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Abstract. Electrical assemblies are the core of many electronic devices and therefore represent a crucial part
of the overall product, which must be carefully checked before integration into its functional environment. For
this reason, automatic optical inspection systems are required in electronic manufacturing to detect visible errors
in products at an early stage. In particular, the automotive electronics production area is one of the sectors in
which quality assurance has uppermost priority, as undetected defects can pose a danger to life. However, most
optical inspection processes still have error slippage rates, which are responsible for delivering faulty electrical
assemblies to customers. Therefore, this article shows how an application strategy of deep learning, based on
neural networks, can be combined with an automatic optical inspection system to further increase the recognition
accuracy of the process.

The additional use of artificial intelligence supported classification systems provides a way to find out the
exact details about the manufacturing-related errors of electrical assemblies. However, due to the high number
of different error categories, a single classification algorithm is usually not sufficient to provide reliable visual
inspection results with high robustness against error slip. For this reason, a hierarchical model with multiple
classifiers is proposed in this article. The principle is based on the hierarchical description of the quality status and
fault types using several combined neural networks. In this context, the original classification task is distributed
over different subnetworks. These subnetworks, which interact as an overall model, only verify certain error and
quality features of the electrical assemblies, which means that higher recognition accuracy and robustness can
be achieved compared to a single network.

1 Introduction

During the production of electrical assemblies,
manufacturing-related errors cannot be completely avoided
without increasing cost and production time exponentially.
As connection points between the components and the
printed circuit board (PCB), solder joints are often most
vulnerable to errors and defects. Hence, the quality of
the solder joints directly influences the durability and
reliability of the final product. For this reason, automatic
optical inspection (AOI) systems are integrated as non-
invasive testing processes in production lines to investigate
failures on PCB, components, or solder joints during the

manufacturing processes. As part of inspection, electrical
assemblies are scanned and analyzed. At the same time,
various image processing methods are used to detect quality
defects in the inspection images of products (Berger, 2012).
The continuous miniaturization effort and optimization of
electronic devices leads to increased packaging density on
PCB of electrical assemblies. With the associated increase
in circuit complexity, the optical inspection is becoming
progressively demanding (Niemann et al., 2017; Combet
and Chang, 2009). This problem leads to new challenges in
development of advanced automatic inspection systems.

Schwebig and Tutsch (2020) have already proposed the
use of a deep learning concept to complement the optical in-
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spection system in electronics production. In this paper, a
novel defect detection system based on deep learning and
focused on a practical industrial application was presented.
With the help of an artificial intelligence (AI) supported clas-
sification system, an additional test procedure based on im-
age detection for real-time visualization and analysis of elec-
trical assemblies is to be implemented in a production line.
The article shows an application strategy how a convolutional
neural network (CNN) can be combined with an optical in-
spection system. The proposal is to use a CNN to analyze the
images taken by inspection systems for an additional control-
ling process by image classification. The aim is to increase
the general inspection accuracy of the entire optical inspec-
tion process and further reduce the risk of error slippage. This
article is based on findings of Schwebig and Tutsch (2020)
and is a continuation of this publication by drafting a hi-
erarchical classifier with several combined neural networks
(Fig. 1).

To provide the most accurate visual inspection possible,
the detection by a single CNN is currently not sufficient
to ensure a reliable control of all solder joints on electri-
cal assemblies. In this context, the results of Schwebig and
Tutsch (2020) still show an unsatisfactory number of error
slippage and pseudo errors in almost all test datasets, which
must be further reduced for use in practice. While some lo-
cal optimizations of neural networks have already been car-
ried out in previous investigations, the following approach is
based on a global expansion of the classification concept. For
this purpose, several connected CNNs are combined into an
overarching model (Fig. 2). Furthermore, publications have
already shown that hierarchical classifiers are particularly ef-
fective and well suited to solving categorical problems (Yan
et al., 2014; Mao et al., 2016). The goal of this approach is
to improve recognition accuracy compared to a single CNN
by breaking down the main problem into several minor sub-
problems. Therefore, each subnetwork is designed to identify
certain features (Zheng et al., 2020).

While the single model only consists of one individual net-
work, the hierarchical classifier is made up of several dif-
ferent CNNs. All networks embedded in it can be arranged
into multiple hierarchies, whereby the number of levels and
networks placed on them is determined by the overall clas-
sification task. The classification task must be distributed to
the individual subnetworks by grouping the general problem.
Thus, the result of this grouping is the mapping of each origin
class to defined cluster centers. In this context, it is possible
to group the classes either by similarity or by semantics. The
formation of the cluster centers is usually based on superor-
dinate features or states, whereby the number of classes per
subnetwork should be reduced compared to the origin classes
of the overall task. Consequently, the hierarchical grouping
and formation of subnetworks are continued until the origi-
nal class can be determined at certain output points or at the
end of the hierarchy (Zheng et al., 2020; Silla and Freitas,
2011).

The evaluation metrics accuracy and logarithmic error are
used to evaluate the network performance with regard to the
training and test data. While the accuracy (refer to Eq. 1)
indicates in percentage form how accurate the model perfor-
mance is compared to the true output, the logarithmic error
(refer to Eq. 2) as a loss function describes the error that the
network makes in its current training state, taking the respec-
tive datasets into account. With multi-classification prob-
lems, the logarithmic error of the cross-entropy is used as a
measure of the quality via the output of the probability distri-
bution. The cross-entropy is calculated from two probability
distributions, the true distribution yi and the estimated dis-
tribution p_i. If a learning dataset D = {(x1, y1), . . . , (xi yi)}
with M categories is given, the target output yi ∈ {1, . . . M

in the form of the true distribution is usually a binary one-hot
vector expressed with yi ∈ {0, 1}. In order to make even more
detailed statements about the classification performance on
unknown data, the F1 score is also included for the test data.
The F1 score (refer to Eq. 5) is calculated from the preci-
sion (refer to Eq. 3) and the recall (refer to Eq. 4). The pre-
cision indicates how many of the predicted classes actually
correspond to the true class and the recall shows how many
of the actual labels were covered by the correct predictions.
This makes it possible to analyze the identification behav-
ior of the network regarding the individual categories further
precisely. Since error slippage and pseudo errors play a deci-
sive role in quality assurance, these criteria are also included
in the evaluation of the classifier. The pseudo error (refer to
Eq. 6) describes as a percentage size how many test data were
classified as defective, although there is no defect. On the
other hand, the error slip (refer to Eq. 7) represents the worst
case in quality assurance, since it reveals the percentage of
undetected errors. The formulas and calculation methods for
the individual evaluation metrics can be found in the follow-
ing illustration (Müller and Guido, 2017; Goodfellow et al.,
2016; Hope et al., 2018; Raschka and Mirjalili, 2018).

Accuracy=
TP+TN

TP+TN+FP+FN
(1)

Loss=−
∑

i

yi · log(pi) ,

with pi = softmax(xi)=
exi

n∑
i=0

exi

(2)

Precision=
TP

TP+FP
(3)

Recall=
TP

TP+FN
(4)

F1Score = 2 ·
Precision · recall

Precision+ recall
(5)

Pseudo error=
FN

TP+TN+FP+FN
(6)

Error slip=
FP

TP+TN+FP+FN
(7)
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Figure 1. Difference between a single network and a hierarchical classifier.

Figure 2. Overview of used chip components in Schwebig and Tutsch (2020).

2 Hierarchy formation of CNNs and data flow

This article is a continuation of Schwebig and Tutsch (2020)
and therefore uses both the same component types and test
datasets to make the best possible comparison with the sin-
gle CNN presented in it. Consequently, the results pub-
lished therein are subsequently used to evaluate the over-
all performance of the hierarchical classifiers. The com-
ponent types used for the solder joints in this classifica-
tion are capacitors and resistors of different sizes (C0402–
C1210, R0402/R0603), which are soldered to a printed cir-
cuit board as surface-mounted chip parts. Detailed informa-
tion of the individual components can be found in Schwebig
and Tutsch (2020). Figure 2 is an example set of the compo-
nents and their inspection images.

In order to distribute the classification task over several
subnetworks, the origin classes specified in the previously
mentioned Schwebig and Tutsch (2020) must be grouped
into specific clusters. In Schwebig and Tutsch (2020), each
class is defined to describe a specific quality status of solder
joints on electrical assemblies. The complete defect detec-
tion task aims to identify the class of each defect in the image
taken by the inspection system. Thus, for the original quality
classes for visual inspection of component and solder joint,
a distinction is made between the five categories “Good”,
“Missing”, “Misplaced”, “Foreign Object”, and “Insufficient
Solder”. A precise class definition is given in Table 1.

For the hierarchical classifier, the visual quality inspection
of solder joints is divided into several substeps. Each substep

Table 1. Confusion matrix.

Actual class

Positive Negative

Prediction
Positive TP (true positive) FP (false positive)
Negative FN (false negative) TN (true negative)

includes a CNN that is designed to identify specific proper-
ties on component or solder joint. The overarching model
consists of two network hierarchies. Accordingly, the first
hierarchy consists of three CNNs and initially focuses only
on global features. Besides, in the second hierarchy, there is
merely a single CNN, whose purpose is for local features
and which determines the actual quality class. Each network
carries out a classification according to its task, whereas the
individual networks do not influence each other.

The results of the previous publication, Schwebig and
Tutsch (2020), have shown that the quality classes “Good”
and “Missing” in particular can be well identified by the neu-
ral network. For this reason, the first subnetworks are specif-
ically designed to identify these global features. Thus, the
first subnetwork N1 should initially check the presence of the
target component at the solder connection point. The distinc-
tion is made between the categories “Component Detected”
and “Component Not Detected”. While the original category
“Missing” only represents the subclass “Component Not De-
tected”, all other original classes are defined as “Component
Detected” because of the presence of components. The sec-
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Figure 3. Graph structure of hierarchical classifier.

ond subnetwork N2 makes a general assessment of the sol-
der joint’s quality state, distinguishing only between “Good”
and “Bad”. Consequently, correctly soldered components are
assigned to subclass “Good”, while the error categories char-
acterize subclass “Bad”. With the help of the third sub-CNN,
a further detection of the component is carried out and the
quantity of components per target position is determined.
The task of this network is to designate the number of com-
ponents or foreign objects and assign them to the classes “No
Component”, “One Component”, and “Additional Foreign
Object”. Therefore, the focus of this classification is to iden-
tify contamination by additional components or foreign bod-
ies. Subclass “No Component” is also characterized by origin
class “Missing”. At the same time, irrespective of the quality
status, only images of solder joints with the target compo-
nent present represent subcategory “One Component”. Fur-
thermore, subclass “Additional Foreign Object” is defined by

all solder joints that have additional components or foreign
objects in addition to the target component. An overview of
the structure and the data flow of the hierarchical classifier is
given in Fig. 3.

The image data pass through the first hierarchical level in
a horizontal direction and are forwarded by network N1 via
network N2 to network N3. If the absence of a component or
the presence of foreign bodies is confirmed by at least two
networks after traversing through the first hierarchy, the af-
fected electrical assemblies are sorted out. The aim of this
network combination is to detect a missing component or
contamination by foreign bodies, so that the final network N4
in the second hierarchical level classifies only solder joints
with the target component. Therefore, network N4 is merely
trained with data of the target component and finally ana-
lyzes the exact quality status of solder joints. It distinguishes
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Table 2. Classification of the quality classes in the global clusters for the subnetworks (Schwebig and Tutsch, 2020).

Classes Cluster

Subnetwork Origin quality class description N1 N2 N3 N4

Origin quality Description Image Component Quality Component Component
class detection status count class

Good No quality defects Detected Good One component Good

Missing Missing component Not detected Bad No component –

Misplaced
Misplaced, twisted, or tilted

Detected Bad One component Misplaced
component

Foreign Additional component or
Detected Bad Foreign object –object impurities e.g., flux, solder paste

fractured component

Insufficient Insufficient or missing solder Detected Bad One component Insufficient
solder paste solder

only between the origin classes “Good”, “Misplaced”, and
“Insufficient Solder”.

Taking into account the classification results of all subnet-
works, the overall condition of electrical assemblies should
be decided at the end of the second hierarchical level. In this
context, the individual assessment of each sub-model is used
for the final overall decision. Therefore, only electrical as-
semblies pass the visual hierarchical network inspection and
are assessed as faultless in all instances. The product should
merely be transferred to the subsequent process if all classi-
fication results are positive. A detailed list of the evaluation
criteria for each subnetwork is given in Table 2’s classifica-
tion of the quality classes in the global clusters for the sub-
networks (Schwebig and Tutsch, 2020). The detection per-
formance and robustness, particularly in relation to error slip-
page, will increase due to the solder joints being subjected to
multiple visual network inspections. At the same time, the
challenge is to keep the number of pseudo errors from in-
creasing due to the accumulation of sequential testing efforts.
The aim of the investigations is to develop a universal model
for all chip components to inspect the entire electrical as-
sembly. Furthermore, the findings of this work should offer
the possibility of subsequent applications to other electronic
components.

3 Compilation of training datasets for each
subnetwork

A heterogeneous training dataset with all chip component
types is created for each subnetwork. Consequently, these are
mixed datasets in which all component types to be inspected
are represented. The training datasets were taken directly
from production. The number of original image data is de-
termined by the frequency of the corresponding categories or
the failure type of the respective component. The validation
data used for evaluating the training process and the test data
for evaluating the final network performance were randomly
selected and split off from the training dataset. In order to
generate a balanced training dataset, underrepresented cate-
gories were subsequently enriched by augmentation. There-
fore, each subclass contains the corresponding components
or quality classes in the same number (refer to Schwebig
and Tutsch, 2020). While only 10 000 images per component
are used for the two-class networks N1 and N2, 12 500 im-
ages per component type are available for the three-class net-
works N3 and N4 due to the higher number of classes and
the associated classification complexity. Based on clustering
and the results of the previous article (Schwebig and Tutsch,
2020), the training datasets for each subnetwork for the hier-
archical overall model H1 were composed as follows.
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Table 3. Compilation of training datasets for each subnetwork.

Overall model H1 Subclasses Dataset Component Size of dataset
types

Component
N1 Detected/not detected N1_I

C0402–C1210 140 000
detection R0402, R0603 (70 000 per class, 10 000 per component)

Quality status N2 Good/Bad N2_I
C0402–C1210 140 000
R0402, R0603 (70 000 per class, 10 000 per component)

Component
N3

No component/
N3_I

C0402–C1210 262 500
count one component/ R0402, R0603 (87 500 per class, 12 500 per component)

foreign object

Component
N4

Good/misplaced/
N4_I

C0402–C1210 262 500
class insufficient solder R0402, R0603 (87 500 per class, 12 500 per component)

Table 4. Overview of the used test datasets (Schwebig and Tutsch,
2020).

Test Number of Component types
dataset images (original images)

Test A 1000 C0402
Test B 1000 C0603
Test C1 500 C0805–C1210
Test C2 500 R0402/R0603

4 Network architecture and training details

The hierarchical model is taught by teaching all subnetworks
in parallel. For a better comparison, both the network archi-
tecture and hyperparameters of the previous investigations in
Schwebig and Tutsch (2020) are taken over. Merely the num-
ber of classes is modified accordingly for each subnetwork.
Every subnetwork is represented by the DenseNet architec-
ture with the additional 5× 5 convolutional layer. Hence,
both the training and test image data are transferred to the
networks in the same size dimensions of 120× 120× 3 bit
as in Schwebig and Tutsch (2020). The training duration is
150 epochs for all networks.

In the actual test phase, the test datasets are presented to
the model. In order to achieve the best possible comparability
to the single network, the test datasets A–C1 from Schwe-
big and Tutsch (2020) are used (Table 4). Table 3 provides
an overview of the exact composition of the test datasets.
To build the overall model H1, all subnetworks are loaded
and connected to each other via specific interfaces for data
flow. Subsequently, each test dataset is transferred to the hi-
erarchical classifier H1 and goes through the identification
process in the defined sequence, while the respective subnet-
works carry out their classifications. The data flow continues
until the final network N4 for determining the exact quality
class is reached or a pre-selection takes place after the first
hierarchical level.

The detection performance of the overall model is calcu-
lated from the partial performances of individual submod-
els. In order to create the best possible basis for compari-
son, the evaluation metrics from Schwebig and Tutsch (2020)
are applied. For this purpose, accuracy is used as one of the
most important measurement parameters in test technology
to evaluate the overall recognition performance of neural net-
works. Consequently, the accuracy is given in the form of a
percentage and is intended to evaluate how accurate the net-
work classification is compared to actual classes. In addition,
the F1 score is used as an evaluation metric to determine how
precisely the individual classes can be identified by each sub-
network. The F1 score can be generated from precision and
recall. While the precision indicates that many of the classes
predicted as positive are actually positive, the recall analyzes
how many positive target outputs match positive predictions.

5 Outcomes and results of the hierarchical overall
model

In this chapter the behavior and performance of the hier-
archical concept are examined. For this purpose, the uni-
versal model H1 is used, which is based on the classifica-
tion of chip capacitors C0402–C1210 as well as chip resis-
tors R0402 and R0603. The application objective of the con-
cept is to support optical quality assurance in the real produc-
tion environment. For this reason, the evaluation of the net-
work performance is carried out exclusively on the unknown
test datasets A–C2. First, the results of the individual subnet-
works N1–N4 are analyzed. Subsequently, the actual assess-
ment of the overall model is carried out, taking into account
the single network from Schwebig and Tutsch (2020).

5.1 Partial results of the hierarchical overall model H1

Figure 4 provides an overview of the general recognition per-
formance and the logarithmic error of each submodel N1–N4
with regard to the respective test dataset. All subnetworks
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Figure 4. Top-1 accuracy of subnetworks N1–N4 for test datasets A–C2.

can recognize the test datasets A–C1 with an accuracy of
over 95 %. For all test datasets, the two-class subnetworks N1
and N2 have the highest detection accuracy. This behavior
can be attributed to the grouping of the origin quality classes.
Compared to the other subnetworks, networks N1 and N2
only need to distinguish between two global classes. As a re-
sult, there are fewer categories and complex features that the
networks must classify. Hence, this means that the associ-
ated subclasses can easily be determined. It is noticeable that
network N4 has the comparatively lowest recognition perfor-
mance on all test datasets. While network N3 only detects the
presence of the target component despite the same number of
classes, network N4 must also check the quality states of sol-
der joints in addition to component position. Overall, a corre-
lation between the logarithmic error and the accuracy can be
observed in all networks. With a high accuracy, a low loss is
monitored, while with a lower accuracy the error grows. Con-
sequently, the associated complexity increases the difficulty
of identifying the final quality state, which has a negative ef-
fect on detection performance.

All test datasets of subnetwork N1 have higher F1-score
values for class “Component Detected”. Therefore, this cat-
egory is generally easier to identify for all components. At
the same time, a higher overall recognition performance can
be observed on larger components of test datasets B and C1
than on the other test datasets (refer to Figs. 4 and 5).

The reason for this behavior can be explained with the
help of the respective test images and the corresponding pre-
diction by subnetwork N1. Figure 5 illustrates an example
of misclassification by N1 for each category. In particular,
extremely misplaced components of origin category “Mis-
placed” are falsely identified as “Component Not Detected”.
This classification tendency always occurs when the largest
part of the component is no longer visible in the images
of solder joints (refer to Fig. 6 left). Since connecting sur-

Figure 5. F1 score of subnetwork N1 for test datasets A–C2.

faces are completely exposed in the case of a large compo-
nent offset, the features of empty solder joints dominate for
the network. Consequently, the affected images are classi-
fied as “Component Not Detected”. For larger components,
this type of offset is less common due to their size. The rea-
son for this is that with increasing component size a major
part of the image shows only the component. As a result, test
datasets B and C1 have a higher F1 score than test dataset
A with the small capacitors C0402. Since this recognition
problem can be increasingly observed with network N1, net-
work N3 has a higher accuracy despite a similar classification
task. In the case of solder joints with a missing component,
solder residues on connection points seem to be responsi-
ble for wrong decisions made by the network (refer to Fig. 6
right). Depending on the amount and shape of solder, the net-
work identifies parts of a component body, whereby the af-
fected image is assigned to category “Component Detected”.
Since most images of origin class “Missing” show relatively
few solder residues on the free connecting surfaces, this be-
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Figure 6. Incorrect classifications by network N1.

Figure 7. F1 score of subnetwork N2 for test datasets A–C2.

havior can be attributed to an insufficient number of training
data with this feature.

Category “Bad” of network N2 has the greatest detection
accuracy for all test datasets (refer to Fig. 7). It is notewor-
thy that test datasets A, B, and C2 have a higher identifi-
cation performance than test dataset C1 with larger capac-
itors. For smaller components and their connection points,
faults occur with a higher frequency due to manufacturing
processes. Consequently, more data of failure types can be
obtained from production. For this reason, the behavior is
due to the higher proportion of original images in the training
datasets and the associated data variance (refer to Schwebig
and Tutsch, 2020).

The misclassifications by network N2 can mainly be found
on solder joints whose general quality is close to the limit
of tolerance between sufficient and insufficient. In particular,
this can be observed in the case of connection points, which
meet all quality criteria in accordance with the specifications
but nevertheless have a slight deviation in terms of compo-
nent position or shape of solder joint (refer to Fig. 8 left).
If the network identifies the flaw as the dominant feature, the
actually defect-free solder joint is classified as insufficient. In
this context, a similar classification behavior can also be ob-
served in the images of the individual error types. In the event

Figure 8. Incorrect classifications by network N2.

Figure 9. F1 score of subnetwork N3 for test datasets A–C2.

that the target component is in the correct position despite a
defect or failure, the affected images of solder joints are in-
creasingly assigned to class “Good” (refer to Fig. 8 right).

Classes “No Objects” and “One Component” of network
N3 show a similarly high detection performance due to the
comparable F1 score (refer to Fig. 9), despite category “Ad-
ditional Foreign Object” having a relatively low level of iden-
tifiability. It is especially remarkable that the resistors of test
dataset C2 have a lower accuracy in all categories than the
other test datasets.

The reason for the comparably poor identification perfor-
mance of the resistors lies primarily in the fact that solder
joints with additional conductor tracks in the surrounding
area are increasingly classified as “Additional Foreign Ob-
ject”. Since the PCB usually has a homogeneous surface near
the connection points, the network is increasingly aligned to
this physical appearance. Hence, there is an assumption that
the network identifies the conductor tracks as foreign bod-
ies, which influences the decision as the dominant feature
(refer to Fig. 10). In particular, test dataset C2 has an en-
hanced number of conductor tracks near the connection sur-
faces. Consequently, this feature is responsible for the fact
that resistors and subcategory “Additional Foreign Object”
have a comparatively lower detection performance (refer to
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Figure 10. Incorrect classifications by network N3.

Figure 11. F1 score of subnetwork N4 for test datasets A–C2.

Fig. 9). Test dataset C2 was captured from a different product
family. For this reason, the PCB design varies significantly
from that of the other test datasets.

As already observed on network N1, network N3 also clas-
sifies extremely misplaced components as “No Objects” (re-
fer to Fig. 6). For this reason, solder joints with lots of mis-
placed components are removed from the further evaluation
process by preselection after the first hierarchical level. In
this context, it is sufficient if two of three networks detect
the absence of a component or a contamination at the solder
joint.

The F1-score values of network N4 show that the over-
all classification performance is highest for class “Good”,
while the other categories have a lower detection accu-
racy (Fig. 11). As already examined in Schwebig and
Tutsch (2020), the challenge for neural networks is to cor-
rectly classify solder joints with features of different quality
classes. In particular, misclassification occurs when there is
an additional misplaced component in addition to the actual
category. The test images show that the network frequently
confuses the classes “Misplaced” and “Insufficient Solder”
with each other if they contain features of the other class as
well (refer to Fig. 12). At the same time, sufficient solder

joints with slight deviations are already assigned to a defect
class. The features that dominate for the network determine
the final decision when detecting the quality classes.

It is noticeable that test dataset C1 with larger capaci-
tors has the lowest detection accuracy in class “Insufficient
Solder”. The reason for this is due to the low proportion of
original component images for this category. Since this error
type is less common for large components, fewer image data
are available in this context (refer to Schwebig and Tutsch,
2020).

5.2 Overall results of the hierarchical model H1

After running through the final subnetwork N4 of the second
hierarchy, an overall decision is made based on prediction re-
sults of all subnetworks about the final quality status of elec-
trical assemblies. In order to enable a better evaluation of the
classification results, the detection outputs of this hierarchi-
cal model H1 are compared with that of the equivalent single
network from Schwebig and Tutsch (2020) (Table 5). The
single network is a five-class model with the same network
architecture, which was trained with training dataset G to
identify the same component types and quality classes. In this
context, single model means that the origin classes “Good”,
“Missing”, “Misplaced”, and “Insufficient Solder” are deter-
mined by only one CNN. The following table shows the to-
tal recognition performance of classifiers on respective test
datasets, as well as percentage of error slippage and pseudo
errors.

A comparison of the overall classification results shows
that the general detection performance on all test datasets can
be increased with the hierarchical approach. In addition, the
logarithmic error of the loss function is reduced. Due to the
multiple classification, the error slippage could be reduced
by more than half. Out of 3000 test datasets, only three clas-
sified images are subject to an undetected defect. These are
solder joints, the quality of which is near the tolerance limit
to distinguish between sufficient or insufficient quality. Fig-
ure 13 shows the affected images of different failure types
that were not detected by the hierarchical model. Although
capacitor C0402 of test dataset A is still located at both sol-
der joints, it shows an offset in the left direction. Since the
features for “Good” dominate due to the combination of suf-
ficient solder joints and component position, there is an error
slippage despite multiple network classifications. In the case
of test dataset B, the error slippage can be found in class “In-
sufficient Solder”. Here, the target component was correctly
placed but has an insufficient solder joint on the left-hand
side. Since the “Good” features are predominant in their rep-
resentation for all subnetworks, these images are classified
incorrectly.

Despite multiple testings by the individual subnetworks,
the pseudo error occurrences did not additionally increase ex-
cept for test dataset C1. The higher number of pseudo errors
on larger components is due to the comparatively lower pro-
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Figure 12. Incorrect classifications by network N4.

Table 5. Overall results of the hierarchical model H1.

Overall results of classifiers

Model Single model with training dataset Tr_E∗ Hierarchical model H1

Datasets Top-1 Top-1 Error Pseudo Top-1 Top-1 Error Pseudo
accuracy loss slippage error accuracy loss slippage error

(%) (%) (%) (%) (%) (%) (%) (%)

Test A 96.4 0.1161 0.2 0.5 97.7 0.0802 0.1 0.4
Test B 96.0 0.1419 0.5 0.1 98.0 0.0733 0.1 0.1
Test C1 97.4 0.0991 0 0.2 97.6 0.0959 0 0.4
Test C2 95.6 0.1930 0.4 0.8 97.5 0.0773 0 0.8

∗ Refer to Schwebig and Tutsch (2020). Legend: the values marked in bold indicate where an improvement has been achieved by the
hierarchical classifier.

Figure 13. Error slippage on test datasets A and B.

portion of original images in training data (refer to Schwebig
and Tutsch, 2020). By distributing the overall classification
task across various subnetworks, the misclassification value
is kept at a low level (refer to Fig. 13). It is observed that
the networks increasingly assign solder joints with additional
conductor tracks in the surrounding area to a wrong cate-
gory. For this reason, the general pseudo error occurrence is
mainly due to this feature. In addition, further pseudo errors
were found with electrical connection points that show either
a slight component offset or a discreetly less pronounced sol-
der joint. If a network assigns a higher relevance to one of
these features that deviate from the target, an incorrect clas-
sification takes place (Fig. 14).

The increased accuracy and robustness against error slip-
page can be explained by a higher testing effort of solder
joints by individual subnetworks. Despite multiple inspec-
tions, the number of pseudo errors has not been increased.
The clustering into global and local features reduces the com-
plexity and distributes it to individual subnetworks. After
passage of the first hierarchy, a preliminary decision is al-
ready made by selecting empty or contaminated solder joints.
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Figure 14. Pseudo errors of all test datasets.

The aim of this selection is that only solder connections
with the target component are transferred to the last subnet-
work N4. In advance, this prevents insufficient solder joints
with these failure types from not being recognized. As a re-
sult, an electrical assembly is only considered to be fault-free
if all four subnetworks confirm the sufficient quality status of
all solder connections. Consequently, this flow minimizes the
probability that errors will remain undetected. Therefore, the
final decision is no longer dependent on just one neural net-
work but is based on a multi-eye principle of a hierarchical
model.

6 Conclusion

While most optical inspection systems can only determine
the very existence of an error, the use of convolutional neu-
ral networks offers the possibility of identifying the exact
error details. The aspect shows a decisive advantage with
regard to the use of a deep learning concept in the area of
optical quality assurance. This article introduces a hierarchi-
cal CNN classifier for analyzing solder joints on electrical
assemblies and demonstrates its higher recognition perfor-
mance compared to a single CNN. In particular, error slip-
page and pseudo errors can be compensated by multiple vi-
sual inspections, which increases the robustness of the over-
all model. The advantage of a hierarchical network is that it is
able to solve difficult tasks by dividing the overall classifica-
tion task into several simpler subtasks. The effort of handling
the problem is distributed among various subnetworks ac-
cording to difficulty. In the context of this work, the same net-
work architecture is used for all subnetworks. Alternatively,
an individual network architecture can be used for each sub-
problem, which is specially adapted to its classification task.
The investigations of previous publications have shown that
particularly high detection results can be achieved if train-
ing datasets are explicitly geared to the respective component
types. In regard of future work, component types of similar

size and appearance will be combined in training datasets
for each subnetwork, with the aim of further increasing the
recognition performance of the hierarchical classifier.
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