Articles | Volume 5, issue 1
https://doi.org/10.5194/jsss-5-205-2016
https://doi.org/10.5194/jsss-5-205-2016
Regular research article
 | 
13 Jun 2016
Regular research article |  | 13 Jun 2016

First steps to develop a sensor for a Tian–Calvet calorimeter with increased sensitivity

Franz Schubert, Michael Gollner, Jaroslaw Kita, Florian Linseis, and Ralf Moos

Abstract. Initial steps to apply a ceramic multi-layer technique to build a new sensor for a Tian–Calvet calorimeter are presented in this contribution. The new sensor has a stacked design of ceramic sensor discs and insulating rings. The development was finite-element method (FEM) supported to design the sensor disc. In the next step, the function of the sensor disc was proven up to a temperature of 600 °C. Finally, the entire stack was tested at room temperature, delivering a resolution of 5 µW and a maximum sensitivity of 8.5 µV mW−1. The time constant is strongly dependent on the mass of the cuvette. We show that the time constant of the sensor can be more exactly characterized when using a novel low temperature co-fired ceramic (LTCC) cuvette with a low mass and an integrated heater. Then, the time constant can be reduced to T1∕e = 118 s. The new sensor shows similar specifications as commercial devices and presents a good starting point for future high temperature applications.

Download
Short summary
Initial steps to apply a new ceramic multi-layer sensor for a Tian–Calvet calorimeter are shown. The FEM-developed sensor consists of stacked ceramic discs and insulation rings. The functionality of the sensor disc was proven up to 600 °C and the entire stack was tested at room temperature. The resolution was 5 µW and the sensitivity was 8.5 µV mW−1. The new sensor shows similar specifications as commercial devices and presents a good starting point for future high temperature applications.