Articles | Volume 4, issue 2
https://doi.org/10.5194/jsss-4-281-2015
https://doi.org/10.5194/jsss-4-281-2015
Regular research article
 | 
08 Sep 2015
Regular research article |  | 08 Sep 2015

A new low-cost hydrogen sensor build with a thermopile IR detector adapted to measure thermal conductivity

M. Liess

Abstract. It is demonstrated how a commercially available MEMS thermopile infrared radiation sensor can be used as thermal conductivity gas detector (TCD). Since a TCD requires a heater while IR-thermopile sensors have no integrated heater, the thermopile itself is used as heater and temperature sensor at the same time. It is exposed to the measured gas environment in its housing. It is shown that, by using a simple driving circuitry, a mass-produced low-cost IR sensor can be used for hydrogen detection in applications such as hydrogen safety and smart gas metering. The sensor was tested to measure hydrogen in nitrogen with concentration of 0–100 % with a noise equivalent concentration of 3.7 ppm.

Download
Short summary
Hydrogen detection for purposes such as smart gas metering or fuel cell safety can be done by using a low-cost off-the-shelf thermopile IR radiation sensor and by driving it as a TCD (thermal conductivity detector). The MEMS thermopile sensor element is exposed to the measured gas environment. By applying an AC heating voltage to the thermopile structure and by measuring its DC output voltage, the hydrogen concentration of its gas environment can be measured with a resolution of up to 3.7ppm.