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Abstract. Photoelasticity is considered a useful measurement tool for the non-destructive and contactless deter-
mination of mechanical stresses or strains in the production of silicon wafers. It describes a change in the indices
of refraction of a material when the material is mechanically loaded. As silicon has a diamond lattice structure,
the stress-dependent change in the refractive indices varies with the loading direction. In this work, an anisotropic
stress-optic law is derived, and the corresponding stress-optical parameters are measured using a Brazilian disc
test. The parameters were determined to be (π11−π12)= 14.4 · 10−7 MPa−1 and π44 = 9.4 · 10−7 MPa−1. The
results of this work are compared to previous works found in the literature, and the deviations are discussed.

1 Introduction

The photoelastic measurement of mechanical stresses is
based on the birefringence caused by mechanical stresses
(or strains). Birefringence describes the ability of materials
to split an incident electromagnetic wave into two refracted
waves instead of one (Zinth and Zinth, 2009). These two re-
fracted waves of light show different coefficients of refrac-
tion and different states of polarization depending on me-
chanical stresses. This change can be measured by a polar-
iscope, and mechanical stresses can be deduced from the
measured change (Wolf, 1961; Ramesh, 2000).

Photoelasticity was first described by David Brewster in
the early 19th century (Brewster, 1815, 1816), and the first
analytical models to describe it were published some years
later (Neumann, 1841; Pockels, 1889, 1906). In the early
20th century, the first industry applications for experimen-
tal stress measurements by means of photoelasticity can be
found (Wolf, 1961). Photoelasticity was a key method to de-
termine stresses by building models out of photoelastically
active materials. This was extensively used until numerical
methods, e.g. the finite element method, became more pow-
erful and convenient for the evaluation of stresses (Ramesh,
2000). However, photoelasticity is still used as an in-line
measurement method for glasses to directly measure me-

chanical stresses (Vivek and Ramesh, 2015). In the same
manner, it could be applied to production processes for sili-
con wafers, as silicon is transparent with respect to infrared
light. Some research, e.g. Lederhandler (1959), Brito et al.
(2005), Ganapati et al. (2010), Jagailloux et al. (2016) and
Herms et al. (2019), has been carried out in this field in re-
cent years.

A mechanical stress applied to a material susceptible to
stress-induced birefringence results in a change in the differ-
ence of the two polarization states and, hence, a change in
the indices of refraction n1 and n2:

1n= n1− n2. (1)

This change can be measured using a polariscope by mea-
suring the phase difference δ between the two refracted light
waves that increases with material thickness t :

δ = t (n1− n2) . (2)

For mechanically and photoelastically isotropic materials,
the phase difference δ is proportional to the difference in the
first and second principal stresses (σI, σII) for plane stress
conditions:
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Figure 1. Comparison of different reported models for photoelas-
ticity in silicon from the literature expressed as the difference 1n
between the coefficients of refraction (the orientations of differently
defined coordinate systems have been aligned).

δ = Ct (σI− σII) . (3)

The stress-optical coefficientC generally depends on the ma-
terial and wavelength. It relates the difference between the
principal stresses σI and σII to the phase difference δ.

Silicon has an inherent mechanical and photoelastic
anisotropy because of its lattice structure. Therefore, a cor-
responding model is required to determine the photoelastic
properties of silicon. For mechanically and photoelastically
anisotropic materials, Eq. (3) does not hold true. Silicon’s
lattice structure leads to a direction-dependent behaviour. In
the literature, there are several different models that aim to
describe the photoelastic properties of silicon. Some studies
explicitly state the model used (Liang et al., 1992; He et al.,
2004; Zheng and Danyluk, 2002), whereas others only in-
clude a brief description of their approach (Giardini, 1958;
Ajmera et al., 1988; Krüger et al., 2016). However, those that
explicitly state their derived model lead to different analyti-
cal expressions, even when based on the same approach, as
can be seen in Fig. 1.

Therefore, in this work, photoelasticity in silicon is revis-
ited and a new model based on the same phenomenologi-
cal approach for birefringence and photoelasticity as that in
Neumann (1841) and Pockels (1889, 1906) is derived to ad-
dress the disagreement among the different models in the
literature. Stress-optical parameters are determined by mea-
surement using a polariscope and a (100)-silicon wafer in a
Brazilian disc test. Results from this work are then compared
to works from the literature, and the deviations are discussed.

Figure 2. Indicatrix as an analogy to describe two indices of refrac-
tion for a certain direction of incident light in a birefringent mate-
rial.

2 Theoretical analysis: photoelasticity in {100}
silicon

Indices of refraction due to the birefringence of an unstressed
material can be described using Maxwell’s equations (Hecht,
2018; Zinth and Zinth, 2009). However, this approach leads
to impractically long terms. In order to simplify this, an anal-
ogy is used that consists of an ellipsoid which expresses the
material properties. In the literature, this ellipsoid is com-
monly called an index ellipsoid or an indicatrix. It is based
on an imaginary light ray falling into the centre of the indica-
trix. Perpendicular to this ray, a plane is constructed. The in-
tersection of the plane and the indicatrix results in an ellipse.
The lengths of the two half-axes of the ellipse correspond to
the two indices of refraction. This is shown in Fig. 2.

The indicatrix is a quadratic surface that generally has six
independent parameters:

Bijxixj = 1 for i,j = (1,2,3), (4)

in which Bij is a 3× 3 symmetric second-order tensor that
is material-dependent. It is called the impermeability tensor.
Vector xi represents a Cartesian coordinate system which is
defined in this work so that x1→ x, x2→ y and x3→ z. Us-
ing the Einstein summation convention, Eq. (4) is expanded
as follows:

B11x
2
+B22y

2
+B33z

2
+2B12xy+2B13xz+2B23yz= 1. (5)

By rotating the indicatrix to align with the (x, y, z)-
coordinate system used, it can be expressed using just three
independent values:

BIx
2
+BIIy

2
+BIIIz

2
= 1. (6)

Here, BI, BII and BIII are principal values of Bij . By defini-
tion, the indicatrix can also be expressed as the reciprocal of
the squared indices of refraction (nI, nII, nIII):

1
n2

I
+

1
n2

II
+

1
n2

III
= 1, (7)
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or, in a more general form, as

Bij =
1
n2
ij

. (8)

The phenomenological approach by Neumann (1841) and
Pockels (1889, 1906) to describe photoelasticity in stressed
materials links the change in impermeability 1Bij to the
mechanical stress tensor σij and the mechanical strain ten-
sor εij , respectively, using a fourth-order tensor. In terms
of the analogy used, this means that mechanical stresses or
strains deform the indicatrix by changing the impermeability
matrix Bij by 1Bij :

1Bij = πijklσkl = pijklεkl . (9)

Here, πijkl and pijkl are the stress-optical and strain-
optical tensors, respectively. Both can be expressed by
one another considering Hooke’s law for linear elasticity
(Narasimhamurty, 1981). Therefore, in this work, only the
stress-optical relationship is considered.

The change in impermeability is expressed as the dif-
ference between impermeability matrices Bij and Boij in a
stressed and unstressed state. Using Eq. (8), they can be ex-
pressed by the refraction indices nij and noij :

1Bij = Bij −B
o
ij , (10a)

1Bij =
1(
nij
)2 − 1(

noij

)2 . (10b)

By converting them to a common denominator, this can be
rewritten as follows:

1Bij =

(
noij + nij

)(
noij − nij

)
(
nij
)2(
noij

)2 . (11)

The change in impermeability is assumed to be small com-
pared with the unstressed impermeability, meaning that nij ≈
noij . Thus, two simplifications can be made:(
noij

)
+
(
nij
)
≈ 2noij , (12a)(

noij

)2(
nij
)2
≈

(
noij

)4
. (12b)

With the above-mentioned simplifications, Eq. (11) can be
expressed as follows:

1Bij ≈
2(
noij

)3

(
noij − nij

)
. (13)

This links a change in the indices of refraction to the
change in impermeability 1Bij and, therefore, to mechan-
ical stresses using Eq. (9). In the following, the approxima-
tion sign is omitted, although it is still an approximation that

is only valid for small changes in impermeability. Rearrang-
ing Eq. (13) yields the following:

(
nij − n

o
ij

)
=−

(
noij

)3

2
1Bij . (14)

For an indicatrix whose half-axes are aligned to the coordi-
nate system, this leads to a set of three equations:

(
nI− n

o
I
)
=−

(
noI
)3

2
1BI, (15a)

(
nII− n

o
II
)
=−

(
noII
)3

2
1BII, (15b)

(
nIII− n

o
III
)
=−

(
noIII
)3

2
1BIII. (15c)

With respect to Eq. (9), the change in the indices of re-
fraction can be calculated for stress state σij using stress-
optical tensor πijkl . Because the impermeability and the
stress tensor are both symmetric second-order tensors, the
stress-optical tensor πijkl also has to show certain symme-
tries (Narasimhamurty, 1981). This allows it to be written as
a 6× 6 matrix in Voigt notation. In this form, indices ij and
kl of the tensor πijkl are reduced to 11→ 1, 22→ 2, 33→ 3,
23→ 4, 13→ 5 and 12→ 6. In the following, Voigt nota-
tion will be indicated by (V).

Due to the diamond structure of monocrystalline silicon,
there are only three independent parameters of the stress-
optical tensor (Narasimhamurty, 1981):

π
(V)
ij =


π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

 . (16)

Attention has to be paid to accounting for the appropriate
coefficients while converting from tensor notation to Voigt
notation (Narasimhamurty, 1981). Accordingly, the stress-
optical parameters π (V)

ij in Voigt notation are related to the
stress-optical coefficients πijkl in tensor notation by the fol-
lowing equation:

π
(V)
11 = π1111, π

(V)
12 = π1122 and π (V)

44 = 2π2323. (17)

In order to account for different crystalline orientations of sil-
icon, a rotation matrix Rij is introduced. The rotated stress-
optical tensor π ′ijkl accounts for different orientations of the
silicon lattice structure by applying a rotation matrix Rij to
it as follows:

π ′ijkl = RimRjnRkoRlpπmnop. (18)

For simplicity, in the following only mechanical stresses in-
plane with the (100) plane of silicon are discussed. The [100]
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direction is further assumed to be parallel to the z axis of the
coordinate system. A situation in which these simplifications
arise is represented by a (100)-silicon wafer, as shown in
Fig. 3. In this case, rotation matrix Rij (φ) describes a clock-
wise rotation around the z axis by an angle φ, which is the
angle between the [010] direction and the x axis:

Rij =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 . (19)

As the (100)-silicon wafer is considered sufficiently thin,
only plane stresses are evaluated:

σij =

σ11 σ12 0
σ12 σ22 0
0 0 0

 . (20)

Inserting rotation matrix Rij (φ) into Eq. (18) and applying
both to Eq. (9) yields the change in the impermeability ten-
sor 1Bij for a plane stress state:

1Bij =

B ′11(φ) B ′12(φ) 0
B ′12(φ) B ′22(φ) 0

0 0 B ′33

 . (21)

If the incident light ray falling onto the indicatrix is paral-
lel to the z axis of the chosen coordinate system, Eq. (15c)
can be neglected. Therefore, the change in the indices of
refraction can be expressed by subtracting Eq. (15b) from
Eq. (15a). Further, the natural birefringence is compara-
bly small against stress-induced birefringence, meaning that
noij = n

o (Krüger et al., 2016), yielding the following:

(nI− nII)=−
(no)3

2
(1BI−1BII) . (22)

To obtain the principal values1BI and1BII, a simple eigen-
value analysis on the impermeability tensor of Eq. (21) can
be performed:

1BI =
1
4

(
a−
√
b+ cd

)
, (23a)

1BII =
1
4

(
a+
√
b+ cd

)
, (23b)

in which

a = 2(π11+π12) (σ11+ σ22) , (24a)

b = 2
(

(π11−π12)2
+π2

44

)(
4σ 2

12+ (σ11− σ22)2
)
, (24b)

c = 2
(

(π11−π12)2
−π2

44

)
, (24c)

d =
(
−4σ 2

12+ (σ11− σ22)2
)

cos4φ+ 4σ12 (σ11− σ22) sin4φ. (24d)

Inserting the principal values of Eqs. (23a) and (23b) into
Eq. (22) yields the stress-optical law for a {100}-silicon
wafer:

1n= (nI− nII)=
(no)3

4

√
b+ cd, (25)

Figure 3. Orientation of the indicatrix on a {100}-silicon wafer to
describe the birefringence with reference to the global (x, y, z) co-
ordinate system where the x–y plane is located on the [001] plane.

or, in more detail,

1n=
(no)3

4

[
2
(

(π11−π12)2
+π2

44

)
(

4σ 2
12+ (σ11− σ22)2

)
+ 2

(
(π11−π12)2

−π2
44

)
((
−4σ 2

12+ (σ11− σ22)2
)

cos4φ

+4σ12 (σ11− σ22) sin4φ)]
1
2 . (26)

From this equation it can be seen that there are only two
material-dependent parameters, as the difference between
(π11−π12) cannot be separated.

To describe a photoelastically isotropic material the stress-
optical tensor πijkl of Eq. (16) is replaced with a stress-
optical tensor for an isotropic material (Narasimhamurty,
1981):

π
(V)
iso =
π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π11−π12 0 0
0 0 0 0 π11−π12 0
0 0 0 0 0 π11−π12

 . (27)

Following the same derivation as for the anisotropic case, the
stress-optical law reduces to the following equations:

1n=
(no)3

2
(π11−π12)

√
(σ11− σ22)2

+ 4σ 2
12, (28a)

1n=
(no)3

2
(π11−π12) (σI− σII) , (28b)

which is equivalent to the law for isotropic photoelasticity
as given in the literature (Wolf, 1961; Ramesh, 2000). The
same can be achieved by replacing π44 with (π11−π12) in
Eq. (26). The model derived is shown in Fig. 4 for three ar-
bitrary parameter combinations, including one for isotropic
parameters.
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Figure 4. The stress-optical model derived for a {100}-silicon
wafer with three arbitrarily chosen parameter combinations.

Figure 5. Brazilian disc test for a load along the [011] direc-
tion used to determine stress-optical parameters for a (100)-silicon
wafer.

3 Measurement of stress-optical coefficients

In order to measure the coefficients of πijkl , a Brazilian disc
test was used (as depicted in Fig. 5). The stress-induced re-
tardation was measured using a grey field polariscope, as
shown in Fig. 6. In parallel, mechanical stresses σ11, σ22 and
σ12 were determined using the finite element method with
Ansys Mechanical APDL. This allows for a full mapping
of mechanical stresses onto the measured retardation values
with consideration of the anisotropic mechanical response
of a (100)-silicon wafer. Retardation values and stresses
were correlated using Eq. (26) to determine the parame-
ters (π11−π12) and π44.

The grey field polariscope uses circularly polarized light
in the near-infrared spectral range. With this device, retar-
dation values up to a quarter of the wavelength utilized can
be measured without manual determination of fringe values.
The measurement principle is described in detail elsewhere
(Horn et al., 2005). Linked to the polariscope is a computer
that calculates the retardation and the orientation of the op-
tical axes from measured light intensities and saves both in
ASCII format.

The Brazilian disc test consists of two diametrically placed
clamping jaws that load the wafer on its thin sides. Force
on the jaws is manually applied by a screw and is measured

Figure 6. Grey field polariscope (Horn et al., 2005) consisting of
(a) a light source, (b) a linear polarizer, (c) a quarter wave plate,
(d) a probe, (e) a rotating linear polarizer and (f) a camera.

by a load cell. To mitigate high contact stresses, several lay-
ers of adhesive tape were placed in the contact areas of the
jaws. This leads to a reduction in the applied force due to
the relaxation of the tape material, which was taken into ac-
count by waiting for about 5 min before each measurement.
For all measurements, the difference between start and end
force was smaller than 0.1 N for an applied force of 10 N.
This load is sufficient for a distinct measurable photoelastic
signal without buckling the wafer. Buckling was observed to
start at approx. 20 N.

The wafer was manually inserted between the clamping
jaws. In total, 28 measurements were carried out for angles
from −60 to 60◦ with respect to the [011]-wafer direction.
Angles were varied in increments of approx. 2.5◦. The ori-
entation of the wafer was measured graphically from video
data from the polariscope as the angle between the clamping
jaw edge and the wafer flat.

For the finite element simulation of the Brazilian disc test,
19 200 elements with a quadratic displacement function were
used in a linear elastic simulation. For each measurement, the
mechanical stresses were simulated considering the specific
applied load and the wafer orientation.

Figure 7 shows the measured retardation values and the
simulated stresses as an example of loading along the
[011] direction of the wafer. From these, mechanical stresses
and retardation measurements were taken to determine the
stress-optical coefficients using a least-squares fit algorithm
for Eq. (27). The stress-optical coefficients were deter-
mined to be (π11−π12)= 14.4 ·10−7 MPa−1 and π44 = 9.4 ·
10−7 MPa−1. The fitted model of Eq. (27) shows a coeffi-
cient of determination (R2) of 0.81 for the angle-dependent
stress-optical coefficients, and it is deemed to be a good fit.
The levels of confidence were estimated by 10 repeated mea-
surements for wafer orientations of 0 and 45◦. Confidence
intervals for the measurement of wafer angles were assumed
to be ±1◦ at a 95 % confidence level. To estimate the con-
fidence level of the fitted parameters, a Monte Carlo simu-
lation for the non-linear fit of Eq. (27) was carried out. In
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Figure 7. Example of measured retardation δ values and simulated stresses σ11, σ22 and σ12 for a loading direction of φ = 45◦ and a load
of F = 10 N.

Figure 8. Stress-optical law for a {100}-silicon wafer with 95 %
confidence level (blue band), and the angle-dependent stress-optical
coefficients C(φ) with a 95 % confidence level (yellow). Stress-
optical coefficients are displayed neglecting shear stresses.

Fig. 8, retardation δ based on Eq. (27) is shown for a nor-
malized wafer thickness t and a normalized stress difference
(σI−σII) with measured stress-optical coefficients. Also, the
angle-dependent isotropic coefficients C(φ) based on Eq. (3)
for each measurement are plotted. Confidence intervals for
the determined wafer orientations are smaller then the plot-
ted dot in Fig. 8 and are therefore omitted.

4 Discussion

In comparison to models given in the literature, the stress-
optical law derived in this work shows a close resemblance in
shape to the work of Liang et al. (1992) and He et al. (2004).
This can be seen in Fig. 9 for a normalized stress differ-
ence and a normalized wafer thickness. The work by Zheng
and Danyluk (2002) shows a higher degree of anisotropy
then other models. Quantitatively, this work shows a stronger
stress-optical effect then studies in the literature (Liang et al.,
1992; Zheng and Danyluk, 2002; He et al., 2004). This is
reflected by the determined stress-optical coefficients which
are higher then previously reported values, as shown in Ta-
ble 1.
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Table 1. Stress-optical coefficients for a (100) silicon from experiments in this study and from the literature.

(π11−π12)× 10−7 MPa−1 (π44)× 10−7 MPa−1

This work 14.4 9.4
Liang et al. (1992) −12.2 6.5
He et al. (2004) 9.9 6.5
Zheng and Danyluk (2002) −12.2 −6.5
Giardini (1958) −14.4 −5.0

Figure 9. Comparison of the model derived using parameters de-
termined in this study to works from the literature. Shear stresses
are neglected (σ12 = 0).

The sign of the stress-optical parameters depends on the
definition of the sign of tensile and compressive stresses.
Tensile stresses are considered positive stresses in this work.
However, due to the measurement principal, the sign of the
measured retardation value can not be determined. There-
fore, the stress-optical parameters are assumed to be positive.
The signs of the stress-optical parameters from the literature
in Table 1 are as reported in the studies listed.

Although the model has a similar shape to those in the
studies by He et al. (2004) and Liang et al. (1992), the
mathematical expressions differ between the models. This
is despite the fact that all models stem from the same gen-
eral approach for photoelasticity given by Neumann (1841)
and Pockels (1889, 1906). Only for the isotropic case with
parameters (π44 = π11−π12) are all models except for the
model from Zheng and Danyluk (2002) identical. For this
case, the models show the expected direction-independent
stress-optical constant, as is shown in Fig. 10. The model
from Zheng and Danyluk (2002) only becomes isotropic for
a parameter combination of π44 = 2(π11−π12).

For more detailed comparison, the rotated stress-optical
tensors π ′ijkl and π (V)

ij derived in this work and in He et al.
(2004), respectively, are identical, considering that the defini-
tion of the angle φ in He et al. (2004) is the angle between the

Figure 10. Comparison of the model derived in this study to models
from the literature for the isotropic case of π44 = (π11−π12).

[010] direction of the crystal lattice and the principal axis of
the stress tensor. For Liang et al. (1992) and Zheng and Dany-
luk (2002), this correspondence could not be established. Ad-
ditionally, Liang et al. (1992) derived the stress-optical law
assuming that the direction of incident light is lying in plane
to the plane stress. In the work of He et al. (2004), a sim-
plification is made by stating that the principal direction of
the stress tensor σij coincides with the principal direction
of the impermeability tensor 1Bij . This allows for an easier
theoretical determination of 1BI and 1BII. In practice, this
means that at the principal direction of the impermeability
tensor must first be measured (e.g. by measuring the isoclinic
angle), and the stress-optical tensor πijkl must then be rotated
accordingly. However, this assumption leads to a deviation of
up to 4 % (8 % using the parameters determined by He et al.,
2004) by ignoring off-diagonal terms of 1Bij . This devia-
tion does not occur upon determination of 1BI and 1BII
in an eigenvalue analysis in this work. The model from He
et al. (2004) for 1n can be reduced to an expression where
only the difference in principal stresses σI− σII occurs. The
model derived in this work cannot be reduced to that. For
this model, 1n is always dependent on the stresses σ11, σ22
and σ12.

Figure 7 shows a measured retardation for a loading direc-
tion of φ = 45◦. Measurements with slight asymmetric re-
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tardation maps were also found. This can be caused by mis-
alignment of the clamping jaws, i.e. the two opposite forces
compressing the silicon wafer do not lay on the same axis.
This can lead to a deviation in the stress field. However,
the comparison of the different experimental set-up results
showed no strong influence on the experimental results here.
In general, numerical analyses indicated that even a small
misalignment influences the values of π44 more strongly
than (π11−π12).

5 Summary and conclusion

Using the approach from Neumann (1841) and Pockels
(1889, 1906) for describing stress-induced birefringence, a
model was derived for the stress-optical effect in silicon.
This model contains two independent stress-optical param-
eters (π11−π12) and π44. The stress-optical parameters were
determined to be (π11−π12)= 14.4 ·10−7 MPa−1 and π44 =

9.4 · 10−7 MPa−1. using a Brazilian disc test and a finite el-
ement simulation. In total, 46 measurements were used to
determine the parameters by loading a (100)-silicon wafer
under different angles.

In appearance, the model derived shows a similar shape to
those from Liang et al. (1992) and He et al. (2004). How-
ever, they differ with respect to their mathematical expres-
sion. The derivation of the stress-optical law from He et al.
(2004) could be reproduced in part, while a simplification
made by He et al. (2004) that introduces a certain error was
not necessary in the model in this work. It determines the
stress-optical law for a (100)-silicon wafer and, hence, al-
lows for a more precise characterization of the mechanical
stresses.

The determined parameter values are fairly large com-
pared with those from the literature. However, considering
the different sources of error in the experiment and simula-
tion, the values here tend to increase rather than decreasing
toward a better quantitative match with literature parameters.
To get a closer match, either the measured retardation val-
ues need to be higher or the simulated stresses need to be
lower. Unfortunately, neither the experimental or numerical
steps indicate an approach toward this behaviour. Hence, this
mismatch and the application of the model derived are the
focus of further research.
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