∝ e
jω(t−x/v), (8)

and combining the equation of motion, charge-free condition
and the piezoelectric constitutive equations (Eqs. 1a, 2a, and
5a), results in the so-called Christoffel equation:

c11+
e11

2

ε11ε0
c16+

e11e16

ε11ε0
c15+

e11e15

ε11ε0

c16+
e11e16

ε11ε0
c66+

e16
2

ε11ε0
c56+

e15e16

ε11ε0

c15+
e11e15

ε11ε0
c56+

e15e16

ε11ε0
c55+

e15
2

ε11ε0


 u1
u2
u3



= ρv2

 u1
u2
u3

 . (9)

As a common procedure the tensor notation of elastic and
piezoelectric constants has been changed in Eq. (9) into ma-
trix (Voigt’s) notation with the following replacements of
indices: 11→ 1, 22→ 2, 33→ 3, 12 and 21→ 6, 13 and
31→ 5, and 23 and 32→ 4. The Christoffel Eq. (9) repre-
sents an eigenvalue problem, the solutions of which being
the three BAW velocities v and belonging eigenvectors with
the components u1, u2, and u3 for the particle displacements.

Equation (9) will be simplified for certain crystal orienta-
tions, e.g., in our case of the 32 point group symmetry, for
so-called singly rotated orientations (α = 90◦; “singly” be-
cause of rotation only about the physical x axis), and one
obtains the following:
c11 0 c15

0 c66+
e16

2

ε11ε0
0

c15 0 c55


 u1
u2
u3

= ρv2

 u1
u2
u3

 . (9a)

Note that all material constants in Eq. (9a) are to be taken
for the current coordinate system after rotation and are to be
calculated from the material constants given in the initial sys-
tem by the corresponding transformations, using the matrix
Aij from Eq. (6).

A lot of orientations of the quartz plate exist that have es-
pecially suitable properties for TSM applications. Exemplar-
ily, we consider here the so-called AT and SC cuts (Fig. 2).
Both are temperature-stable at room temperature, and the SC
cut additionally features stress insensitivity. The AT cut is
singly rotated and can be described by the simpler Eq. (9a)
in contrast to the doubly rotated SC cut that follows the gen-
eral case of Eq. (9). It can be assumed that the main features
elaborated in the next sections qualitatively may also apply
for doubly rotated TSM resonator plates.

2.2 Solution of the eigenvalue problem

Now we confine the further studies on singly rotated orien-
tations because of expectable straightforward relationships.
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136 M. Weihnacht: Multi-parameter sensing using TSM resonators

The solutions of the eigenvalue problem of Eq. (9a) are given
by the following:

det

∣∣∣∣∣∣∣∣
c11 0 c15

0 c66+
e16

2

ε11ε0
0

c15 0 c55

∣∣∣∣∣∣∣∣= 0. (10)

When one BAW fulfills the TSM requirements completely, it
appears as a pure shear wave with u3 vibrations and is piezo-
electric:

v1 =

√√√√(c66+
e16

2

ε11ε0

)
/ρ. (11a)

Besides Eq. (11a), two other solutions exist with the phase
velocities

v2,3 =

√
1
2

(c11+ c55)(1±
√

2)/ρ. (11b)

They are quasi-longitudinal and quasi-shear waves because
of linear combinations of u1 and u3 for the polarization of
particle displacement in both cases. Obviously, they are non-
piezoelectric and, therefore, not of interest for our subject.

2.3 Boundary conditions

The TSM resonant phenomenon as the primary object of this
publication is the result of interference of forward and back-
ward BAWs reflected at the boundaries of the plate which
can be constructive with maximum vibration amplitude at
certain frequencies. The piezoelectricity of the plate material
enables one to understand the complete dynamic behavior by
the measurement of electric quantities vs. frequency using
the surface electrodes. In order to get mathematical expres-
sions for that, the results of BAW propagation of Sect. 2.1
and 2.2 will be combined in the following with the boundary
conditions.

We continue with the assumption of a singly rotated piezo-
electric crystal plate of 32 symmetry in the middle of the
material structure of Fig. 1. All other parts (layers and half-
spaces) should be isotropic. The wave propagation is de-
scribed by Eq. (9a) in cases of isotropy with c15 and c16 equal
to zero. We focus the discussion now on pure shear horizon-
tal waves according to Eq. (11a).

At present we reduce the material structure under study
to the piezoelectric plate of thickness dq with electrodes of
negligible thickness embedded in two half-spaces and omit
any additional layers. For the lower half-space (“−”) a shear
BAW u− is assumed to be excited by the plate vibrations and
propagating in the −x direction:

u− = u−downe
+jωx/v− . (12a)

Otherwise, in the upper half-space (“+”) a shear BAW u+ is
assumed to be propagating in the +x direction:

u+ = u+upe
−jωx/v+ . (12b)

The plate “q” embodies two counter-propagating shear
BAWs:

uq = u
q
upe
−jωx/vq

+u
q

downe
+jωx/vq . (12c)

As a consequence, four boundary conditions are required to
determine the prefactors of BAW expressions. The following
continuities exist at the lower (x =−dq/2) and upper (x =
+dq/2) interfaces:

u±(±dq/2)= uq (±dq/2), (13a)
T±(±dq/2)= Tq (±dq/2). (13b)

T is the abbreviation for the only non-vanishing shear stress
T6 (6 in Voigt’s notation = 12) related to Eq. (11a), which
was figured out for the piezoelectric plate and also holds for
the isotropic half-spaces. In order to eliminate the half-space
terms in Eq. (13a) and (13b), we make use of the Eqs. (3) and
(5) for both half-spaces and omit the indices of c66:

T± = c±
∂u±

∂x
. (14)

After the introduction of pure shear wave acoustic
impedances of half-spaces Z+ and Z−,

Z± =
c±

v±
, (15)

one obtains the following for the stress Tq at the plate sur-
faces:

Tq (±dq/2)= jωZ±uq (±dq/2). (16)

2.4 Complete solution of pure shear BAWs within the
plate

Before admittance calculation as the eventual aim, the
full solution of shear BAWs will be elaborated. Rewriting
Eqs. (3) and (4) for our case of the piezoelectric shear BAW
in singly rotated 32 crystals delivers the following:

Tq = cq66
∂uq

∂x
− e16E, (17)

and

D = e16
∂uq

∂x
+ ε11ε0E. (18)

For simplicity, we now also omit the indices “1” of electric
field and displacement. Elimination of E from Eqs. (17) and
(18) results in

Tq = cq,D66
∂uq

∂x
−

e16

ε11ε0
D, (19)

with the stiffness constant cD at the given electric displace-
ment D:

c
q,D

66 = c
q

66+
e16

2

ε11ε0
. (19a)
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In the next step the amplitudes of forward and backward
waves within the plate according to Eq. (12c) are determined.
We introduce the following abbreviations:

Zq =
c
q,D

66
vq

, (20a)

the acoustic impedance of plate at the given electric displace-
ment D, and

τ q =
dq

vq
, (20b)

the BAW propagation time through the plate. Rewriting the
boundary conditions of Eq. (16) and using Eq. (19), we ob-
tain

Zq
(
−u

q
upe
+jωτ q/2

+u
q

downe
−jωτ q/2

)
+ jD/ω

e16

ε11ε0

= Z−
(
u
q
upe
+jωτ q/2

+u
q

downe
−jωττ q/2

)
, (21a)

Zq
(
−u

q
upe
−jωτ q/2

+u
q

downe
+jωτ q/2

)
+ jD/ω

e16

ε11ε0

= Z+
(
u
q
upe
−jωτ q/2

+u
q

downe
+jωτ q/2

)
. (21b)

Combinations of Eqs. (21a) and (21b) result in the following
more clearly arranged expressions:

u
q
up

[
−
(
Zq +Z−

)
e+jωτ

q/2
−
(
Zq +Z+

)
e−jωτ

q/2
]

+u
q

down

[(
Zq −Z−

)
e−jωτ

q/2
+
(
Zq −Z+

)
e+jωτ

q/2
]

+ 2jD/ω
e16

ε11ε0
= 0, (22a)

u
q
up

[
−
(
Zq +Z−

)
e+jωτ

q/2
+
(
Zq +Z+

)
e−jωτ

q/2
]

+u
q

down

[(
Zq −Z−

)
e−jωτ

q/2
−
(
Zq −Z+

)
e+jωτ

q/2
]
= 0.

(22b)

Equation (22a) and (22b) enable us to determine the ampli-
tudes uup of forward and udown of backward BAWs within
the plate as functions of the electric displacement D. How-
ever, the aim is to obtain the electric characteristics, that is,
the dependence of current I on the applied voltage V . For
that, a third equation will be added in the next chapter incor-
porating the applied voltage V .

2.5 Electrical admittance as a function of frequency

In order to get the relationship between voltage V and cur-
rent I flowing through the plate, one has to integrate over the
BAW propagation way x between−dq/2 and+dq/2. Instead
of I we still use D. Integrating Eq. (18) over x yields

Ddq = e16

(
uq
(
dq

2

)
− uq

(
−
dq

2

))
+ ε11ε0V, (23)

and after taking Eq. (12c) into account,

2je16
(
u
q
up−u

q

down
)

sin
(
ωτ q/2

)
+ dqD = ε11ε0V. (23a)

Eqs. (22a), (22b), and (23a) enable us to determine the three
unknowns uup, udown, andD as functions of the applied volt-
age V .

The current I per area F is the time derivative of electric
displacement D:

I = jFωD. (24)

Furthermore, we introduce the plate capacitance C,

C = ε11ε0F/d
q , (25)

and define a piezoelectric coupling efficiencyK2 for our pure
shear BAW:

K2
=
e16

2

ε11ε0
/c66

q . (26)

Using the acoustic impedance ratios

ς+ =
Z+

Zq
, ς− =

Z−

Zq
, (27)

the final expression for the admittance Y as a function of fre-
quency has the following form:

Y = I/V

= jωC

[
1−

K2

1+K2
1

(ωτ q/2)

·
tan(ωτ q/2)− j

(
ς++ ς−

)
/2

1− j
(
ς++ ς−

)
cot (ωτ q )+ ς+ς−

]−1

. (28)

Obviously, the only determining parameters for the admit-
tance besides angular frequency ω are plate capacitance C,
coupling efficiency K2, BAW propagation time τ q through
the plate, and the ratios ς− and ς+ of environment-to-the-
plate acoustic impedances. Let us consider two simplified
cases.

1. The admittance Y q of a free uncoated plate with Z+ =
Z− = 0 is then

Y q = jωC

[
1−

K2

1+K2
tan(ωτ q/2)
ωτ q/2

]−1

. (28a)

2. With a filled half-space on one side (Z+ > 0, Z− = 0),
one obtains the following:

Y q+ = jωC

[
1−

K2

1+K2
1

(ωτ q/2)
tan(ωτ q/2)− jς+/2

1− jς+ cot (ωτ q )

]−1

.

(28b)
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2.6 Inclusion of layers

In the next step layers on the side of the material configu-
ration of Fig. 1 will be incorporated. Continuity for particle
displacements and stresses applies on all layer interfaces. In
our special case of pure shear wave propagation normal for
surfaces of isotropic layers, we have only one component u
for the particle displacement and T for the stress. Thus, the
boundary conditions on an interface coordinate xk are

u(k)(xk)= u(k+1)(xk), (29a)

T(k)(xk)= T(k+1)(xk), (29b)

by analogy to Eq. (13a). Besides this, for each layer, two
counter-propagating waves are assumed that correspond with
Eq. (12c). Furthermore, the constitutive equation holds (see
Eq. 14) and acoustic impedances Zk (see Eq. 15) are intro-
duced for each layer k. As a consequence, Eq. (29a) and
(29b) can be replaced by the following matrix boundary re-
lation at the interface xk between layer k and layer k+ 1:(

e
−
jωxk
vk e

+
jωxk
vk

ωZ(k)e−jωxk/vk −ωZ(k)e+jωxk/vk

)(
ukup
ukdown

)

=

(
e
−
jωxk
vk+1 e

+
jωxk
vk+1

ωZ(k+1)e−jωxk/vk+1 −ωZ(k+1)e+jωxk/vk+1

)

·

(
uk+1

up
uk+1

down

)
. (30)

For clarity, at the moment we have restricted our study to the
upper half-space. Corresponding with Eq. (30), the particle
displacements of all layers (layer thicknesses are dk) of the
upper layer stack can be connected step by step, also includ-
ing the upper half-space “+”. If considering the amplitudes
of counter-propagating waves in the layer k = 1, meaning
just above the piezoelectric plate, one obtains the following:

(
u1

up
u1

down

)
=

1
2

 e
+
jωx1
v1

1
ωZ(1) e

+
jωx1
v1

e
−
jωx1
v1 −

1
ωZ(1) e

−
jωx1
v1


N+∏
k=2

 cos
(
ωdk

vk

)
j

ωZ(k) sin
(
ωdk

vk

)
jωZ(k) sin

(
ωdk

vk

)
cos

(
ωdk

vk

)


·

(
1
ωZ+

)
u+upe

−
jωxN
v+ . (31)

One proof of Eq. (31) is that it describes also correctly the
case with upper half-space but without layers as considered
above. This would mean that the layer k = 1 is the upper half-
space. Detailed examination of this particularity shows that
Eq. (31) is then reduced to(

u1
up

u1
down

)
=

(
u+up
0

)
. (31a)

Under the conditions of Eq. (31a) it was shown in Sect. 2.4
how to determine the amplitudes uup of forward and udown
of backward BAWs within the plate as functions of the elec-
tric displacement D. After relating D to a given voltage V ,
the admittance Y of the TSM resonator was calculated result-
ing in the Eq. (28). Now, the amount of u1

down according to
Eq. (31) has to be taken into account.

At the end of the same transformations of the system
of equations as calculated above but now with more com-
plicated expressions one realizes the comfortable circum-
stance that Eq. (28) still applies but with effective acoustic
impedances Zeff+ and Zeff− instead of the Z+ and Z− of the
half-spaces:

Y = I/V

= jωC

[
1−

K2

1+K2
1

(ωτ q/2)

·
tan(ωτ q/2)− j

(
ςeff+

+ ςeff−)/2
1− j

(
ςeff++ ςeff−

)
cot (ωτ q )+ ςeff+ςeff−

]−1

, (32)

with

ςeff+
=
Zeff+

Zq
, ςeff−

=
Zeff−

Zq
. (33a)

Such effective acoustic impedances Zeff± have to be deter-
mined by the ratio

Zeff±
= R±2 /R

±

1 , (33b)

with

(
R±1
R±2

)
=

N±∏
k=1

(
1 j tan

(
ωτ (k))/Z(k)

jZ(nk) tan
(
ωτ (k)) 1

)
·

(
1
Z±

)
. (33c)

Zeff+ and Zeff− are obtained for both directions towards the
upper half-space “+” and towards the lower half-space “−”,
respectively, in the manner following Eq. (33c), in both cases
by starting at k = 1 just at the plate and ending at layer num-
berN+ andN−, respectively, next to the corresponding half-
space. The layer properties Z(k) and τ (k) are introduced here
by analogy to the definitions of Eq. (20a) and (20b) for the
piezoelectric plate.

Here it should be noted that many of obtained relations
concerning the admittance of a TSM resonator coated with
layers and that is in contact with a liquid half-space have
already been derived in literature, but mostly in the frame
of equivalent circuitry and Mason transmission line (Mason,
1948) treatment (see e.g., Lucklum, 2002; Johannsmann,
2014).
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3 Evaluation of admittance dependence on
frequency

3.1 Relevant data taken from experimental
measurements

Equation (32) for the electrical admittance of acoustic pure
shear waves propagating through a material system, as shown
in Fig. 1, results in a specific periodicity caused by the
trigonometric functions being contained. This is the well-
known resonant and anti-resonant behavior, being character-
istic of piezoelectric structures. Due to the interference of up
and down waves, one has special vibration situations at cer-
tain frequencies. Two examples for the admittance amplitude
depicted over a wide frequency range are shown in Fig. 3a.

The remaining data applied for shear BAWs in AT-cut
quartz are the piezoelectric stress constant 0.0958 Asm−2

and relative permittivity of 4.533. The shear viscosity of
0.02 Pas originates from a quality factor of 25 000 at
10 MHz.

In contrast to Fig. 3a, many more distinctive curves are
obtained when subtracting the linearly frequency-dependent
floor as seen in Fig. 3b. Such a procedure is simply realized
and usually done in experiments, especially when keeping
in mind that the floor originated from the capacitance C in
Eqs. (28) and (32).

Figure 3b exhibits 16 resonance maxima of admittance
amplitude accompanied by minima of anti-resonant frequen-
cies positioned tightly above. The red curves (without any
layer on the quartz plate) demonstrate rising resonances only
at odd frequency harmonics, whereas when adding a 5 µm
thick Cu layer, resonance peaks also arise at even harmonics
(blue curves). Besides this, all resonance peaks are shifted to
lower frequencies in that case.

Many attempts were made to find expressions for identi-
fying material parameters directly from resonant frequency
shifts. For example the well-known formulas of Sauerbrey
(1959) and of Kanazawa and Gordon (1985) exist, but in each
case with a limited range of validity. For example, according
to Kanazawa the relative shift δf /f of TSM resonant fre-
quency under the influence of a liquid with mass density ρ
and shear viscosity η is approximately given by

δf

f
≈−

√
ρωη/2
2Zq

. (34)

However, for large products (ρωη) the relative frequency
shift δf/f will indeed approach twice this value.

Two other examples of resonant behavior are depicted in
Fig. 4. The curves are restricted to the fundamental reso-
nance (1st harmonic). It is seen that there are not only reduc-
tions of resonant and anti-resonant frequencies by thickening
the copper layer, but the widths of peak and anti-peaks are
also increased when replacing natural water with a glycerol
mixture in the upper half-space of the material system. The

evaluation of the corresponding bandwidths by the parameter
FWHM was introduced above.

Corresponding to the width of the resonance peak, the
FWHM of anti-resonance is found using the curve of
impedance instead of admittance amplitude. In sum we can
extract M data from the measurements as follows:

M = 4NOT. (35)

These are the frequencies of resonance and anti-resonance
(fres and fares) and the differences of frequencies of the
FWHMs (FWHMres and FWHMares), with NOT as the num-
ber of measured overtones.

3.2 Extractable parameters of material systems under
study

Equation (32) enables us to come to significant conclusions
of parameter extraction from TSM measurements. In con-
nection with Eq. (33a, b, and c) the dependence on acoustic
impedances Z and BAW propagation times τ is obvious. In
more detail, all parts of the material system of Fig. 1 are in-
volved:

Z−. . .Z(k)τ (k). . .Z+. (36)

The index k runs over all layers on both sides of the piezo-
electric plate. We have to take into account that both quan-
tities, Z and τ , can be valued as complex in consequence of
viscous properties and thereby caused lossy behavior. As a
result of this circumstance we are in the position to extractN
material–geometric parameters with N+ and N− as the bot-
tom and top layer numbers, respectively, and Nhalf−space as
the number of half-spaces:

N = 4N++ 4N−+ 2Nhalf−space. (37)

Actual material–geometric parameters instead of Z and τ are
mass densities ρ, elasticities c, and layer thicknesses d. They
are related to each other according to Eqs. (20a), (20b), and
(11a) applied for isotropic symmetry. In order to account for
viscoelastic behavior we consider c to be complex:

c =G+ jωη, (38)

with G as the shear modulus and η as the shear viscos-
ity. For simplicity, cases with behavior deviating from the
widely used model Eq. (38) are not considered here. Instead
of Eq. (36) the list of extractable material–geometric param-
eters is now as follows:

(ρG)−, (ρη)−. . .ρ(k)G(k),η(k),d(k). . .(ρG)+, (ρη)+. (39)

Note that in the frame of our model of pure shear BAWs for
the half-spaces, only products of ρ times G and of ρ times η
can be determined. However, as a consequence of Eq. (32), a
maximum of four parameters are detectable for each layer k.

www.j-sens-sens-syst.net/8/133/2019/ J. Sens. Sens. Syst., 8, 133–147, 2019



140 M. Weihnacht: Multi-parameter sensing using TSM resonators

Figure 3. Calculated admittance amplitude as a function of frequency according to Eq. (32) for two cases of TSM material configurations:
(1) AT-cut quartz plate with a liquid half-space of glycerol and (2) the same system as in (1), but with an additional copper layer below
glycerol. The frequency range is extended over 16 resonances and anti-resonances; (a) with and (b) without floor signal.

3.3 Sensitivities of experimental data against
extractable parameters

One decisive question in the procedure of multi-parameter
sensing is the following: how many and which parameters
can be extracted from the measurements, and under which
conditions can they be extracted? It is obvious from the ad-
mittance curves of Fig. 3b that a considerable number of ex-
perimental data can be supplied to find out the related ma-
terial and geometry parameters that produce such specific
behavior. The essential point is the influence of the mate-
rial parameters according to Eq. (39) on the list of measured

frequencies, i.e., resonant and anti-resonant frequencies fres
and fares and the full widths at half maximum FWHMres and
FWHMares for a number of overtones NOT including both
odd and even harmonics.

The number of involved quantities produces some com-
plexity in the problem. Forming the first derivatives of ex-
perimental data with respect to the searched parameters is a
preferential method to elucidate the situation. Again, Eq. (32)
is hereby appropriate for performing such numerical analy-
sis and facilitates the approach. The aforesaid first deriva-
tives represent the sensitivities of experimental data against
extractable parameters. We start with values for the material–
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Figure 4. Admittance amplitude vs. frequency after removing the floor signal at fundamental resonance and anti-resonance. Considered
material systems: quartz plate with thin Cu layer and water half-space (red curve) and quartz plate with thick Cu layer and glycerol mixture
half-space (blue curve).

Table 1. The used data of studied exemplary material systems.

Material Mass density Shear modulus Shear viscosity Thickness
gcm−3 GPa Pas−1 µm

AT-cut quartz 2.65 29.0 0.02 185
Cu thin or thick 8.92 48.3 1 0.5/5
Water 1.026 3× 10−3 10−3 –
Glycerol mixture 1.26 3× 10−3 1.48 –

geometry parameters which are assumed to be reasonable,
keeping in mind that for the possibility of parameter extrac-
tion at the end of the procedure, the use of sensitivities for
that has to be considered in connection with their certainty
or uncertainty. This means that it is advantageous to form a
Jacobian matrix Jmn with the elements

Jmn =
∂fm

∂pn

pn

1fm
. (40)

In this formula fm denotes a measurement result such as res-
onant and anti-resonant frequency or the FWHM frequency
difference with number m and pn, a searched material–
geometry value of parameter number n. The derivative
∂fm/∂pn is normalized here to the ratio of frequency un-
certainty 1fm and material parameter pn. Under these con-
ditions the elements of the matrix Jmn are dimensionless and
incorporate a weighting factor for the preference of more ac-
curate measurements. The uncertainties 1fm depend on the
specific conditions of the experiment. In our example we as-
sumed amplitude uncertainties at resonant and anti-resonant
frequencies of 10−5 and uncertainties of 10−2 for the deter-
mination of the FWHM level.

Examples for sensitivities as functions of m and n are
shown in Fig. 5a and b. The assignment of material–
geometry parameters to the used numbers n is described in
Table 2. The employed data of the studied material system
are specified in Table 1.

The structures depicted in Fig. 5 exhibit some features
which can be employed for further refinement of multi-
parameter search. The dependences of sensitivities Jmn on
the overtone number seem to be very similar for resonance
and anti-resonance behavior at a given parameter, i.e., a con-
straint on the resonance case seems satisfactory. It can be
seen in Fig. 5 that in the analyzed material system (AT-cut
quartz plate with a 5 µm thick Cu layer and a glycerol half-
space), the highest sensitivities are achieved for the Cu mass
density and thickness (parameter number 1 and 4).

Measurements at higher overtones seem more beneficial
for the extraction of these parameters. Viscosities (parame-
ter 3 for Cu and 6 for glycerol) are extractable from mea-
sured FWHM data, preferentially at high overtones. The sen-
sitivities of resonant and anti-resonant frequencies vs. n= 3
(Cu viscosity), 5 (glycerol shear modulus×mass density),
and 6 (glycerol shear modulus× viscosity) and of FWHM
vs. n= 5 (glycerol shear modulus×mass density) seem to
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Figure 5. (a) Mapping of the elements of the Jacobian matrix Jmn defined in Eq. (40) with varying measurement index m from 1 to 56
and material parameter index n from 1 to 6. The overtone number runs from 1 to 16. The material system is an AT-cut quartz plate with
a 5 µm thick Cu layer and a glycerol half-space. Order at each material–geometry parameter value: resonant–anti-resonant frequencies and
resonant–anti-resonant FWHMs. (b) Mapping with enlarged sensitivity range around zero, at material parameter 3 (Cu viscosity) and 6
(glycerol viscosity×mass density) for the resonant frequencies and at material parameter 5 (glycerol shear modulus×mass density) for
both resonant frequencies (left) and FWHMs (right).

Table 2. Numbering n of material–geometry parameters.

Number n 1 2 3 4 5 6

Material–geometry Cu mass Cu shear Cu shear Cu Glycerol shear modulus× Glycerol shear viscosity×
parameter density modulus viscosity thickness mass density mass density

be too small for examination. Nevertheless, as can be seen
from Fig. 5b, most of these results are also still worth eval-
uating. In the case of glycerol viscosity the FWHM curve is
depicted vs. overtone number, and in the other three cases
only the resonant frequency behavior is depicted.

4 Optimization of multi-parameter sensing approach

4.1 Evaluation of fitting procedure

The extraction of material–geometry parameters from TSM
measurements requires a fitting procedure between theoret-
ically and experimentally determined frequencies. A prece-
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Figure 6. Example of the environment of SSQmin of the special case of AT-cut quartz TSM resonator with a 5 µm thick Cu layer that is
in contact with glycerol. The varied material parameters are mass density (p1) and shear modulus (p2) of the Cu layer. The incorporated
measurements comprise all resonant and anti-resonant frequencies and FWHMs until the 16th overtone (except 2nd and 4th).

dent examination of achievable results is important for
avoiding unsuccessful calculation efforts originating from
inappropriate selection of experimental results caused by
marginal sensitivities. The outcome of such a study enables
one to develop the strategy of fitting or, in other words, to
optimize the multi-parameter sensing approach.

For that purpose the environment of the minimum of the
sum of squared relative differences (SSQ) between theo-
retical and experimental values f th

m and f exp
m , respectively,

will be considered more in detail now. These differences are
weighted by the inverse of uncertainties 1fm, just as was
done at the definition of matrix Jmn. The quantity SSQ has
the form

SSQ=
M∑
m=1

(
f th
m (pn)− f exp

m

1fm

)2

, (41)

a sum over all M experiments, and varies due to chang-
ing parameters pn. The fitting procedure will be performed
until SSQ reaches a “very deep” minimum SSQmin, prefer-
ably the so-called global minimum. At this location in the
(N + 1)-dimensional space all first-order derivatives of SSQ
with respect to parameter pn vanish. For the environment of
this minimum we assume a quadratic dependence of SSQ
on small relative changes in material–geometry parameters
δpn/pn and can write the following in matrix notation:

SSQ= SSQmin+ (δp/p)TH (δp/p) , H= JTJ. (42)

J is the Jacobian matrix with the elements Jmn introduced
in Eq. (40), p stands for pn, and δp/p stands for δpn/pn.
T denotes the transposed expression. The environment of
SSQmin is determined by the symmetric matrix H, with rows
and columns given by the number N of searched parameters
pn. At a given SSQ above SSQmin the variations δpn/pn will
form an ellipsoid in the N -dimensional space of material pa-
rameters.

An illustration of the situation is given in Fig. 6. The con-
sidered sample is an AT-cut quartz TSM resonator, with a
thickness 185 µm, coated by a 5 µm thick Cu layer and a
glycerol half-space on top. As can be seen, the variation of
SSQ produces ellipses in the two-dimensional space of the
two material parameter variations δp1 (change in mass den-
sity) and δp2 (change in shear modulus of Cu layer). If H is
a diagonal matrix, then the directions of the δpn axes coin-
cide with the directions of the half-axes of ellipses. In this
case Eq. (42) is a sum of single squared relative material pa-
rameter changes (δpn/pn)2, and all material parameters con-
tribute independently of each other to the SSQ. Inversely, at
a given SSQ each single parameter deviation δpn/pn can be
derived separately.

However, in the very most cases H is not a diagonal ma-
trix, and a direct derivation of material parameter deviations
δpn from a given SSQ is not possible. An extreme case for
two parameters is depicted in Fig. 7a. The half-axes of el-
lipses deviate strongly here from the axes of δp1 and δp2. As
a consequence, the deviation δp1 at a given δp2 = 0 and also
δp2 at δp1 = 0 are inappropriately small in view of the length
of the ellipse. Therefore, the correct evaluation of parameter
deviations δpn requires an orthogonal transformation of the
space of N material parameters for obtaining a diagonal ma-
trix H′ instead of H:

H′ =QTHQ, (43)

with Q as a matrix formed by the N eigenvectors yielded by
the eigenvalue procedure for the diagonalization of H. This
leads to the situation of Fig. 7b.

4.2 Determination of uncertainties of extracted
parameters

A key question for the experimental strategy of identifying
material–geometry parameters is how to achieve high ac-
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Figure 7. (a) Example of ellipses in the plane of two material–geometry parameters created by constant SSQ> SSQmin. Material system:
AT-cut quartz TSM resonator with a 5 µm thick Cu layer that is in contact with glycerol. The varied material parameters are mass density
and thickness of the Cu layer. The incorporated measurements are the resonant and anti-resonant frequencies of the 3th and 5th overtones.
(b) Ellipses aligned with the material–geometry parameter axes after the orthogonal transformation of the parameter space.

curacy with a low number of experiments. Answers can be
found on the basis of supposed appropriate initial values for
the searched parameters and by analyzing the environment of
the SSQ.

A self-evident value for a given uncertainty 1SSQ=
SSQ−SSQmin is the total number M of measurements. This
is plausible when considering Eq. (41) and making use of
the simple approach where in the middle, for each measure-
ment m, the assumed uncertainty 1fm equals the difference
f th
m − f

exp
m . In that case all the contributions to 1SSQ are

equal to 1, and the summation over m yields the value M . At
a given uncertainty 1SSQ=M the uncertainties of relative
material parameters (1pn/pn)′ in the transformed material
parameter space can now be written by taking into account

the N -fold partition of 1SSQ, with H′nn as the nth diagonal
element of matrix H′:

(1pn/pn)′2 =
M/N

H′nn
. (44)

The next step is the back transformation to the original space
of material parameters. In order to find the squared uncertain-
ties 1pn/pn we have to sum up the retransformed squared
uncertainties:

(1pn/pn)2
=

M∑
m=1

(
Qnm(1pm/pm)′

)2
. (45)

Table 3 provides insight into a series of different combina-
tions of experiments in order to obtain the full set of six
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Figure 8. Flow chart of the approach to multi-parameter sensing of layers and half-spaces that are in contact with a TSM resonator.

material–geometry parameters of the system, already consid-
ered in Sect. 3.3 with respect to the achieved uncertainties.
The columns I to V depict different cases.

– Case I corresponds to the full set of resonant and anti-
resonant frequencies and FWHMs of 1st, 3rd, and 5th–
16th harmonics.

– Case II is, compared to I, restricted to the resonances.

– Case III is the combination of 1st, 3rd, and 5th over-
tones.

– Case IV is the full set of 5th and 6th overtones.

– Case V is yielded by a combination of anti-resonant fre-
quency of the 1st harmonic, resonant frequency of the

16th overtone, resonant FWHMs of the 1st and of the
16th overtone, and anti-resonant FWHMs of the 3rd,
5th, 6th, and 8th overtones.

The corresponding numbers M of measurements are indi-
cated. From Table 3, the following can be seen.

– There is only small worsening when restricting the full
set of measurements to resonant frequencies and reso-
nant FWHMs (case II compared to case I).

– Cases III and IV suggest that a strong reduction of the
measurement number can produce inadmissibly high
uncertainties.
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Table 3. Uncertainties of material–geometry parameters of the ma-
terial system described in Sect. 3.3. The columns are related to five
different combinations of measurements.

Case

(1pn/pn) I II III IV V
M = 56 M = 28 M = 12 M = 8 M = 8

ρCu 0.0078 0.0100 0.1375 0.0421 0.0271
GCu 0.0095 0.0121 0.1535 0.0404 0.0340
ηCu 0.0135 0.0191 5.2089 1.3593 0.0448
dCu 0.0078 0.0100 0.1351 0.0399 0.0272
(ρG)glyc 0.2110 0.2785 0.7442 1.9090 0.2922
(ρη)glyc 0.0045 0.0058 0.0270 0.0345 0.0092

– Case V, unlike III and IV, exhibits acceptable small un-
certainties in the face of reduction of experimental ef-
forts compared to I by a factor of 7.

5 Conclusions

Based on an extra derived analytic expression (Eq. 32) for the
frequency dependence of electrical admittance, the suitabil-
ity of a TSM resonator for multi-parameter sensing of layers
and half-spaces that are in contact with the resonator plate
on both sides has been analyzed. Resonant and anti-resonant
frequencies as well as related bandwidths (FWHMs) were
considered to be dependent on material–geometry param-
eters to calculate sensitivities of these experimental values
against the searched parameters. This Jacobian matrix was
used to evaluate the environment of the minimum of fit-
ting procedure between experimental and theoretical values
as a function of all material–geometry parameter variations,
with the aim of obtaining their uncertainties after extraction
from the experimental results. The separation of uncertainties
of searched parameters requires a back-and-forth orthogonal
transformation in the parameter space for the diagonalization
of the squared Jacobian matrix.

Figure 8 summarizes the procedure for realizing multi-
parameter sensing of layers and half-spaces that are in con-
tact with a TSM resonator as it was carried out in this study,
using an analytic expression for the electrical admittance.

It was shown for the special case of a TSM resonator of
AT-cut quartz coated by a 5 µm thick copper layer and a glyc-
erol half-space on top that six parameters of layers and half-
spaces can be determined. At the reduction of the number of
used experimental data from 56 to 8, a special combination
of measurements with only a small increase in parameter un-
certainties was found. An optimal selection of experimental
data for uncertainty minimization exhibits some plausible re-
lationships, for example the preference of FWHM instead of
resonant frequency measurements for the determination of
viscosities.

The demonstrated procedure is suitable for developing an
experimental strategy for multi-parameter sensing involving
both the minimization of parameter uncertainties as well as
of experimental effort.
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