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Abstract. This paper presents the extension of an empirical study in which a universally applicable fault di-
agnosis method is used to analyse vibration data of bearings measured with accelerometers. The motivation for
extending the previously published results was to provide a profound analysis of the proposed approach with
regard to a more feasible training scenario for real applications. For a detailed assessment of the method, data
were acquired on two different test beds: a gearbox test bed equipped with various bearings at different health
states and an accelerated lifetime (ALT) test bed to degrade a bearing and introduce an operational fault. Features
were extracted from the raw data of two different accelerometers and used to monitor the actual health state of
the bearings. For that purpose, feature selection and classifier training are performed in a supervised-learning
approach. The accuracy is estimated using an independent test dataset. The results of the gearbox test bed data
show that the training of the method can be performed with non-steady-state data and that the same feature
set can be used for different revolution speeds if a small decrease in accuracy is acceptable. The results of the
ALT test bed show that the same features that were identified in the gearbox test start to change significantly
when the bearing starts to degrade. Thus, it is possible to observe the identified features for applying predictive

maintenance.

1 Introduction

Manufacturing companies continuously try to increase their
productivity, by avoiding machine downtime among other
things. The former involves considerable costs because of the
resulting loss of turnover. Monitoring the condition of, for
instance, bearings and gears plays a vital role in the main-
tenance programme of rotating machines. Early fault detec-
tion could allow for moving from a time-based preventive-
maintenance programme to a condition-based predictive-
maintenance strategy and reducing unexpected machine
downtime and cost.

Vibration-based condition monitoring is an established ap-
proach that has been employed by industries for many years
in their maintenance programmes (Randall, 2011). However,
up to this day, machine operators often still base their main-
tenance decisions on data from the periodical and manual
inspection of single machines, which does not always result
in correct conclusions. The common practice is that vibra-

tion measurements are periodically recorded using portable
vibration sensors, and measurement signals are analysed by
an expert to interpret the machine’s health condition. This ap-
proach can, however, lead to serious misinterpretation, where
rapidly growing impairments could be missed.

A continuous condition-monitoring approach enables
early detection of machine faults. In this way, the machine
condition is continuously tracked, and total failures can be
anticipated in advance, hence allowing appropriate mainte-
nance actions. Despite their advantages, continuous monitor-
ing programmes are still not well adopted by industry. Firstly,
this is because it often involves a high investment cost. Al-
though recent advancements in sensor, acquisition and pro-
cessing hardware have demonstrated cost-effective solutions
(Albarbar et al., 2008; Ompusunggu et al., 2018), the eco-
nomic benefit of the investment is still not clear and hard
to quantify. Secondly, this is because many of those systems
still require an expert to interpret the analysis results. Finally,
this is also because it is not straightforward to select the most
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appropriate condition-monitoring method for a specific ap-
plication.

A wide range of vibration-based bearing fault detection
methods have been proposed in the literature (Henriquez
et al., 2014; Sait and Sharaf-Eldeen, 2011; Wang et al., 2017;
Zarei et al., 2014). Approaches that utilize time domain fea-
tures (e.g. crest factor and kurtosis; Barbini et al., 2017), fre-
quency and cepstral-domain features (e.g. envelope analysis
and cepstral coefficients; Borghesani et al., 2013) usually as-
sume stationary machine conditions. Other methods such as
cyclostationary analysis (i.e. second-order technique in the
frequency domain; Dalpiaz et al., 2013; Hu et al., 2019) and
time—frequency domain analysis (e.g. Wigner—Ville distribu-
tion, Hilbert—-Huang transform and wavelet-transform-based
features; Bajric et al., 2016) are more appropriate for non-
stationary processes. Some of those methods are purely data
driven, whereas others use the physical relation between the
bearing geometry, the rotational shaft speed and the bearing-
specific fault frequencies associated to the impulse behaviour
introduced by bearing faults.

In this paper, we present a purely data-driven method that
extracts a large number of features from vibration data of
accelerometer measurements and selects and classifies these
features in a supervised-learning approach. Training and test
data were acquired at two different bearing test beds: a gear-
box setup that can be equipped with bearings of different
degradation statuses and a simple rotating shaft with a bear-
ing under certain radial loads for accelerated degradation.
However, the method does not address one specific applica-
tion with certain requirements of the application. We applied
the same basic idea to very different applications like fault
diagnosis in a hydraulic accumulator loading circuit or oscil-
lation detection. In both cases, we obtained satisfying accu-
racy values. In any case, the limitation of the method is that
it requires information-rich training data of the underlying
system to select meaningful features and train suitable clas-
sifiers. In this context, information-rich means that the train-
ing data have to contain the different possible (fault) states of
the application as well as different operation modes. There
are of course general requirements that hold for fault detec-
tion in most applications, such as the desire to obtain a high
detection accuracy and the ability to detect faults under all
relevant operational conditions. Both of them are tackled im-
plicitly for the specific application of this paper by the main
goals that are stated below.

The basics of the proposed method were already com-
pared to two state-of-the-art methods for bearing monitor-
ing in Ooijevaar et al. (2019). It proved that it can compete
with the other methods, although those incorporate specific
knowledge about the monitored bearing, while the proposed
method is purely data driven. Of course, there are also some
drawbacks of the proposed method compared to the other
state-of-the-art methods, for instance the requirement of suf-
ficient training data for different states and operation modes.
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In contrast to Ooijevaar et al. (2019), the goal of this paper
is to analyse if a more feasible training scenario is possible.
Therefore, it is investigated if it is sufficient to acquire train-
ing data with linearly increasing speed instead of many dif-
ferent steady-state speed levels to save time for training data
acquisition. It is also investigated if the same feature set can
be used for different revolution speeds of the bearing to make
it applicable to different speeds without adapting the feature
set.

The paper is structured as follows: in Sect. 2, the problem
is briefly stated, and the experimental setup is introduced.
The classification method is described in detail in Sect. 3,
and Sect. 4 provides test results. Finally, Sect. 5 gives the
conclusions of the work.

2 Problem statement and experimental setup

In this paper, a previously proposed method (Ooijevaar et al.,
2019) for bearing fault detection based on vibration measure-
ments is further analysed with regard to a more feasible train-
ing scenario for real-world applications. For that purpose, it
is firstly investigated if training data can be acquired using
measurements with linearly increasing speed instead of ac-
quiring data at many different steady-state speed levels. That
saves a significant amount of time for training data acquisi-
tion. Secondly, it is investigated if the same feature set can
be used for different revolution speeds of the bearing. That
makes the approach more universally applicable, since there
is no need to adapt the feature set to the revolution speed.

Since the paper deals with applying the proposed method
to bearing fault detection, it is of essential importance to
know the underlying physical system. Hence, this section
provides a detailed explanation of the experiments and the
measured data. Two types of experiments have been per-
formed: (i) an accelerated lifetime test (ALT) of a ball bear-
ing on a single-shaft drive train setup and (ii) a test on a
more complex gearbox setup including bearings with various
faults. In both test setups, the vibrations of the bearing are
measured by accelerometers. These vibration data are used
to detect the faults in a machine-learning approach. The tests
are described in the next two subsections.

2.1 Accelerated lifetime test

The accelerated lifetime test allows for creating an opera-
tional fault in a bearing. This test differs from other studies
on the fact that those are often limited to artificially induced
faults. Moreover, the fault evolution and accumulation can be
monitored during the accelerated lifetime. The experimental
setup used to perform the accelerated lifetime test is shown
in Fig. 1. The setup comprises of a single shaft with a test
bearing. The shaft is supported with the help of a support
bearing on each side. A hydraulic cylinder is used to apply a
radial load to the test bearing up to a maximum of 10 kN. The
test bearing is oil lubricated by an internal oil bath. Two air
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Hydraulic cylinder to
apply a radial load

Motor

Accelerometer Test bearing

Figure 1. The drive train setup used to reduce the lifetime of a
bearing to less than 1d, allowing for the generation of vibration
data during the accumulation of an operational bearing fault.

Vibration measurement

at high load
20 min S min
—_
9.0kN
Load
1.5kN
\ Time -

Vibration measurement
at nominal load

Figure 2. The load was temporarily increased from 1.5 to 9kN to
accelerate the lifetime of the bearing.

fans are installed to cool the setup and avoid overheating of
the bearing. The setup is driven by a motor at a fixed rotation
speed of 1500 rpm.

The test procedure is schematically illustrated in Fig. 2.
Vibration measurements were performed under a nominal ra-
dial load of 1.5 kN (i.e. 10 % of the dynamic load rating). The
radial load was temporarily increased to 9.0 kN (i.e. 65 % of
the dynamic load rating) to accelerate the degradation of the
bearing. In the beginning, the interval of increased load was
20 min, but this had been reduced as soon as the first indi-
cation of an incipient fault was noticed in the measured vi-
bration responses. In total, 30 vibration measurements were
performed at the nominal 1.5 kN load condition, and 29 vi-
bration measurements were performed at the high 9.0 kN ra-
dial load. The accelerated lifetime test was stopped when a
vibration peak level of 4 50 g was reached.

The applied radial load, the radial vibrations in the load-
ing direction and the temperature of the bearing housing were
measured during the test. The machine vibrations were mea-
sured using a piezo-film ACH-01-03 accelerometer and sam-
pled at 12.8kHz by an embedded acquisition platform. In
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Figure 3. The indentation at the bearing inner race was used as the
start condition, and the surface fatigue fault at the inner race was
introduced by the accelerated lifetime test.

each measurement, 20 s of data were acquired. The acquisi-
tion platform consists of a BeagleBone Black single-board
computer with a Linux operating system, supplemented with
a customized six-channel interface. This embedded platform
is used as a compact, open, scalable and cost-effective data
acquisition system.

The accelerated lifetime test was performed on a
FAG 6205 ball bearing. Before the start of the test, a small
indentation (see Fig. 3) with a diameter of 230 um was cre-
ated in the inner race using a Rockwell C hardness tester.
This indentation is used as a local stress riser and represents
a local plastic deformation caused by, for instance, a contam-
ination particle. Subsequently, the accelerated lifetime test
was performed for several hours. Although bearings can fail
in many different ways, the indentation triggers the bearing
to fail in a more repeatable way. The test was stopped when
severe rolling contact surface fatigue occurred at the inner
race (Halme and Andersson, 2009). The start and the end
condition of the inner race of the test bearing are shown in
Fig. 3.

Only a single dataset has been used in this paper. However,
the accelerated lifetime test has been performed several times
as part of other research by the authors. They have all resulted
in similar surface fatigue faults at the inner race of the test
bearing.

2.2 Gearbox test

The second test performed in this study was an industri-
ally representative gearbox setup. Figure 4 shows a photo-
graph and a schematic top view of the gearbox setup. The
test setup consists of (i) an induction electric motor, (ii) a
gearbox and (iii) a magnetic brake. The motor is controlled
by a variable-frequency drive (VFD) with either a stationary
mode or a transient mode (run-up or run-down mode). The
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(a) Speedometer Gearbox, three shafts
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Figure 4. Gearbox setup comprising a motor, three-shaft gearbox
and brake to introduce a load.

motor speed can be controlled from 0 to 3000 rpm. The gear-
box input shaft is connected to the motor through a flexible
coupling, while the gearbox output shaft is directly coupled
to the brake. The torque applied to the brake can be adjusted
by the controller from 0 to 50 Nm.

As illustrated in Fig. 4, the gearbox comprises of three
parallel shafts connected through contacting spur gear pairs.
Note that the number of gear teeth is indicated in the figure.
Hence the total reduction factor from the input to the out-
put shaft is equal to (100/29) x (90/36) = 8.62. The input
shaft is supported by MB ER-10K deep-groove ball bear-
ings, while the other shafts are supported by MB ER-16K
deep-groove ball bearings. For simulating a healthy or faulty
state on the gearbox, the right-side bearing housing that sup-
ports the second shaft is equipped either with a healthy or a
damaged FAG 6205-C-TVH ball bearing.

Two healthy bearings and three faulty bearings with dif-
ferent inner race faults were tested. An indentation fault with
a diameter of 490 pm was created using an Rockwell C hard-
ness tester. Two other bearings with operational faults were
created using the accelerated lifetime test setup as described
in Sect. 2.1. The healthy bearings are referred as “Healthy1”
and “Healthy2”, while the faulty bearings are referred as “In-
dent”, “Faulty1” and “Faulty2”, in order of increasing sever-
ity; these are illustrated in Fig. 5.

For each healthy or faulty state, two operating conditions
were imposed on the gearbox setup, namely two different
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Indentation
490 pm

Fatigue fault
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Figure 5. Five bearing states tested on the gearbox setup compris-
ing two healthy bearings and three faulty bearings with different
severities.

motor speeds of 1500 and 3000 rpm. The brake torque was
kept constant at 50 Nm. Because of the transmission ratio,
the rotational speed of the second shaft is 29/100 lower than
that of the motor speed, while the torque applied on the sec-
ond shaft is 36/90 lower than that of the brake torque. Hence,
for the imposed operating conditions, the rotational speeds of
the second shaft were 435 and 870 rpm, while the torque ap-
plied to the second shaft was 20 Nm. A high-end PCB (pic-
ocoulomb; manufacturer PCB Piezotronics) accelerometer
and a low-cost MEMS (microelectromechanical-system) ac-
celerometer were mounted on the gearbox housing as shown
in Fig. 4. The vibration signals were sampled at 5S0kHz us-
ing a Dewesoft data acquisition system. For each operating
condition, 10 operations of 20 s each were repeated. Further-
more, for each of the five tested bearing states, three ramp-
up measurements were conducted. In these ramp-up mea-
surements, the motor speed was increased linearly from O to
3000 rpm within 40 s. The ramp-up measurements are used to
investigate the first and main aim of this paper, i.e. reducing
measurement effort for training data acquisition. It is obvi-
ous that conducting 40's of ramp-up measurements saves a
significant amount of time compared to conducting steady-
state measurements for several seconds at many revolution
levels. All data are then processed using scripts written in
MATLAB.

3 Classification method

The fault diagnosis approach presented here is a purely data-
driven one; i.e. it incorporates no physical knowledge about
the monitored system. This makes it on one hand much
more flexible and applicable to many other kinds of sys-
tems, machines or components. On the other hand, incorpo-
rating extra knowledge usually improves the diagnostic abil-
ity of a condition-monitoring system and reduces the neces-
sary amount of training data.

The proposed method applies a supervised-learning ap-
proach to annotated measurement data. In the presented ap-
plication, accelerometers measure vibrations that are caused
by the bearing to be monitored. For this purpose, the ac-
celerometer is mounted at the housing of the bearing (see
for instance Fig. 1). Since the fault state in the gearbox setup
is known, annotated data for classifier training are available.

WWww.j-sens-sens-syst.net/9/143/2020/



K. Pichler et al.: Data-driven vibration-based bearing fault diagnosis 147

Annotated training data ] [ Test data

) v

Feature extraction ] Feature extraction ]

[
[
!
[
[

]_I; Ground truth |

i (if available)

Feature selection

y

Classifier training

H Trained classifier ] Classifier

. N,
/
f
| i
E
- - i evaluation
Class information \

Figure 6. Block diagram of the proposed method.

The training procedure of the proposed method consists of
three steps:

— feature extraction from annotated data
— feature selection
— classifier training.

The evaluation procedure for new data consists of two
steps:

— extraction of the features selected in the training proce-
dure

— classifier evaluation.

All steps are described in more detail in the following sub-
sections. Moreover, the combination of training and test pro-
cedures is summed up in Fig. 6. From the annotated training
data, features are extracted, and the most significant features
for the classification task are selected. With these features, a
classifier is trained. From the test data, the features that were
selected before are extracted. The trained classifier is applied
to the features to obtain the estimated class information for
the test data. If the ground truth of the test data is available,
it can be used together with the estimated class information
to evaluate the classifier (confusion matrix, accuracy, etc.;
de Ridder et al., 2017).

3.1 Feature extraction

In the first step, a large number of features is extracted in
a sliding-window approach from the raw accelerometer sig-
nals. Feature extraction for vibration analysis has been dis-
cussed in numerous publications; extensive reviews can be
found for instance in Wang et al. (2017) and Singh and Vish-
wakarma (2015). The extraction of typical statistical features
in the time domain is described in Sharma and Parey (2016),
Lei et al. (2007), Shen et al. (2013), Decker and Lewicki
(2003), Alattas and Basaleem (2007), Boldt et al. (2013),
Jalil et al. (2013), Suma and Gurumurthy (2010), and Kol-
lialil et al. (2013). Features in the time—frequency and fre-
quency domains are proposed and investigated in Sharma
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and Parey (2016), Lei et al. (2007), Alattas and Basaleem
(2007), and Boldt et al. (2013). Typical symptom parame-
ters in the frequency domain for rotating machinery are ex-
tracted in Wang and Chen (2007). Adopting the spectral kur-
tosis for vibration monitoring is examined in Rao (2015) and
Antoni and Randall (2006). In McClintic et al. (2000) and
Assaad et al. (2014), features of residual and difference sig-
nals are extracted by using for instance autoregressive mod-
els. Features in the wavelet domain are introduced in Hei-
dari Bafroui and Ohadi (2014), Jafarizadeh et al. (2008), Ba-
jric et al. (2016), and Kollialil et al. (2013). Satyam et al.
(1994) and Konstantin-Hansen and Herlufsen (2010) exam-
ine vibration analysis in the cepstral domain. The application
of synchronous time averaging is demonstrated for instance
in McFadden and Toozhy (2000). We implemented a broad
selection of the proposed features to analyse the measured
data. Overall, 83 features were extracted. Amongst the fi-
nally selected features of a time series x = x1, x2, ..., X, were
for instance the root mean square (RMS; Sharma and Parey,
2016) as

Xrms = 6]

or the interquartile range (Kollialil et al., 2013) as

Xiga = X0.75 — X0.25, )

where

« | 3Onp+Yaps1) ifn-peN 3

£, = . 3)
Yin-p+1] if n-p ¢ N

and y; <y <... <y, are the sorted values of x.
Also the symptom parameters (Wang and Chen, 2007) of

by | Zict i SUD @
YL SRS
and
o

where f;, i =1,...,N are the frequency bins, S(f;) is the
power spectrum,

oo [ EEUT 50

N—1 ©
and
— X fi S
f==— @)
ZzNzls(fi)

are amongst the top features. However, for confidentiality
reasons we are not allowed to name the exact features that
were chosen in each particular test. Therefore, we use ab-
stract feature numbers in the following sections.
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3.2 Feature selection

In the next step of the supervised-learning approach, the di-
mensionality of the feature space is reduced to avoid the
curse of dimensionality (Bellman, 2003). Therefore, the sig-
nificant features are identified by feature selection proce-
dures as described in Guyon and Elisseeff (2003). In par-
ticular, a standard forward-selection-filter algorithm select-
ing one feature per step was applied. As the selection cri-
terion in each step of forward selection, we use the robust
Dy-Brodley distance measure (Dy and Brodley, 2004). As-
suming a dataset with C € N classes in a k-dimensional fea-
ture space, the feature values for each class can be repre-
sented as a matrix of X, € R%>k ¢ e{1,...,C}, withn, € N
denoting the number of samples for class ¢. Then p, € R¥
and X, € R¥*k ¢ e({l,...,C}, denote the mean values and
covariance matrices of each class ¢, and u € R¥ denotes
the mean value over all classes. Defining the within-scatter
Sw € REXk ag

C
ne
Sw=) % ®)

C
ne T
SB:Z;L(ILC_”') (ﬂc—ﬂ), ©
c=1
where
C
n=y ne (10)
c=1
the Dy—Brodley distance measure is finally defined as
J=tr(sv‘v1 ~SB). (11)

Feature selection is stopped when the relative gain of the
selection criterion falls below 1 %. We also performed tests
with the Mahalanobis distance (McLachlan, 1999) as the se-
lection criterion; however, both distance measures resulted in
the same feature sets.

3.3 Classifier training

After feature extraction and selection, a classifier is trained
in the feature space. For that purpose, we use linear and
quadratic discriminant analysis (Hastie et al., 2009; de Rid-
der et al., 2017).

In this classification approach, the class conditional dis-
tributions of a new data sample x € R* are modelled as
P (x|c = ¢;) for each class ¢; € {1,...,C}. By using Bayes’
rule of

Pxlc=c¢)-P(c=c¢)
P(x)

_ P(xlc=¢;) - P(c=c;) (12)

YemiP(xle=c;) Ple=c))

P(c=cilx)=
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Figure 7. Normal probability plots of the feature interquartile
range, 3000 rpm data, PCB sensor, and states Healthy2 and Faulty2.

and selecting the class ¢; with highest conditional probabil-
ity, a class prediction can be made. In the application ex-
ample of this paper, the classes are “Healthy”, “Indent” and
“Fault”. In discriminant analysis, P (x|c) is modelled as a
multivariate normal distribution with density

P(xlc=ci)=

1 o ) = () (13)

1 ’

@m)? - |2 |

where the prior probabilities P (¢ = c;), the class mean val-
ues ft., and the class covariance matrices X, are estimated
from training data. Equation (13) represents the quadratic
case of discriminant analysis. In the linear case, the normal
distributions for each class are assumed to have the same co-
variance matrix, i.e. X, = X for¢; € {1,...,C}.

The validity of using normally distributed classifiers was
checked by normal probability plots of the feature vectors
(see for instance the feature interquartile range for two states
in Fig. 7).

The supervised-learning approach implies that the method
depends on having a sufficient amount of annotated training
data for all states (failure modes) to be monitored. There are
also classifiers for one-class classification (also referred to
as novelty detection) available (Tax, 2001). However, those
techniques detect only a deviation from a nominal state and
are thus prone to overdetection due to changing operation
modes. Furthermore, the feature selection process depends
on having an annotated dataset as well. For the ALT test no
training data from different states were available; hence we
used a novelty detection technique. For that purpose, the fea-
tures selected in the gearbox test are observed by cumulative-
sum (CUSUM) control charts (Hawkins and Olwell, 1998).
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Given annotated training data, the whole process of feature
extraction, feature selection and classification can be fully
automated. The more useful the information in the training
data is, the better the resulting feature subset and classifier
are. In this context, information means different states, rota-
tion speed, repeated measurements with different samples of
the same bearing type and so on.

3.4 Evaluation of new data

The process of evaluating a new data sample is straightfor-
ward: the selected features are extracted in a sliding-window
approach from the raw accelerometer signals, and the clas-
sifier is applied to those features. Since many classifiers are
able to deliver class membership probabilities, it is generally
also possible to determine instances lying between two dis-
tinct states. However, we restrict here the evaluation to crisp
class decisions by detecting the maximum class probability
for each observation.

If a set of new samples (i.e. the test dataset) contains the
true class information (the ground truth), the estimated class
can be compared to the ground truth to evaluate the quality
of the classifier. For that purpose, many measures like ac-
curacy, balanced accuracy, confusion matrices and receiver-
operating-characteristic (ROC) curves are proposed in the lit-
erature (de Ridder et al., 2017).

4 Results

The results obtained by the proposed method are presented
in this section. The accelerated lifetime test results are ad-
dressed first. This is followed by the results of the gearbox
test.

4.1 Accelerated lifetime test

In the ALT test, the features were extracted from the raw
accelerometer signals in an overlapping sliding-window ap-
proach (window length of 0.2s and overlap of 0.1s). That
yields 199 observations per 20 s data batch. However, for fi-
nal evaluation, only the mean value of those 199 observa-
tions of a data batch is observed. Unlike the gearbox setup,
we had no data of different health states available for fea-
ture selection and classifier training in the accelerated life-
time test. Therefore we could not strictly follow the evalua-
tion scheme proposed in Sect. 3. We were rather restricted to
detect significant changes in the feature values. For that pur-
pose, CUSUM control charts were applied to the behaviour
of a feature over time. Due to the missing feature selection
step, we evaluated the top-ranked features of the gearbox test.
All of those features increased significantly towards the end
of the test run for the 9.0kN as well as for the 1.5kN load
conditions. For instance, feature 20 is depicted in Fig. 8.
Due to the increasing feature value, the upper threshold of
the CUSUM control chart is exceeded after approximately
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Figure 8. Feature values and CUSUM control charts for feature 20
in the ALT test for load 9.0kN (a) and 1.5kN (b).
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Figure 9. Feature values and CUSUM control charts for feature 2
in the ALT test for load 9.0kN (a) and 1.5kN (b).

7.3h in the 9.0kN case and 7.9 h in the 1.5kN case, indicat-
ing a failure of the bearing. This result shows that the fea-
tures identified in the gearbox test can be used to perform
predictive maintenance of bearings by observing them using
CUSUM control charts. For control purposes, Fig. 9 shows
an arbitrarily chosen feature. The feature shows no signifi-
cant trend, and the CUSUM control charts do not exceed the
thresholds. This is a first indication that a wrongly chosen
feature will no produce overdetections.

4.2 Gearbox test

Just like in the ALT, the features for the gearbox test were
extracted from the raw accelerometer signals in an overlap-
ping sliding-window approach with a window length of 0.2 s
and an overlap of 0.1s, delivering again 199 observations
for each 20's data batch. After the extraction of all features,
the feature selection algorithm was applied to the 3000 and
1500 rpm motor speed data independently. For feature se-
lection, we did not use all available states. We used only
the datasets of the states Healthyl, Healthy2 and Faulty2,
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Figure 10. Scatterplot of top two features for the 3000 rpm PCB
dataset.

but we did not use Indent and Faultyl. This procedure tests
whether the method selects features that are suitable for
the other two states as well or not. After feature selection,
a quadratic-discriminant-analysis classifier, as described in
Sect. 3.3, is trained in the space of the selected and annotated
features. Only observations from the states Healthy2, Indent
and Faulty?2 are used for classifier training to test the gener-
alizability of the proposed method. Moreover, for feature se-
lection and classifier training, just two arbitrarily chosen data
batches from each of the three states are used. That means
that 199 -2 -3 = 1194 observations were available for train-
ing. After training, validation was performed with another
arbitrarily chosen 20 s data batch from all five bearing states,
hence, 199 -1-5 =995 observations. However, as the target
class of the classifier we did not use those five states, but we
only used the simplified states Healthy (containing Healthy1
and Healthy?2), Indent and Faulty (containing Faultyl and
Faulty2). Since the states Healthy1 and Healthy2 and Faulty
and Faulty2 are very similar, there is no reason to discrimi-
nate between them; in fact they are even supposed to produce
similar feature values. As evaluation criteria, we use classifi-
cation accuracy and the confusion matrix.

First, we evaluate the data of the high-end PCB accelerom-
eter. For the 3000 rpm motor speed data, the algorithm se-
lected three top-ranked features, and for the 1500 rpm data
it selected four top-ranked features. However, for a first vi-
sual impression we show only the top two features for all
recorded states and rotation speeds in a scatterplot in Fig. 10
(3000 rpm) and Fig. 11 (1500 rpm).

The scatterplots already indicate a few possible conclu-
sions:

— Different top features were selected for the different ro-
tation speeds.

— The 3000 rpm dataset revealed better separability.

— Faultyl and Faulty2 produced similar feature values.

J. Sens. Sens. Syst., 9, 143—-155, 2020

«10° PCB, 1500 rpm

257 [+ Healthy1 il

* Healthy2
© Indent
= Faulty1
o Faulty2

N

Feature 74
&

20 25 30 35
Feature 63

Figure 11. Scatterplot of top two features for the 1500 rpm PCB

dataset.

Table 1. Confusion matrix for 3000 rpm PCB data and the top three
features.

Estimated state

Healthy Indent Faulty

Healthy1 192 7 0

Healthy2 199 0 0

True state  Indent 0 199 0
Faultyl 0 0 199

Faulty2 0 0 199

— In the 3000 rpm dataset, the Indent class lies somewhere
in between the healthy and the faulty states.

According to the feature selection step, the 3000 rpm data
were validated with the top three features, and the 1500 rpm
data were validated with the top four features. The validation
yields 99.30 % accuracy for the 3000 rpm data (confusion
matrix in Table 1) and 82.41 % accuracy (confusion matrix
in Table 2) for the 1500 rpm data. That result confirms the
first conclusion above: the separability of the states Healthy,
Indent and Faulty in the 3000 rpm case is satisfying, while it
is worse in the 1500 rpm case. Especially the state Healthy1
is misclassified in the 1500 rpm case. Since Healthy1 was not
used for classifier training, it is obviously more likely to be
misclassified.

To compare the results of the PCB sensor with the MEMS
sensor, we extracted the same features from the raw ac-
celerometer data of the MEMS sensor and validated them
in the same way. In the 3000 rpm case that yields 93.67 %
accuracy (confusion matrix in Table 3; scatterplot of the top
two features in Fig. 12), and in the 1500 rpm case that yields
78.99 % accuracy (confusion matrix in Table 4; the scatter-
plot of the top two features in Fig. 13). In both cases, the
accuracy of the low-cost MEMS sensor data is lower than
the accuracy of the high-end PCB sensor data. However, one
might argue that the comparison is not fair, since the feature
selection was performed with the PCB data. In our experi-
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Table 2. Confusion matrix for 1500 rpm PCB data and the top four
features.

Estimated state

Healthy Indent Faulty

Healthyl 33 166 0

Healthy?2 198 1 0

True state  Indent 5 194 0
Faulty1 0 0 199

Faulty2 3 0 196

Table 3. Confusion matrix for 3000 rpm MEMS data and the top
three features.

Estimated state

Healthy Indent Faulty

Healthyl 199 0 0

Healthy?2 138 61 0

True state  Indent 2 197 0
Faulty1 0 0 199

Faulty2 0 0 199

Table 4. Confusion matrix for 1500 rpm MEMS data and the top
four features.

Estimated state

Healthy Indent Faulty

Healthy1 22 177 0

Healthy2 199 0 0

True state  Indent 8 185 6
Faulty1 0 0 199

Faulty2 11 7 181

ments, the MEMS sensor did not perform significantly better
when the feature selection was performed using the MEMS
data.

Since the effort for making steady-state speed measure-
ments at every possible speed level is too high, it is desir-
able to have a less costly training data acquisition procedure.
Therefore, we also tested the feasibility of using the ramp-up
measurements for training a classifier. For that purpose, the
target speed v rpm of the steady-state validation data is used
to select a subset of the ramp-up data for classifier training.
More specifically, we use the ramp-up data that represent a
motor speed of v = v¢ =20 rpm for training. With that data,
the classifier is trained and applied to the steady-state valida-
tion data in the same way as described above. The accuracy
values can be seen in Table 5, and the according confusion
matrices are in Table 6 (3000 rpm PCB), Table 7 (3000 rpm
MEMS), Table 8 (1500 rpm PCB) and Table 9 (1500 rpm
MEMS). We see again that the high-end PCB sensor delivers
better accuracy than the low-cost MEMS sensor. Moreover,
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Figure 12. Scatterplot of top two features for the 3000 rpm MEMS
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Figure 13. Scatterplot of top two features for the 1500 rpm MEMS
dataset.

a higher motor speed allows for more accurate classification
than a lower motor speed. However, all accuracy values are
too low for a reliable condition-monitoring system.
Interestingly, the accuracy increases significantly when an
offset ® is added to each dimension of the normalized fea-
ture space (normalizing each dimension of the feature space
to u =0 and o = 1 is a standard procedure in pattern recog-
nition). For the PCB sensor data, an offset value of ®pcg =
—0.25 is the best choice, while for the MEMS sensor data,
an offset value of ®ypems = —0.75 delivers the best results.
The related accuracy values with the additional offsets can
be seen in Table 10; the confusion matrices are found in Ta-
ble 11 (3000 rpm PCB), Table 12 (3000 rpm MEMS data),
Table 13 (1500 rpm PCB) and Table 14 (1500 rpm MEMS).
In all cases, the accuracy increases by adding the offset to
the normalized feature space. This fact might be due to dy-
namic effects of the ramp-up measurements; however, the ex-
act reason will be the subject of further investigations of the
data in the future. In this test, the same offset was added to
all dimensions of the feature space. An individual offset for
each dimension might further increase the accuracy. The off-
set was determined by a simple grid search approach using
accuracy as the target value. For future applications it is de-
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Table 5. Accuracy values for classifier training with ramp-up data.

Accelerometer
PCB MEMS
Motor speed 3000 83.12%  80.50 %
P 1500 66.73%  56.99 %

Table 6. Confusion matrix for 3000 rpm PCB data and the top three
features, classifier trained with ramp-up data.

Estimated state

Healthy Indent Faulty

Healthy1 100 99 0

Healthy2 133 66 0

True state  Indent 0 196 3
Faulty1 0 0 199

Faulty2 0 0 199

Table 7. Confusion matrix for 3000 rpm MEMS data and the top
four features, classifier trained with ramp-up data.

Estimated state

Healthy Indent Faulty

Healthy1 183 16 0

Healthy?2 197 2 0

True state  Indent 0 23 176
Faulty1 0 0 199

Faulty?2 0 0 199

sirable to find a way for a more sophisticated determination
of an optimal offset.

As stated before, feature selection was performed for the
3000 rpm data and the 1500 rpm data separately. However, as
stated in Sect. 1, it is desirable that the same feature set can
be used for different revolution speeds to make the approach
more universally applicable. Hence we also applied the fea-
tures of the 3000 rpm data to the 1500 rpm data to assess the
generalizability of those features. The resulting accuracy val-
ues for the test runs with steady-state and with ramp-up train-
ing data are shown in Table 15. In most cases (except the
1500 rpm MEMS data in the case of ramp-up training), the
accuracy using the optimal feature set for 1500 rpm and the
tested 3000 rpm feature set is rather similar. That implies that
the 3000 rpm feature set is basically applicable to both cases.
However, the accuracy values for the 1500 rpm case are too
low for reliable bearing fault detection.

5 Conclusions

In this paper, we evaluate a previously proposed approach
for the data-driven fault detection of bearings with regard to
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Table 8. Confusion matrix for 1500 rpm PCB data and the top three
features, classifier trained with ramp-up data.

Estimated state

Healthy Indent Faulty

Healthy1 8 191 0

Healthy2 186 4 9

True state  Indent 127 72 0
Faultyl 0 0 199

Faulty2 0 0 199

Table 9. Confusion matrix for 1500 rpm MEMS data and the top
four features, classifier trained with ramp-up data.

Estimated state

Healthy Indent Faulty

Healthy1 4 125 70

Healthy2 197 2 0

True state  Indent 0 154 45
Faultyl 0 1 198

Faulty2 155 30 14

Table 10. Accuracy values for classifier training with ramp-up data
and additional offset.

Accelerometer
PCB  MEMS
Motor s 3000 9699%  92.26%
Peed 1500 75.88%  58.69%

Table 11. Confusion matrix for 3000 rpm PCB data and the top
three features, classifier trained with ramp-up data, with an addi-
tional offset in the steady-state validation data.

Estimated state

Healthy Indent Faulty

Healthy1 179 20 0

Healthy2 189 10 0

True state  Indent 0 199 0
Faulty1 0 0 199

Faulty2 0 0 199

two main questions. Firstly, is it possible to train the pro-
posed classifier even with non-steady-state measurements?
Secondly, can the same feature sets be applied to different
revolution speeds of the bearings? For that purpose, appro-
priate data have been acquired on a test bench and used for
evaluation.

The results of this empirical study show that it is feasi-
ble to train the bearing fault diagnosis method with ramp-up

WWWw.j-sens-sens-syst.net/9/143/2020/



K. Pichler et al.: Data-driven vibration-based bearing fault diagnosis 153

Table 12. Confusion matrix for 3000 rpm MEMS data and the top
four features, classifier trained with ramp-up data, with an addi-
tional offset in the steady-state validation data.

Estimated state

Healthy Indent Faulty

Healthy1 197 1 1

Healthy2 193 6 0

True state  Indent 0 130 69
Faulty1 0 0 199

Faulty2 0 0 199

Table 13. Confusion matrix for 1500 rpm PCB data and the top
three features, classifier trained with ramp-up data, with an addi-
tional offset in the steady-state validation data.

Estimated state

Healthy Indent Faulty

Healthy1 54 145 0

Healthy?2 185 8 6

True state  Indent 81 118 0
Faulty1 0 0 199

Faulty2 0 0 199

data if the additional constant is added to the normalized fea-
ture space. The accuracy decrease is acceptable compared to
steady-state training data, except for the case of the MEMS
sensor and low revolution speed of 1500 rpm. A similar con-
clusion can be drawn regarding the other main goal of the
paper. The 3000 rpm feature set performs acceptable even on
the 1500 rpm data (compared to the 1500 rpm feature set).
Again, the only exception is the 1500 rpm ramp-up data with
the MEMS sensor, which delivers just the baseline accuracy.
Overall, the accuracy of the 1500 rpm test is too low for a
reliable fault diagnosis system.

Furthermore, it can be concluded that the classification ac-
curacy increases with the higher rotational speed of the bear-
ing, and the high-end PCB sensor allows for higher accuracy
values than the low-cost MEMS sensor. Hence it is not pos-
sible to save costs by using less expensive sensors without
accepting a ]significant decrease of detection accuracy.

The results of the ALT test show that an upcoming fault
can be detected considerably before total failure of the bear-
ing occurs. This leads to the conclusion that observing the
selected features with CUSUM control charts is applicable
for performing the predictive maintenance of bearings. In ad-
dition, a wrongly chosen feature does not lead to overdetec-
tions.

However, even though the results are promising, there are
still investigations to be made. As mentioned before, the clas-
sifier can be trained with dynamic ramp-up data, and an addi-
tional offset in the normalized feature space allows for clas-
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Table 14. Confusion matrix for 1500 rpm MEMS data and the top
four features, classifier trained with ramp-up data, with an addi-
tional offset in the steady-state validation data.

Estimated state

Healthy Indent Faulty

Healthy1 44 141 14

Healthy2 198 1 0

True state  Indent 4 174 21
Faulty1 21 14 164

Faulty2 167 28 4

Table 15. Accuracy values for using the 3000 rpm feature set for
the 1500 rpm data.

Accelerometer
PCB MEMS
Trainine data Steady-state data 79.80%  78.49 %
£ Ramp-up data (+ offset) 72.46%  40.00 %

sification results that are almost as good as training with
steady-state data. The exact reason for that offset will be
topic of future analysis of the acquired data. The offset in
the feature space was determined in a simple grid search ap-
proach. A more sophisticated choice of an optimal offset is
desirable for the future. Moreover, we tested just two steady-
state motor speeds. Further tests with more speeds will help
to evaluate down to what speed the method delivers satisfy-
ing results and which features are best suited for different
revolution speeds.
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licly available on a public repository. However, we do offer
condition-monitoring datasets to interested parties. The follow-
ing web page gives an overview of the available datasets: https:
/Iwww.flandersmake.be/en/dataset-condition-monitoring (last ac-
cess: 11 May 2020). Both of the setups that are used in the paper
(i.e. the gearbox and ALT setup) are listed on this page. A free sam-
ple is provided, but upon request a full dataset can be purchased
for e.g. algorithm development, testing or validation purposes. A
similar web page is https://www.flandersmake.be/en/datasets (last
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