Journal cover Journal topic
Journal of Sensors and Sensor Systems An open-access peer-reviewed journal
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 1.056 SNIP 1.056
  • IPP value: 1.38 IPP 1.38
  • SJR value: 0.361 SJR 0.361
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 13 Scimago H
    index 13
  • h5-index value: 13 h5-index 13
Volume 3, issue 2
J. Sens. Sens. Syst., 3, 145–165, 2014
https://doi.org/10.5194/jsss-3-145-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
J. Sens. Sens. Syst., 3, 145–165, 2014
https://doi.org/10.5194/jsss-3-145-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular research article 08 Aug 2014

Regular research article | 08 Aug 2014

A novel horizontal to vertical spectral ratio approach in a wired structural health monitoring system

F. P. Pentaris F. P. Pentaris
  • Dept. of Electronic and Computer Engineering, Brunel University, London, UK

Abstract. This work studies the effect ambient seismic noise can have on building constructions, in comparison with the traditional study of strong seismic motion in buildings, for the purpose of structural health monitoring. Traditionally, engineers have observed the effect of earthquakes on buildings by usage of seismometers at various levels. A new approach is proposed in which acceleration recordings of ambient seismic noise are used and horizontal to vertical spectra ratio (HVSR) process is applied, in order to determine the resonance frequency of movement due to excitation of the building from a strong seismic event. The HVSR technique is widely used by geophysicists to study the resonance frequency of sediments over bedrock, while its usage inside buildings is limited. This study applies the recordings inside two university buildings attached to each other, but with different construction materials and different years of construction. Also there is HVSR application in another much older building, with visible cracks in its structure. Sensors have been installed on every floor of the two university buildings, and recordings have been acquired both of ambient seismic noise and earthquakes. Resonance frequencies for every floor of every building are calculated, from both noise and earthquake records, using the HVSR technique for the ambient noise data and the receiver function (RF) for the earthquake data. Differential acceleration drift for every building is also calculated, and there is correlation with the vulnerability of the buildings. Results indicate that HVSR process on acceleration data proves to be an easy, fast, economical method for estimation of fundamental frequency of structures as well as an assessment method for building vulnerability estimation. Comparison between HVSR and RF technique shows an agreement at the change of resonance frequency as we move to higher floors.

Publications Copernicus
Download
Citation