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Abstract. Deep neural networks have been successfully applied in many different fields like computational
imaging, healthcare, signal processing, or autonomous driving. In a proof-of-principle study, we demonstrate that
computational optical form measurement can also benefit from deep learning. A data-driven machine-learning
approach is explored to solve an inverse problem in the accurate measurement of optical surfaces. The approach
is developed and tested using virtual measurements with a known ground truth.

1 Introduction

Deep neural networks and machine learning, in general, are
experiencing an ever greater impact on science and indus-
try. Their application has proven beneficial in many dif-
ferent domains, including autonomous driving (Grigorescu
et al., 2020), anomaly detection in quality management
(Staar et al., 2019), signal processing (Mousavi and Bara-
niuk, 2017), analysis of raw sensor data (Moraru et al.,
2010), or healthcare (Esteva et al., 2019; Kretz et al., 2020).
Machine-learning methods have also been successfully em-
ployed in optics. Examples comprise the compensation of
lens distortions (Chung, 2018) or correcting aberrated wave
fronts in adaptive optics (Vdovin, 1995). Furthermore, ma-
chine learning has been used for misalignment corrections
(Baer et al., 2013; Zhang et al., 2020), aberration detec-
tion (Yan et al., 2018), or phase predictions (Rivenson et al.,
2018).

Deep learning techniques became very popular, especially
for computational imaging applications (Barbastathis et al.,
2019), with the introduction of convolutional networks (Le-
Cun et al., 2015). But, to the best of our knowledge, deep
learning has not yet been applied for the accurate compu-
tational measurement of optical aspheres and freeform sur-
faces in predicting the surface under test from its optical path
length differences. The precise reconstruction of aspheres
and freeform surfaces is currently limited by the accuracy of
optical form measurements, with an uncertainty range of ap-
proximately 50 nm (Schachtschneider et al., 2018). The aim

of this paper is to demonstrate, through a proof-of-principle
study, that this field in optics can also significantly benefit
from machine-learning techniques.

Our investigations were conducted using the SimOptDe-
vice (Schachtschneider et al., 2019) simulation toolbox. The
toolbox provides realistic, virtual experiments with a known
ground truth. We concentrated on the tilted-wave interfer-
ometer (TWI) (Baer et al., 2014) for the experimental real-
ization. It is a promising technique for the accurate compu-
tational measurement of optical aspheres and freeform sur-
faces, using contact-free interferometric measurements. The
TWI combines a special measurement setup with model-
based evaluation procedures. Four charge-coupled device
(CCD) images with several interferograms are generated by
using multiple light sources to illuminate the surface under
test. A simplified scheme is shown in Fig. 1. See Garbusi
et al. (2008) for more detailed explanations. The test topogra-
phy is then reconstructed by solving a numerically expensive
nonlinear inverse problem by comparing the measured opti-
cal path length differences to simulated ones, using a com-
puter model and the known design of the surface under test.
In this study, Physikalisch-Technische Bundesanstalt’s real-
ization of the TWI evaluation procedure is considered (Fort-
meier et al., 2017).

While the great success of deep networks is based on their
ability to learn complex relations from data without know-
ing the underlying physical laws, including existing physi-
cal knowledge into the models can further improve the re-
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Figure 1. Schematic of the tilted-wave interferometer (reference
arm not shown). The 2D point source array is on the left, the speci-
men is on the right, and the CCD is at the bottom.

sults (see de Bézenac et al., 2019; Karpatne et al., 2017;
Raissi, 2018). In our study, we also follow such an approach
by developing a hybrid method which combines physical
knowledge with data-driven deep neural networks. The em-
ployed scientific knowledge is twofold; training data are gen-
erated by physical simulations, and a conventional calibra-
tion method is used to generalize the trained network to non-
perfect systems.

This paper is organized as follows. Section 2 briefly intro-
duces neural networks and presents the proposed deep learn-
ing framework. The means of generating the training data
and the details of training the network are explained, com-
bining this approach with a conventional calibration method
for better generalization. The results obtained for the inde-
pendent test data are then presented and discussed in Sect. 3.
Finally, some conclusions are drawn from our findings, and
possible future research is suggested.

2 Hybrid method

This section provides an overview of deep neural networks
and introduces the hybrid method that was developed, which
combines the TWI procedure with a data-driven deep learn-
ing approach. Without a loss of generality, each specimen can
be assumed to have a known design topography. The overall
goal of form measurement is to determine the deviation 1T
of a specimen Ts to the given design topography Td, i.e., Ts =

Td+1T . To this end, the TWI provides measurements of
the optical path length differences Ls of the specimen being
tested. Simultaneously, a computer model (Schachtschneider
et al., 2019) computes the optical path length differencesL of
a given topography T . The inverse problem is to reconstruct
the specimen topography Ts = Td+1T from its measured
optical path length differences Ls.

The conventional evaluation procedure of the TWI is nu-
merically expensive and relies on linearization. A general ad-
vantage of neural networks is their ability to produce instant
results once they are trained. Furthermore, it is interesting to
explore whether deep learning could also improve the qual-

ity of the inverse reconstruction as a nonlinear approach. We
aim to address the inverse problem described above using
deep networks, i.e., by reconstructing a difference topogra-
phy 1T from given differences of optical path length differ-
ences 1L= Ls−Ld.

2.1 Data generation

When solving an inverse problem with neural networks, it
is common practice to generate data through physical sim-
ulations (Lucas et al., 2018; McCann et al., 2017). Here,
various difference topographies 1T are generated through
randomly chosen, weighted Zernike polynomials. They are
then added to a specific design topography at a fixed mea-
surement position to create different virtual specimens. The
sequence of Zernike polynomials yields an orthogonal basis
of the unit disc and is a popular tool in optics for modeling
wave fronts (Wang and Silva, 1980). Following the forward
pass, the computer model is used to compute the optical path
length differences of the design topography and the modeled
specimens. Note that the data are generated assuming perfect
system conditions, i.e., the computer model is undisturbed.
An example can be seen in Figs. 3 and 4.

Data were generated for two different design topographies,
with about 22000 data points for each design. It should be
noted that 10 % of the data was used exclusively for testing
and was not included in the network training.

2.2 Deep neural network architecture

A simple, fully connected neural network with a single hid-
den layer is represented by a nonlinear function f8 : R→ R,
with parameters8= {ωi,bi ∈ R|i = 1, . . .,n}, where n is the
number of neurons in the hidden layer. The univariate out-
put of the network is modeled as f8(x)=

∑n
i=1σ (ωix+bi),

x ∈ R, where σ is a nonlinear activation function. In general,
input and output have high dimensions, and the architecture
can become arbitrarily deep by adding more layers. Neural
networks with high complexity are called deep neural net-
works. An example of this type of architecture is shown in
Fig. 2. There, two outputs are predicted based on three given
inputs after processing the information through several hid-
den layers. Also, different types of layers – convolutional lay-
ers (LeCun et al., 2015), for example – can be used instead
of fully connected ones. The network parameters can be op-
timized, via backpropagation on the given training data, by
minimizing a chosen loss function between the predicted and
known output.

At this point, it is important to consider the network as be-
ing an image-to-image regression function f8 which maps
the differences of optical path length differences 1L (see
Fig. 4) onto a difference topography 1T (see Fig. 3); i.e.,
f8 : RM×M×K → RM×M , 1L 7−→1T , where 8 are the
network parameters to be trained, M ×M is the dimension
of the images, and K is the number of channels in the input.
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Figure 2. An example of deep neural network architecture.

Figure 3. An example of difference topography 1T on a 64× 64
pixel grid.

Note that the image dimension of the input equals the im-
age dimension of the output here. This is not mandatory, but
it suits the network architecture described below very well.
While the CCD gives a resolution of 2048× 2048 pixels,
we chose M = 64. For the asphere and the multispherical
freeform artifact (Fortmeier et al., 2019), as seen in Fig. 4,
K = 4 and K = 1 were used, respectively. This is because
the multispherical freeform artifact has a big patch in the first
channel, which almost covers the entire CCD for the selected
measurement position. Furthermore, even though some pix-
els are missing, the first channel sufficed for the purpose of
this deep learning proof-of-principle study.

We chose a U-Net as the network architecture. U-Nets
have been successfully applied in various image-to-image
deep learning applications (Işıl et al., 2019). An example of
its structure is shown in Fig. 5. The input passes through
several convolution and rectified linear unit layers on the
left side before being reduced in dimension in every verti-
cal connection. After reaching its bottleneck at the bottom,
the original data dimension is restored, step by step, through
transposed convolution layers on the right side. During each
dimensional increase step, a depth concatenation layer is
added, which links the data of the current layer to the data
of the former layer with same dimension. These skip con-
nections are depicted as horizontal lines in Fig. 5.

Here, the chosen U-Net architecture consists of a total of
69 layers. The training set was used to normalize all input
and output data prior to feeding them into the network. The
U-Net was trained using an Adam optimizer (Kingma and
Ba, 2014) and the mean squared error as the loss function.
About 2 h of training was carried out for the multispherical
freeform artifact, with an initial learning rate of 0.0005, a
drop factor of 0.75 every five periods, and a mini batch size
of 64. In addition, a dual norm regularization of the network
parameters with a regularization parameter of 0.004 was em-
ployed to stabilize the training. For the asphere, training was
carried out for 15 epochs, with a mini batch size of eight
samples, an initial learning rate of 0.0005, which decreased
every 3 epochs by a learning rate drop factor of 0.5, and a
regularization parameter of 0.0005.

2.3 Generalization to nonperfect systems

In real world applications no perfect systems exist. Thus, the
computer model needs to be adapted phenomenologically. In
the conventional calibration procedure, the beam path is cal-
ibrated through the computer model by using known, well-
fabricated spherical topographies at different measurement
positions to compare the optical path length differences mea-
sured by the TWI and its computer model (Fortmeier, 2016).

It is not feasible to generate an entirely new database and
train a new network after each system calibration when us-
ing deep networks. Nonetheless, the ultimate goal is to apply
the trained deep network to real world data. To this end, we
propose a hybrid method that trains the selected U-Net on
data generated under perfect system conditions but also gen-
eralizes well to nonperfect systems by evaluating data de-
rived through the conventional calibration method. A work-
flow chart of the hybrid method is shown in Fig. 6.

3 Results

The following results are all based on simulated data. As
mentioned above, two different design topographies are con-
sidered, namely an asphere and a multispherical freeform
artifact. First, the results of the data acquired from a per-
fect system environment are presented. The networks which
were trained for the design topography of an asphere and a
multispherical freeform artifact are addressed, respectively.
Next, additional strategies, which could improve the models,
are discussed as well. Finally, the application of the hybrid
method which was developed is presented in a nonperfect
system environment.

The presented results are reproducible in the sense that,
when repeating the simulations for similar train and test sets,
essentially the same findings are observed. The topographies
have a circle as in the base area. Since the required input and
output of the network are images, the area outside of the cir-
cular shape is defined with zeros, which the network learns
to predict. Nonetheless, only the difference topography pix-
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Figure 4. An example of the calculated differences of optical path length differences for one specimen1L, with an asphere as the underlying
design topography. The four different images originated from the disjointed sets of wave fronts that resulted from the four different mask
settings at the 2D point source array.

Figure 5. An example of a U-Net structure.

Figure 6. Workflow of the developed hybrid method.

els inside the circular shape are considered in the presented
results.

3.1 Perfect system

About 2200 samples were used for testing. They were not
included in the training. First, the multispherical freeform ar-
tifact was considered as the design topography. Three ran-
domly chosen prediction examples are shown in Fig. 7. The
root mean squared error of the U-Net predictions on the test
set is 33 nm. For comparison, the difference topographies
in the test set have a total root mean squared deviation of
559 nm. The median of the absolute errors of the U-Net is
about 18 nm, while the median of total absolute deviations in
the test set is 428 nm.

For the asphere as the design topography, the root mean
squared error is 102 nm, while the test set has a root mean
squared deviation of 589 nm. The median of the absolute er-

Figure 7. Three examples of predicted test difference topographies.
The errors in the third column show the differences between the
ground truth and the prediction. The root mean squared errors, from
top to bottom, are 16, 84, and 74 nm.

rors of the U-Net is 52 nm, and the median absolute devia-
tion of the test set is 451 nm, for comparison. One possible
explanation for the discrepancy in the accuracy of the predic-
tions between the network for the asphere and multispherical
freeform artifact as the design topographies is the following.
The input of the respective U-Nets and their resulting archi-
tecture varies widely. As mentioned above, the network con-
cerning the asphere has four input channels. These can be
seen in Fig. 4. In each channel, various different areas are
illuminated at the CCD, resulting in a distribution of infor-
mation into different and smaller patches. The multispher-
ical freeform artifact, on the other side, illuminates one big
circular shaped patch in the first channel for the selected mea-
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Figure 8. Root mean squared error (RMSE) of a single network
(blue) and a network ensemble (red), depending on the amount of
data used for training. The test set is the same for all evaluations
and was not included in training.

surement position. This channel, which contains most of the
important information in a single patch, forms the only input
to the corresponding network.

However, the results for the asphere can be improved fur-
ther. One way to do so is to increase the amount of training
data (see Fig. 8). As the input has four channels for the as-
phere, it seems natural that more data are needed for train-
ing than for the multispherical freeform artifact. A second
approach is to use a network ensemble (Zhou, 2009) rather
than a single trained network. To this end, 15 U-Nets were
trained from scratch, and the ensemble output was taken as
the mean of the ensemble predictions. The results are shown
in Fig. 8. In this way, the accuracy was already improved to
a root mean squared error of 80 nm, using an ensemble of
15 U-Nets each trained from scratch on almost 28000 data
points. It should be noted that a further improvement seems
possible as the amount of data is crucial for training, and the
network’s architecture of the asphere is more complex due to
more input channels.

3.2 Nonperfect system

In any real world application, no experiment is carried out
under perfect system conditions. This motivated the idea of
disturbing the perfect simulated forward pass and of gener-
alizing the model to nonperfect systems. The network now
needed to cope with data coming from a nonperfect TWI af-
ter having trained on a perfect simulation environment in the
first stage. This was achieved by using a conventional cali-
bration to determine the correct model of the interferometer.

Here, we focused on the multispherical freeform artifact as
the design topography. A total of 30 difference topographies
were randomly chosen from the former test set, i.e., not in-
cluded in U-Net training. They had a total root mean squared
deviation of 545 nm and ranged from 296 nm to 6.1 µm in
their absolute maximal deviation from peak to valley. The
results are shown in Table 1, where the same trained network

Table 1. Root mean squared error and the median of absolute er-
rors for the predictions of the same U-Net using different inputs.
The perfect TWI system, which was also used to generate the train-
ing data, is in the first column, the disturbed TWI system without
calibration is in the second column, and the hybrid method is in the
third column.

Perfect Disturbed system, Disturbed system,
system no calibration with calibration

RMSE 30 nm 538 nm 67 nm
Median 16 nm 298 nm 33 nm

was used for differently produced inputs. The root mean
squared error of the network predictions was 30 nm on the
perfect TWI system. This increased to 538 nm after having
disturbed the TWI system. The trained network is incapable
of predicting properly. However, the error can be reduced to
67 nm by using a calibrated forward pass to produce the input
data. Hence, our proposed hybrid method can also generalize
to nonperfect systems.

4 Conclusions

The obtained results are promising and suggest that deep
learning can be successfully applied in the context of com-
putational optical form measurements. The presented results
are based on simulated data only, and they constitute a proof-
of-principle study rather than a final method that is ready
for application. An extensive comparison with conventional
methods is the next step. Testing the approach on real mea-
surements and accounting for fine-tuning (such as the cali-
bration of the numerical model of the experiment) is reserved
for future work as well. Nevertheless, these initial results are
encouraging, and once trained, a neural network solves the
inverse problem with orders of magnitude faster than the cur-
rently applied conventional methods. We conclude from our
findings that computational optical form metrology can also
greatly benefit from deep learning.
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