Chen, J., Liu, Q., and Gao, L.: Visual tea leaf disease recognition using a
convolutional neural network model, Symmetry, 11, 343,
https://doi.org/10.3390/sym11030343,
2019.
a
Chen, S., Luo, S. J., Chen, Y. L., Chuang, Y. K., Tsai, C. Y., Yang, I. C.,
Chen, C. C., Tsai, Y. J., Cheng, C. H., and Tsai, H. T.: Spectral imaging
approach to evaluate degree of tea fermentation by total catechins, 0935,
https://doi.org/10.13031/2013.29859, 2010.
a,
b
Dubosson, F., Bromuri, S., and Schumacher, M.: A python framework for
exhaustive machine learning algorithms and features evaluations, in:
Proceedings – International Conference on Advanced Information Networking and
Applications, AINA, 2016 May, Institute of Electrical and
Electronics Engineers Inc., 987–993,
https://doi.org/10.1109/AINA.2016.160, 2016.
a
Fahad, S. K. and Yahya, A. E.: Big Data Visualization: Allotting by R and
Python with GUI Tools, in: 2018 International Conference on Smart Computing
and Electronic Enterprise, ICSCEE 2018, Institute of Electrical and
Electronics Engineers Inc.,
https://doi.org/10.1109/ICSCEE.2018.8538413, 2018.
a
Flach, P.: Performance Evaluation in Machine Learning: The Good, the Bad, the
Ugly, and the Way Forward, Proceedings of the AAAI Conference on Artificial
Intelligence, 33, 9808–9814,
https://doi.org/10.1609/aaai.v33i01.33019808, 2019.
a,
b,
c
Hu, G., Yang, X., Zhang, Y., and Wan, M.: Identification of tea leaf diseases
by using an improved deep convolutional neural network, Sustain.
Comput.-Infor., 24, 100353,
https://doi.org/10.1016/j.suscom.2019.100353, 2019.
a
Hung, H.-C., Liu, I.-F., Liang, C.-T., and Su, Y.-S.: Applying Educational
Data Mining to Explore Students’ Learning Patterns in the Flipped Learning
Approach for Coding Education, Symmetry, 12, 213,
https://doi.org/10.3390/sym12020213,
2020.
a
Kamrul, M. H., Rahman, M., Risul Islam Robin, M., Safayet Hossain, M., Hasan,
M. H., and Paul, P.: A deep learning based approach on categorization of tea
leaf, in: ACM International Conference Proceeding Series,
Association for Computing Machinery, New York, NY, USA, 1–8,
https://doi.org/10.1145/3377049.3377122, 2020.
a
Kamunya, S. M., Wachira, F. N., Pathak, R. S., Muoki, R. C., and Sharma, R. K.:
Tea Improvement in Kenya, in: Advanced Topics in Science and Technology in
China, Springer, Berlin, Heidelberg, 177–226,
https://doi.org/10.1007/978-3-642-31878-8_5, 2012.
a
Kimutai, G., Ngenzi, A., Said, R. N., Kiprop, A., and Förster, A.: An
Optimum Tea Fermentation Detection Model Based on Deep Convolutional Neural
Networks, Data, 5, 44,
https://doi.org/10.3390/data5020044, 2020.
a,
b,
c,
d,
e,
f,
g
Kimutai, G., Ngenzi, A., Ngoga Said, R., Ramkat, R. C., and Förster, A.: A
Data Descriptor for Black Tea Fermentation Dataset, Data, 6, 34,
https://doi.org/10.3390/data6030034, 2021.
a,
b
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet classification with
deep convolutional neural networks, Commun. ACM, 60, 84–90,
https://doi.org/10.1145/3065386, 2017.
a
Kumar, A. and Panda, S. P.: A Survey: How Python Pitches in IT-World, in:
Proceedings of the International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon
2019, Institute of Electrical and Electronics Engineers Inc.,
248–251,
https://doi.org/10.1109/COMITCon.2019.8862251, 2019.
a
Kumar, N. M.: Automatic Controlling and Monitoring of Continuous Fermentation
for Tea Factory using IoT, Tech. rep., available at:
http://www.ijsrd.com (last access: 24 October 2020), 2017. a
Lazaro, J. B., Ballado, A., Bautista, F. P. F., So, J. K. B., and Villegas, J.
M. J.: Chemometric data analysis for black tea fermentation using principal
component analysis, in: AIP Conference Proceedings, AIP Publishing LLC, 2045, p. 020050,
https://doi.org/10.1063/1.5080863, 2018.
a
Li, G., Liu, Z., Cai, L., and Yan, J.: Standing-Posture Recognition in
Human–Robot Collaboration Based on Deep Learning and the Dempster–Shafer
Evidence Theory, Sensors, 20, 1158,
https://doi.org/10.3390/s20041158, 2020.
a
Marot, J. and Bourennane, S.: Raspberry Pi for image processing education,
in: 25th European Signal Processing Conference, EUSIPCO 2017, 2017 January, Institute of Electrical and Electronics
Engineers Inc., 2364–2368,
https://doi.org/10.23919/EUSIPCO.2017.8081633, 2017.
a,
b
Miazi, M. N. S., Erasmus, Z., Razzaque, M. A., Zennaro, M., and Bagula, A.:
Enabling the Internet of Things in developing countries: Opportunities and
challenges, in: 2016 5th International Conference on Informatics,
Electronics and Vision (ICIEV), IEEE, 564–569,
https://doi.org/10.1109/ICIEV.2016.7760066, 2016.
a
Momm, H. G., ElKadiri, R., and Porter, W.:
Crop-Type Classification for
Long-Term Modeling: An Integrated Remote Sensing and Machine Learning
Approach, Remote Sensing, 12, 449,
https://doi.org/10.3390/rs12030449, 2020.
a
Narula, S., Jain, A., and Prachi: Cloud computing security: Amazon web
service, in: International Conference on Advanced Computing and
Communication Technologies, ACCT, 2015 April, Institute of
Electrical and Electronics Engineers Inc., 501–505,
https://doi.org/10.1109/ACCT.2015.20, 2015.
a
Obanda, M., Okinda Owuor, P., and Mang'oka, R.: Changes in the chemical and
sensory quality parameters of black tea due to variations of fermentation
time and temperature, Food Chemistry, 75, 395–404,
https://doi.org/10.1016/S0308-8146(01)00223-0, 2001.
a
Owuor, P. O. and Obanda, M.: Comparative responses in plain black tea quality
parameters of different tea clones to fermentation temperature and duration,
Food Chem., 72, 319–327,
https://doi.org/10.1016/S0308-8146(00)00232-6, 2001.
a
O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez,
G. V., Krpalkova, L., Riordan, D., and Walsh, J.: Deep Learning vs.
Traditional Computer Vision, in: Advances in Intelligent Systems and
Computing, 943, Springer Verlag, Las Vegas, Nevada, United
States, 128–144,
https://doi.org/10.1007/978-3-030-17795-9_10, 2020.
a
Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S.: CNN Features
off-the-shelf: an Astounding Baseline for Recognition, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
512–519, arXiv [preprint],
arXiv:1403.6382 (last access: 20 August 2020), 2014.
a
Saikia, D., Boruah, P., and Sarma, U.: Development and implementation of a
sensor network to monitor fermentation process parameter in tea processing,
International Journal on Smart Sensing and Intelligent Systems, 7,
1254–1270,
https://doi.org/10.21307/ijssis-2017-704, 2014.
a
Saikia, D., Boruah, P. K., and Sarma, U.: A Sensor Network to Monitor Process
Parameters of Fermentation and Drying in Black Tea Production, MAPAN-J. Metrol. Soc. I., 30,
211–219,
https://doi.org/10.1007/s12647-015-0142-4, 2015.
a
Samal, B. R., Behera, A. K., and Panda, M.: Performance analysis of supervised
machine learning techniques for sentiment analysis, in: Proceedings of 2017
3rd IEEE International Conference on Sensing, Signal Processing and Security,
ICSSS 2017, Institute of Electrical and Electronics Engineers
Inc., 128–133,
https://doi.org/10.1109/SSPS.2017.8071579, 2017.
a
Saranka, S., Thangathurai, K., Wanniarachchi, C., and Wanniarachchi, W. K.: Monitoring
Fermentation of Black Tea with Image Processing Techniques, Proceedings of the Technical
Sessions, 32, 31–37 Institute of Physics – Sri Lanka, 32,
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/1288 (last access: 16 January 2021), 2016. a
Sharma, A. and Partha, D.: Scientific and Technological Aspects of Tea Drying
and Withering: A Review, available at:
https://cigrjournal.org/index.php/Ejounral/article/view/5048 (last access: 17 August 2020),
2018. a
Shinde, P. P. and Shah, S.: A Review of Machine Learning and Deep Learning
Applications, in: Proceedings – 2018 4th International Conference on
Computing, Communication Control and Automation, ICCUBEA 2018, Institute of
Electrical and Electronics Engineers Inc.,
https://doi.org/10.1109/ICCUBEA.2018.8697857, 2018.
a
Stancin, I. and Jovic, A.: An overview and comparison of free Python libraries
for data mining and big data analysis, in: 2019 42nd International
Convention on Information and Communication Technology, Electronics and
Microelectronics, MIPRO 2019 – Proceedings, Institute of
Electrical and Electronics Engineers Inc., 977–982,
https://doi.org/10.23919/MIPRO.2019.8757088,
2019.
a
Sun, J., Cai, X., Sun, F., and Zhang, J.: Scene image classification method
based on Alex-Net model, in: 2016 3rd International Conference on
Informative and Cybernetics for Computational Social Systems, ICCSS 2016,
Institute of Electrical and Electronics Engineers Inc., 363–367,
https://doi.org/10.1109/ICCSS.2016.7586482, 2016.
a
Sutskever, I., Martens, J., Dahl, G., and Hinton, G.: On the Importance of
Initialization and Momentum in Deep Learning, in: Proceedings of the 30th
International Conference on International Conference on Machine Learning –
Volume 28, ICML’13, III-1139–III-1147,
http://proceedings.mlr.press/v28/sutskever13.html (last access: 16 January 2021), 2013.
a,
b
Tohid, R., Wagle, B., Shirzad, S., Diehl, P., Serio, A., Kheirkhahan, A.,
Amini, P., Williams, K., Isaacs, K., Huck, K., Brandt, S., and Kaiser, H.:
Asynchronous execution of python code on task-based runtime systems, in:
Proceedings of ESPM2 2018: 4th International Workshop on Extreme Scale
Programming Models and Middleware, Held in conjunction with SC 2018: The
International Conference for High Performance Computing, Networking, Storage
and Analysis, Institute of Electrical and Electronics Engineers
Inc., 37–45,
https://doi.org/10.1109/ESPM2.2018.00009, 2019.
a
Too, E. C., Yujian, L., Njuki, S., and Yingchun, L.: A comparative study of
fine-tuning deep learning models for plant disease identification, Comp.
Electron. Agr., 161, 272–279,
https://doi.org/10.1016/j.compag.2018.03.032, 2019.
a
Uehara, Y. and Ohtake, S.: Factory Environment Monitoring: A Japanese Tea
Manufacturer's Case, in: 2019 IEEE International Conference on Consumer
Electronics, ICCE 2019, Institute of Electrical and Electronics Engineers
Inc.,
https://doi.org/10.1109/ICCE.2019.8661967, 2019.
a
Zhao, J. and Trivedi, K. S.: Performance modeling of apache web server
affected by aging, in: Proceedings – 2011 3rd International Workshop on
Software Aging and Rejuvenation, WoSAR 2011, 56–61,
https://doi.org/10.1109/WoSAR.2011.13, 2011.
a
Zhong, Y. h., Zhang, S., He, R., Zhang, J., Zhou, Z., Cheng, X., Huang, G., and
Zhang, J.: A Convolutional Neural Network Based Auto Features Extraction
Method for Tea Classification with Electronic Tongue, Appl. Sci., 9,
2518,
https://doi.org/10.3390/app9122518, 2019.
a
Zhou, H., Ni, F., Wang, Z., Zheng, F., and Yao, N.: Classification of Tea
Pests Based on Automatic Machine Learning, in: Lecture Notes in Electrical
Engineering, 653, Springer Science and Business Media
Deutschland GmbH, 296–306,
https://doi.org/10.1007/978-981-15-8599-9_35, 2021.
a