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Abstract. Research in magnetohydrodynamics (MHD) aims to understand the complex interactions of electri-
cally conductive fluids and magnetic fields. A promising approach for investigating complex instationary flow
phenomena are lab-scale experiments with low-melting alloys. They require a noninvasive flow instrumentation
for opaque liquids with a high spatiotemporal resolution, a low velocity uncertainty and a long measurement du-
ration. Ultrasound Doppler velocimetry can achieve multiplane, multicomponential flow imaging with multiple
linear ultrasound arrays. However the average raw data output amounts to 1.2GBs−1 at a frame rate of 33Hz
in a typical configuration for 200 transducers. This usually prevents long-duration measurements when offline
signal processing is used.

In this paper, we propose an online signal-processing chain for pulsed-wave Doppler velocimetry that is tai-
lored to the specific requirements of flow imaging for lab-scale experiments. The trade-off between measure-
ment uncertainty and computational complexity is evaluated for different algorithmic variants in relation to
the Cramér–Rao bound. By utilizing selected approximations and parameter choices, a prepossessing could be
efficiently implemented on a field-programmable gate array (FPGA), enabling a typical reduction of the data
bandwidth of 6.5 : 1 and online flow visualization. We validated the performance of the signal processing on
a test rig, yielding a velocity standard deviation that is a factor of 3 above the theoretical limit despite a low
computational complexity.

Potential applications for this signal processing include multihour flow measurements during a crystal-growth
process and closed-loop velocity feedback for model experiments.

1 Introduction

Many important industrial processes, such as continuous
steel casting and photovoltaic wafer production, involve
metal or semiconductor melt flows. The quality of the prod-
uct and the energy efficiency of the process strongly depends
on the flow behavior of the liquid (Müller and Friedrich,
2010; Gardin et al., 1995; Yasuda et al., 2007). A noncontact
way of influencing the flow of electrically conductive melts
is the application of magnetic fields that introduce Lorentz
forces to the fluid. Investigating the interaction of a magnetic
field with the flow pattern and optimizing the spatiotempo-
ral structure of the magnetic field for different applications

are subjects of ongoing research in magnetohydrodynam-
ics (MHD). Besides numerical simulations, low-temperature,
model-scale experiments are important tools for MHD inves-
tigations (Eckert et al., 2007b). They often require advanced
flow instrumentation for visualizing complex and instation-
ary flows in opaque liquids. A typical set of requirements for
MHD research are as follows:

– Noninvasiveness – the influence of the instrumentation
to the flow should be negligible (Eckert et al., 2007a).

– Flow imaging capability – the fluid’s velocity should be
visualized in multiple planes (2D) with two or three ve-
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locity components (2c or 3c) in order to adequately rep-
resent complex flow patterns.

– Spatial resolution – the relevant flow structures have to
be resolved, typically in the range of 10mm (Timmel
et al., 2011).

– Temporal resolution – fluctuations (typically at
1 . . .5Hz) have to be resolved in order to capture
instationary flows (Timmel et al., 2011).

– Long measurement duration – flow phenomena on dif-
ferent timescales should be adequately captured; for in-
stance, rapid spontaneous changes of the flow regime
in a rotating flow (Galindo et al., 2017) or in multihour
model experiments of the semiconductor crystallization
process (Thieme et al., 2017).

– Capability of near-wall measurements – in typical MHD
experiments, the metal melt is contained in a vessel. The
vicinity of the wall is especially important because the
Lorentz force is often concentrated in this region. Con-
trary to, for instance, medical applications, the walls can
be seen as completely stationary in most cases.

– Online capability – conducting long-running MHD ex-
periments requires the ability to examine the data during
the duration of the measurement. Some model experi-
ments in the semiconductor crystallization process even
benefit from an active control of parameters, like mag-
netic field intensity and temperature gradient, based on
the feedback from online velocity data to stabilize the
flow (Thieme et al., 2017).

A measurement system for flow mapping of opaque liq-
uids, namely the ultrasound array Doppler velocimeter
(UADV; Nauber et al., 2013a, b), was presented in previ-
ous publications. It extends the pulsed-wave Doppler princi-
ple (Takeda, 1986; Baker, 1970) by employing multiple lin-
ear sensor arrays to achieve multiplane, two-componential
flow imaging. The sensors are designed to achieve a lateral
resolution of ≈ 3mm in Galinstan (GaInSn). A combination
of spatial- and time-division multiplexing allows one to par-
allelize the scanning process for a planar velocity map; hence
increasing the temporal resolution compared to a strict se-
quential scan. However, online processing of the data for
200 transducer elements simultaneously on 32 channels at a
temporal resolution typically of 33Hz overburdens PC-based
hardware with 1.2GBs−1. Therefore, only discontinuous of-
fline measurements could be performed with a limited dura-
tion of a few seconds. This severely impedes the usability of
the UADV in the context of MHD experiments and restricts
the investigations into stationary or periodic flows.

Although several investigations on the measurement un-
certainty of Doppler velocity estimation methods for laser-
based instrumentation (Fischer et al., 2010), for flow-rate
measurements in a pipe (Furuichi, 2013), and for blood-flow

measurements in the human body (Lovstakken et al., 2007)
have been performed, no comprehensive measurement un-
certainty budget in the context of instrumenting an MHD ex-
periment has been presented to the knowledge of the authors.

This paper provides a signal-processing chain that is tai-
lored to the specific requirements of MHD model experi-
ments and shows a real-time implementation using a field-
programmable gate array (FPGA). It enables the UADV sys-
tem to perform long-duration measurements with high frame
rates and online flow visualization. Furthermore, we evalu-
ate the measurement uncertainty of the whole UADV sys-
tem in the context of MHD experiments and present an un-
certainty budget according to the methodology proposed by
the “Guide to the expression of uncertainty in measurement”
(GUM; JCGM, 2008) for a typical configuration.

2 Pulsed-wave ultrasound Doppler velocimetry

2.1 Measurement principle

In pulsed-wave ultrasound Doppler velocimetry (PW–UDV),
short bursts are emitted periodically with a pulse repeti-
tion frequency fPR (Baker, 1970). The emission times ts =
nb/fPR span the so-called slow-time axis ts, with nb =

0. . .NEPP being the bursts number. The emitted bursts usu-
ally consist of Nperiods periods of a sinusoidal wave, with the
frequency f0. As the bursts travel through the fluid, scatter-
ing particles reflect a fraction of the signal back to the ul-
trasound transceiver. The received echo signal z(tf, ts) is ac-
quired, starting from the emission time along the fast-time
axis tf. Figure 1 depicts an example of the echo signal for a
single moving scattering particle.

The movement of a scattering particle leads to a phase shift
of the echo signal between multiple burst emissions (Kasai
et al., 1985). The mean phase shift per time unit, expressed
as mean frequency fd, is related to the velocity v for a given
speed of sound c by the following:

v =−
1
2
fd

ftx
c, (1)

with ftx denoting the mean frequency of the received signal
burst and c� v. The mean phase shift per time unit fd can
be interpreted as a Doppler frequency shift fd (Kasai et al.,
1985); hence the name Doppler velocimetry.

The time since the burst emission tf corresponds to the dis-
tance d between the scattering particle and the transducer ac-
cording to the following equation:

d =
1
2
tfc. (2)

This allows a spatially resolved flow measurement along the
axis of the transducer, given that the scattering particles fol-
low the motion of the fluid with negligible slip. The axial res-
olution can be estimated with the following (Jensen, 1996):

1d =
1
2
Nperiods

c

f0
. (3)
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Figure 1. PW–Doppler principle: multiple bursts are emitted at ts =
nb/fPR, with a repetition rate fPR. This constitutes the slow-time
axis ts. After emission, the received echo signals are sampled with a
frequency fs along the fast-time axis tf. The echo signal phase shift
corresponds with the velocity of the scattering particles in the fluid.
An example of a single particle moving away from the transducer is
given.

The lateral resolution 1x is given by the width of the ultra-
sound beam, which is a result of the transducer geometry,
the frequency f0, and the speed of sound c in the fluid. The
temporal resolution1t of the velocity measurement is deter-
mined through the following:

1t =
NEPP

fPR
. (4)

2.2 Ultrasound array Doppler velocimeter

The ultrasound array Doppler velocimeter (UADV) is a mod-
ular research platform developed at the Laboratory of Mea-
surement and Sensor System Technique (MST) for flow
imaging in opaque liquids with PW–UDV. It is flexible and
especially well suited for instrumenting a wide range of ex-
periments in the field of MHD. The hardware of the UADV
consists of individually configurable modules driving 25 ul-
trasound transducers each. It can be scaled to support up
to 200 transducers in various configurations; for instance,
in four linear arrays which can be individually parameter-
ized regarding ultrasound frequency, pulse shape and length,
and pulse-repetition frequency (Nauber et al., 2016; Büttner
et al., 2013).

A module of the UADV consists of an arbitrary function
generator and a power amplifier for generating parameteriz-
able burst signals which are routed through a programmable
switching matrix and a transmit/receive switch to the trans-
ducers. The received echo signals are amplified with a para-

metric gain and routed to the digitization unit. A single
microcontroller-driven control unit provides the overall syn-
chronization and the communication with the host PC. Using
a combined spatial- and time-division multiplexing scheme,
an ultrasound transducer array can scan a measurement plane
at higher rates than a strict sequential scan. The UADV sup-
ports four independent digitization channels per module. The
detailed description of the measurement system is given in
Nauber et al. (2016).

3 Signal processing for velocity estimation

3.1 Overview

The signal processing for PW–UDV can generally be classi-
fied into wideband and narrowband techniques; a compre-
hensive comparison is given by Torp et al. (1993). While
parts of the signal processing in the radio frequency (RF)
band can be realized in analog circuitry (Shung, 2015),
fully digital implementations have found widespread use in
the last decades because of the availability of fast digitiz-
ers and the increased flexibility and robustness of such ap-
proaches. To simultaneously handle a high number (e.g.,
32) of channels through a fully digital signal-processing
chain, very large data bandwidths have to be processed. This
can be achieved by utilizing the parallel-processing capabil-
ity of a field-programmable gate array (FPGA). Especially
narrowband algorithms are very suitable for FPGA-based
implementations, due to their low computational complex-
ity (Alam and Parker, 2003; Loupas et al., 1995a). Therefore,
this paper focuses on investigating the most common narrow-
band method, the velocity estimator by Kasai et al. (1985)
and the extensions proposed by Loupas et al. (1995b).

A typical narrowband signal-processing chain is shown in
Fig. 2. In this fully digital realization, the slow time ts is sam-
pled for each burst nb at ts = nb

1
fPR

and the fast time tf is
sampled with a frequency fs as follows:

z′raw(k, nb)= z(tf = k/fs, ts = nb/fpr),

k = 0, 1, . . .K, nb = 0, 1, . . .NEPP. (5)

The signals are then bandpass filtered to reduce noise con-
tributions outside of the bandwidth of the transmitted ultra-
sound signal. A quadrature demodulation is performed, con-
sisting of a Hilbert transform and a subsequent down sam-
pling. Static echoes are removed through a clutter reduction
filter (CRF) and the velocities are estimated by an autocorre-
lation.

3.2 Quadrature demodulation

In order to meet the assumptions of the narrowband signal
processing and to reduce the influence of noise, a bandpass

https://doi.org/10.5194/jsss-9-227-2020 J. Sens. Sens. Syst., 9, 227–238, 2020



230 R. Nauber et al.: Measurement uncertainty analysis of ultrasound flow imaging

Figure 2. Signal flow for a typical implementation of the Kasai algorithm: raw echo signals are bandpass filtered, quadrature demodulated
and down sampled. The subsequent operations are performed on the complex demodulated signals, namely clutter-reduction filtering and
velocity estimation.

filtering is performed as follows:

z′(k, nb)=
Nperiods∑
n=0

ci · z
′
raw(k− n, nb), (6)

with the filter coefficients ci . In order to maximize the SNR
for signals with additive white Gaussian noise, a matched
filter is used (Turin, 1960) as follows:

ci = stx(Ntx− i), i ∈ [1, Ntx], (7)

with the transmitted signal stx with Ntx samples.
The result of the quadrature demodulation is a complex

signal h′unfilt(k, nb) in the baseband, which can be sampled
at a lower rate (reduction by a factor of nsub) than the raw
signal, as follows:

h′unfilt(k/nsub,nb)= z′(k, nb)+ j · ẑ′(k, nb), (8)

with Nb = 0, 1, . . .Nepp, k = 0, 1, . . .K and the Hilbert
transform signal ẑ′(k, nb) (with 90 ◦ phase shift with respect
to z′).

3.3 Clutter-reduction filtering

A common problem of ultrasound Doppler flow measure-
ments is distinguishing between static echoes originating
from the walls (the so-called clutter) and echoes originat-
ing from scattering particles. Multiple reflections from the
transmitted burst inside the wall superimpose the signal from
scatter particles in the vicinity of the wall. For this problem, a
multitude of signal-processing methods were proposed, most
of them based on digital filters (finite impulse response (FIR)
or infinite impulse response (IIR) filters) with various initial-
ization techniques (Lee et al., 2009). With these methods, the
clutter is distinguished from the particle echoes by a veloc-
ity close to zero, respectively, by a Doppler frequency shift

close to zero. Because filtering will influence the spectrum of
the signal, a bias may be introduced to the subsequent veloc-
ity estimation, depending on the frequency cutoff. For typ-
ical MHD experimental setups, the wall can be assumed to
be completely stationary (in contrast to, e.g., medical appli-
cations where clutter is often constituted by slowly moving
tissue; cf. Jensen, 1996); therefore, a steep cutoff at a fre-
quency of zero is desirable. The simplest and computation-
ally most efficient approach is to filter the constant compo-
nent of the demodulated IQ signal by subtracting its mean
value, which is the equivalent of applying a very narrow-
band, high-pass filter (Thomas and Hall, 1994; Jensen, 1996;
Torp, 1997; Bjaerum et al., 2002) as follows:

h′(k/nsub, nb)=h′unfilt(k/nsub, nb)

−
1

NEPP

NEPP−1∑
n′b=0

h′unfilt(k/nsub, n
′

b). (9)

As the filter is noncausal, all NEPP samples have to be ac-
quired before the result can be computed.

3.4 One-dimensional autocorrelation algorithm

A widely used approach for velocity estimation is the auto-
correlation method proposed by Kasai et al. (1985), which
operates solely in the domain of IQ-demodulated echo sig-
nals and therefore can be implemented very efficiently (Alam
and Parker, 2003). It uses the properties of the signals’ dis-
crete autocorrelation function as follows:

R′(1k, 1nb)=
K/nsub−1k−1∑

m=0

NEPP−1nb−1∑
n=0

h′(m, n) ·h′∗(m+1k, n+1nb), (10)

where its values at a lag of 1 relate to the center of
mass of the signal’s power density spectrum through the
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Wiener–Khinchin theorem. As shown by Kasai et al. (1985)
and Jensen (1996), the mean Doppler shift fd can be approx-
imated through evaluating the autocorrelation function at a
lag of 1nb = 1 slow-time samples as follows:

fd ≈ 1/TPR arg(R(1k = 0, 1nb = 1)). (11)

This autocorrelation computation can be expressed solely by
repeatedly multiplying accumulate operations and therefore
can be implemented very efficiently. Kasai’s method approx-
imates the center frequency fd of the received signal with the
frequency of the emitted signal as follows:

frx ≈ f0. (12)

Being based on a phase estimation, the Kasai algorithm is in-
herently limited in the maximum measurable velocity. Given
the 2π -phase ambiguity in Eq. (11), the measurable velocity
range resulting from Eq. (1) is (Jensen, 1996) as follows:

v ∈ [±vmax]; vmax =
cfPR

4f0
. (13)

3.5 Two-dimensional autocorrelation algorithm

An extension of Kasai’s autocorrelation method is proposed
by Loupas et al. to improve its performance in the following
two regards (Loupas et al., 1995b):

1. The assumption of an unchanged center frequency of an
ultrasound burst throughout emission, propagation in-
side the fluid and reception is discarded. This allows one
to account for the effect of frequency-dependent atten-
uation, which is present in most relevant fluids. By ex-
plicitly estimating the center frequency of the received
signal, a systematic velocity error stemming from the
relationship in Eq. (1) v ∝ 1/f tx is avoided.

2. An information loss occurs if only a narrow-band part
of a broadband echo signal is processed. Hence a bet-
ter estimation of the velocity is achieved by including a
larger part of the signal spectrum.

Both aspects are addressed by increasing the dimension-
ality of Kasai’s autocorrelation; instead of just correlating
along the slow-time axis, a 2D autocorrelation along the
slow- and fast-time axis is performed. An autocorrelation
with a lag of one fast-time sample yields the estimate of the

center frequency as follows:

frx ≈ fs arg

(∑
m

R(1k = 1, 1nb = 0)

)

≈
1

2π
fs

nsub

(
2πb1/2+ nsubf0/fsc+ argR′(1, 0)

)
(14)

frx ∈

(
fs

nsub
b1/2+ nsubf0/fsc±

1
2
fs

nsub

]
. (15)

Furthermore, the estimation of the frequencies ftx and fd
can be performed using M samples per gate, as follows:

fd ≈
1

2π
fPR argR′(0, 1). (16)

The extension of the Kasai autocorrelation algorithm po-
tentially improves the estimation performance while still pre-
serving a low computational complexity.

4 Online-capable, FPGA-based signal-processing
implementation

In order to provide online capability, the signal process-
ing depicted in Fig. 2 has been realized on an FPGA (NI
PXIe-7965R; National Instruments, Austin, Texas, USA).
The FPGA communicates with a host PC through a periph-
eral component interconnect express (PCIe) bus and has the
ability to stream data through direct memory access into the
main memory of the PC.

The amplified echo signals (UPP,max = 1V) are digitized
through an A/D converter module (NI-5752; National Instru-
ments, Austin, Texas, USA) for nch = 32 channels at an ex-
ternally provided sampling rate 32MHz> fs > 50MHz with
a quantization of 12 bit. The raw data rate rADC at this stage
is as follows:

rADC = nch · nsampbytes · fframe ·NEPP ·Nsw ·Ngates ·K. (17)

Data are processed as signed 16 bit integer (nsampbytes =

2B) and, for a typical configuration as listed in Table 1, the
data rate amounts to 1.2GBs−1.

This data bandwidth is hardly suitable for continuous
streaming to a storage device over a long duration (> 1h)
with common PC hardware. Therefore, raw data are only
briefly retrieved for debugging purposes or for low frame-
rate measurements and are otherwise not transferred to the
host.

The signal-processing steps that perform an IQ demodu-
lation (bandpass filtering, Hilbert transform and down sam-
pling) are significantly reduced in their computational com-
plexity by fixing the ratio of the sampling frequency fs to the
ultrasound center frequency f0 at ftx/fs = 1/4. The matched
filter can be realized for a sinusoidal transmit signal at ftx
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Table 1. Overview of the parameters of the signal processing.

Parameters

Number of channels Nch = 32
Number of bytes per sample Nsampbytes = 2B
Number of gates Ngates = 51
Subsampling factor Nsub = 13
Multiplexing steps Nsw = 6
Number of emissions NEPP = 50

withNperiods periods, assuming ftx ≈ frx with only trivial fil-
ter coefficients ci , as follows:

ci =

 1 i = 2+ 4n
0 i = 1+ 4n,i = 3+ 4n
−1 i = 4n

; n ∈ [0, Nperiods].

(18)

This allows one to implement the filtering without multipli-
cation operations, only negations and additions are needed.

To provide a low computational complexity approximation
of the Hilbert transform for a narrowband case, a fixed time
delay can be employed (Kantz et al., 2012) as follows:

ẑ′(k, nb)≈ z′(k− 1, nb), (19)

where ftx/fs = 1/4. The signal processing up to this point
contains just the summation, negation and storage primitives
and therefore can be implemented on an FPGA with modest
resources. The data rate rIQ at this stage for a typical config-
uration is given by the following:

rIQ = rADC · 2 · 1/nsub. (20)

Through the data reduction of 6.5 : 1, the data rate at
this stage is rIQ = 185MBs−1 for a typical configuration, as
listed in Table 1. A continuous data streaming to a storage
device can be sustained for a long duration at this rate.

5 Performance evaluation of narrow-band
signal-processing algorithms

5.1 Theoretical limit of measurement uncertainty

In order to characterize the performance of a signal-
processing algorithm, it is not only helpful to have relative
data compared to other algorithms but also to relate it to
a fundamental limit of attainable precision. This absolute
limit of uncertainty can be provided by means of the es-
timation theory using the Cramér–Rao bound (CRB; Rad-
hakrishna Rao, 1945; Cramér, 1946). Given a suitable signal
model, the CRB represents the lowest possible variance for
estimating a parameter from the signal with an unbiased esti-
mator. In the following, a simple signal model for a discrete

time idealized ultrasound echo is described and a derivation
of the CRB for velocity estimation is given.

A simple approximation of the ultrasound echo signal
realizations x(k, nb, θ , σ

2
n ) consists of a sinusoidal signal

s(k, nb, θ ) superimposed with additive white Gaussian noise
n(k, nb, σ

2
n ) sparsely and periodically sampled in the fast-

(k) and slow-time (nb) axis as follows:

x(k, nb, θ , σ
2
n )= s(k, nb, θ )+ n(σ 2

n , k, nb), (21)

with

s(k, nb, θ )= Acos
(

2π (f0+ fd )
(
k

fs
+
nb

fPR

)
+ϕ0

)
,

(22)

and A being the amplitude of the scattering particles’ echo,
ϕ0 a constant phase, and n(k, nb, σ

2
n ) Gaussian white noise,

with a variance σ 2
n and zero mean.

The unknown quantities are as follows:

θ =

 A

fd
ϕ0

 . (23)

The CRB provides the lower boundary for the variance of
an estimator θ̂i according to the inequality, as follows:

var(θ̂i)≥ CRB(θ̂i)=
[
I−1(θ )

]
ii
, (24)

with I(θ ) being the Fisher information matrix, as follows:

[I(θ )]ij =−E
[
δ2 ln(p(x, θ ))

δθiδθj

]
. (25)

Kay (1993) provided a formula for the case when the
probability density function p(x, θ ) of the signal model x,
Eq. (22), is a Gaussian joint probability function as follows:

[I(θ )]ij =
1
σ 2
n

∑
k

∑
nb

δs(k, nb, θ )
δθi

δs(k, nb, θ )
δθj

. (26)

The differentiation of s(k, nb, θ ) with respect to the un-
known quantities is performed analytically, while the matrix
inversion was performed numerically using MATLAB (The
MathWorks, Inc., Natick, Massachusetts, USA). The result-
ing CRB for the velocity uncertainty as a function of the
signal-to-noise ratio (SNR) is given in Fig. 4c–d. It has a
slope of −20 dB/decade, which is consistent with the CRB
of other Doppler-based signal-processing problems (Fischer
et al., 2010; Chan et al., 2012; Demirli and Saniie, 2001).

5.2 UADV measurements on a reference experiment

For an experimental characterization of the measurement
performance of the UADV system, a test rig based on the lin-
ear translation of a single scattering object is used (Fig. 3).
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Figure 3. A measurement setup in which the tip of a glass fiber
is mounted on a needle (ND) is insonified by an ultrasound trans-
ducer (US) and moved by a linear translation stage (LS). A laser
vibrometer (LV) measures its velocity (vref) and position (sref).

It consists of a linear stage (41.121.102E; OWIS GmbH,
Staufen, Germany) that is mounted over a glass tank with the
dimensions of 212×81×135mm3. It moves a scattering ob-
ject (glass fiber with a spherical tip, and diameter of 0.6mm,
mounted in a hollow needle) with a constant velocity through
water (ϑ = 20 ◦C; c = 1480ms−1). The ultrasound sensor ar-
ray is mounted on the front wall of the tank and therefore
insonates through an 8mm glass wall and a water-based ul-
trasound couplant.

In order to trace back the measurement results of the
UADV to the definitions of the respective units in the SI
system, a simultaneous measurement of the relative posi-
tion and velocity was done with a vibrometer (OFV-503;
Polytech, Waldbronn, Germany; displacement decoder DD-
900 and velocity decoder VD-09). A retroreflective tape (3M
Scotchlite) was attached to the shaft of the scattering object’s
mount. For a velocity set point of 10mms−1, a standard devi-
ation of the velocity σv, ref, rel = 0.178% was determined for
the linear stage–vibrometer combination (for the same aver-
aging time as the UADV system).

A total of 130 measurement cycles were conducted, con-
sisting of a constant translation away from the front wall of
the tank with a velocity set-point vref = 10mms−1 and the
respective backward motion. Of the continuously obtained
UADV measurements, only those that originate from two de-
fined positions near to and far from the wall during the move-
ment away from the ultrasound transducer (Richter Sensor
and Transducer Technology, Germany) are selected in the
postprocessing. The clutter-to-signal ratio (CSR) is CSR1 =

−7.3dB and CSR2 =−19.0dB, respectively. To ensure a
common time base for vibrometer and UADV measure-
ments, the trigger signal of the UADV is acquired simulta-
neously with the velocity and position signals. To test the
performance under different SNR conditions, white Gaus-
sian noise was added to the raw digitized signals to achieve
SNR=−6,−3, . . . , 12dB. Four algorithmic variants were
compared as follows:

– (DEF) – the 1D Kasai velocity estimator without clutter
filtering, as described in Sect. 3.4

– (CRF) – the 1D Kasai velocity estimator with a clutter
filtering according to Sect. 3.3

Table 2. Overview of the ultrasound parameters and the signal-
processing algorithms.

Parameters

Excitation pulse Sinusoidal signal;
f0 = 8MHz

Pulse length Nperiods = 8

Pulse repetition frequency fPR = 900Hz

Number of emissions NEPP = 50

Speed of sound cH2O = 1480ms−1

Clutter-to-signal ratio CSR1 =−7.3dB
(near the wall)
CSR2 =−19.0dB
(far from the wall)

Sampling frequency fs = 32MHz

Velocity set point vref = 10mms−1

Number of repetitions N = 130

(DEF) M = 1, CRF off, ftx ≈ f0
(CRF) M = 1, CRF on, ftx ≈ f0
(CRF 2D) M = 3, CRF on, ftx ≈ f0
(CRF 2D RF) M = 3, CRF on, ftx ≈ frx

– (CRF 2D) – the 2D velocity estimator as described in
Sect. 3.5 with clutter filtering but without an estimation
of ftx

– (CRF 2D RF) – the 2D velocity estimator as with clutter
filtering including the estimation of ftx.

The parameterization of the experiment and of the algorithms
is listed in Table 2.

Figure 4 shows the relative systematic deviation from the
reference velocity and the relative velocity standard devia-
tion of the tested algorithms. For the low-CSR case (far from
the wall) at SNR= 12dB, it can be seen that a slight negative
bias of (DEF) is turned into a positive bias through clutter fil-
tering (CRF) and (CRF 2D). This is compensated by the fre-
quency estimation of (CRF 2D RF), which shows the lowest
deviations of all variants for SNR≥ 3dB. For the high-CSR
case (near to the wall), the variant (DEF) without clutter filter
has a relative deviation of 1v/vref <−42%. Through clut-
ter filtering this strong negative bias is turned into a positive
bias, which increases with lower SNR for (CRF) and (CRF
2D). The RF estimation of (CRF 2D RF) gives the lowest
systematic bias for SNR≥ 0dB. The relative standard devi-
ations of all variants of the Kasai’s algorithm do not reach
the CRB for the given signal model, which is consistent with
the findings of Chan et al. (2012). The lowest standard de-
viations are consistently provided by the variants (CRF 2D)
and (CRF 2D RF), which come as close as a factor of 3 to the
CRB by using more samples per gate than (DEF) and (CRF).
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Figure 4. Relative systematic deviation (a, b) and relative standard deviation (c, d) of the velocity versus SNR for reference measurements
far from the wall (a, c) and near to the wall (b, d); the relative systematic deviation of (DEF) (b) is outside of the axis, with1v/vref <−42%;
the error bars denote the 95% confidence interval from 130 measurement cycles.

Figure 5. Example of a flow image of magnetically stirred GaInSn in the central horizontal plane of a cubic vessel. Panel (a) depicts the
experimental setup, (b) the mean flow velocity along the d axis, and (c) the standard deviation.
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Table 3. Measurement uncertainty budget for typical MHD experiments in liquid GaInSn.

Quan-
tity

Uncertainty source Type of uncertainty estimation
according to GUM

Relative
standard
uncertainty;
σv,rel

fd;
ftx

Random effects of Doppler frequency
estimation, including phase jitter and
electrical noise

Type A estimation from calibration measurements
(Fig. 4) for (CRF 2D RF) and an SNR of 5dB; normal
distribution with σv, rel = 0.4%

0.4%

fd;
ftx

Unknown systematic effects of Doppler
frequency estimation, including
frequency-dependent attenuation of the
fluid and drift in the slow-time clock
source

Type B estimation from calibration measurements
(Fig. 4) for an SNR of 5dB; uniformly distributed in
the interval 1vrel =±0.08%

0.05%

c Value of the speed of sound of the fluid
cGaInSn = 2740ms−1 (given by Morley
et al., 2008, without a measurement un-
certainty)

Type A estimation based on Proffit and Carome (1962);
σc, rel = 0.03%

0.03%

Unknown systematic variations of the
speed of sound in the fluid due to tem-
perature changes

Type B estimation for the sound–speed temperature co-
efficient of liquid gallium (Proffit and Carome, 1962;
Popel et al., 2005);
dc
dϑ =−0.3m(sK)−1

for 1ϑ =±10K rectangular distributed in the interval
1crel =±0.11%

0.06%

v Influence of the spatial resolution from
the finite width of the sound field

Type B estimation for a beam width 1x = 3mm and
typical velocity gradients of MHD experiments esti-
mated from numerical simulation;
dv
dx = 0.16mm−1

· vmax (Galindo et al., 2017);
1v = 1/2 · dv

dx · b
1vrel =±24%

13.9%

Total uncertainty
√∑

iσ
2
v, rel, i = 13.9%

For the given experimental data, the algorithm variant (CRF
2D RF) provides a suitable trade-off between systematic and
standard deviation and computational complexity.

6 Measurement uncertainty budget of the UADV in
liquid metal

A measurement uncertainty budget according to the
GUM (JCGM, 2008) is used to assess the contributions of
measurement uncertainty for the UADV system. Based on
Eq. (1), the measurand v is derived from the quantities fd, c
and frx. Furthermore, the direct influence of the spatial av-
eraging over the flow within the ultrasound beam width is
considered. In Table 3, the uncertainties contribution of these
quantities are given for a typical MHD experiment.

For the uncertainties of fd and frx, the results of Sect. 5.2
are transferred from the reference experiments in water to
typical measurement conditions in low-melting liquid met-
als. The maximum relative systematic deviation and stan-
dard deviation for both investigated CSR and a typical SNR

of SNR= 5dB are used to calculate the equivalent uncer-
tainty of the velocity. The influence of an uncertainty in the
fluid’s speed of sound, c, is estimated by the uncertainty of
the measurement of this quantity, in the literature and the
temperature dependence, assuming a temperature gradient of
1ϑ =±10K. The uncertainty arising from spatial averag-
ing through the ultrasound beam characteristics is calculated
by assuming a lateral averaging of 1x = 3mm and velocity
gradients of numerical simulations of typical MHD experi-
ments (Galindo et al., 2017).

It can be seen that the biggest contribution to the veloc-
ity uncertainty of the UADV measurement system for typi-
cal MHD settings with σv, rel = 13.9% stems from the spa-
tial averaging over lateral resolution given by the ultrasound
beam width of the unfocused transducers. This provides the
most promising starting point for further improvements re-
garding the measurement uncertainty of the UADV system.
Furthermore, it justifies the approximations taken for com-
putationally efficiently implementing the signal processing,
even though lower uncertainty algorithms exist that approach

https://doi.org/10.5194/jsss-9-227-2020 J. Sens. Sens. Syst., 9, 227–238, 2020



236 R. Nauber et al.: Measurement uncertainty analysis of ultrasound flow imaging

the CRB (Chan et al., 2012) because signal processing is not
the limiting factor in the measurement uncertainty budget.

7 Example of liquid metal flow imaging

To demonstrate the capabilities of the ultrasound array
Doppler velocimeter (UADV) with the proposed signal pro-
cessing, it is applied to a simple MHD experiment. A cubic
vessel with the dimensions of 67×67×67mm3 is filled with
GaInSn and a 25-element linear transducer array (Richter
Sensor and Transducer Technology, Germany) is attached
to insonify the central horizontal plane (cf. Fig. 5a). With
the application of a horizontally counterclockwise rotating
magnet field, a counterclockwise central vortex forms. The
UADV measures the velocity component along the axis of
the transducers (d axis) with the parameterization given in
Table 2 and with fPR = 200Hz. The resulting planar flow im-
age, using signal-processing variant (CRF 2D RF), is shown
in Fig. 5b and c.

8 Conclusions

Experimental research in the field of MHD can benefit from
online, noninvasive flow imaging for investigating funda-
mental phenomena, such as flow instabilities and optimiz-
ing industrial processes. We describe an online-capable sig-
nal processing for pulsed-wave Doppler velocimetry that is
tailored to the specific requirements of lab-scale model ex-
periments. It is based on a 2D autocorrelator, which allows
for a reduction of systematic and stochastic errors through
explicitly estimating the RF and utilizing multiple samples
per gate. We optimized the signal processing for low compu-
tational complexity and implemented substantial parts on an
FPGA. A typical reduction of the data bandwidth of 6.5 : 1
enables continuous data streaming to PC hardware.

We evaluated the performance of the implemented signal
processing in a water test rig with a single scattering object
and a reference velocity obtained through a laser vibrome-
ter. Two different clutter signal levels emulate a measurement
close to and far from a wall. A velocity standard deviation of
σv, rel = 0.4% was found, which is about 3 times the funda-
mental limit of the uncertainty, the CRB, for velocity estima-
tion. The systematic deviation is 1vrel =±0.08%.

We investigated the measurement uncertainty budget for
flow velocity measurements in a typical MHD experimental
setup for the low-melting alloy GaInSn. The total measure-
ment uncertainty of σv, rel = 13.9% almost solely stems from
the effect of spatial averaging over the lateral resolution for
flows with high-velocity gradients. This justifies the approx-
imations taken for lowering the computational complexity of
the signal processing.

A measurement uncertainty budget of a typical MHD ex-
periment at laboratory scale suggests improvements towards
a better lateral resolution. In the context of flow imaging, this

can be provided by the focusing and steering of the ultra-
sound beam using the phased-array principle.

The presented signal processing enables online, multi-
plane flow visualization with the UADV research platform.
A long measurement duration (> 1h), combined with a high
frame rate (> 10Hz), allows one to investigate complex, in-
stationary flows such as instability phenomena in cubes.
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